PROCESS OF UTILIZING VPP SUITE AND INRIX DATA AT COG/TPB

Wenjing Pu TPB Transportation Engineer

System Performance, Operations and Technology Subcommittee (SPOTS) & Vehicle Probe Data Users Group (VPDUG) Joint Meeting

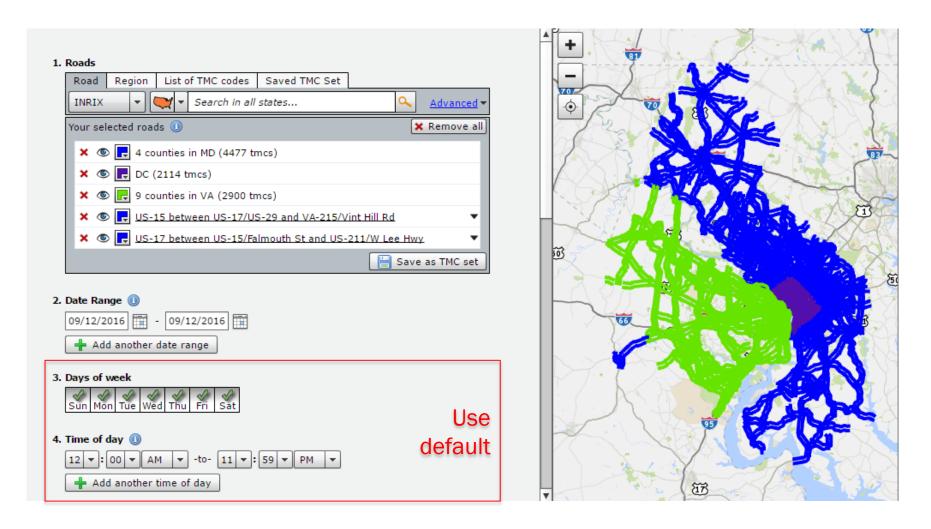
September 14, 2016

Goals

- Summarize
- Share
- Feedback

Products

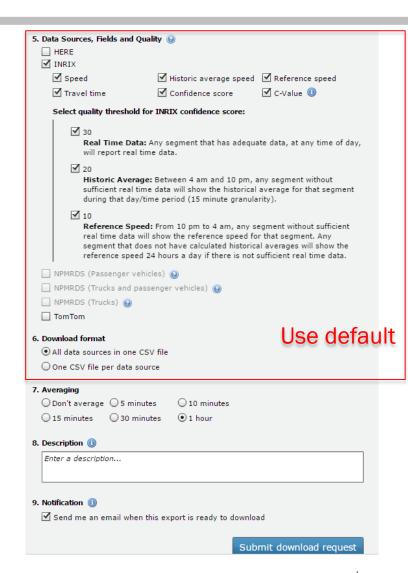
- Congestion Management Process (CMP) Technical Report:
 - 2010, 2012, <u>2014, and 2016</u>
- Congestion Dashboard: https://www.mwcog.org/congestion/
- Event analyses: http://www.tpbne.ws/
 - Traffic "September Shock" (8/30/16)
 - SafeTrack Traffic Impact (7/19/16)
 - Traffic Prior to Memorial Day (5/24/16)
- Special studies:
 - Airport Ground Access Travel Time Study (2016)
 - ICC Before and After Study (2013)



Use of VPP Suite

- Download data
- Visualization and analysis
 - Trend Map
 - Performance Charts
 - Bottleneck Ranking
 - Customized maps
- TMC lookup

Download Data



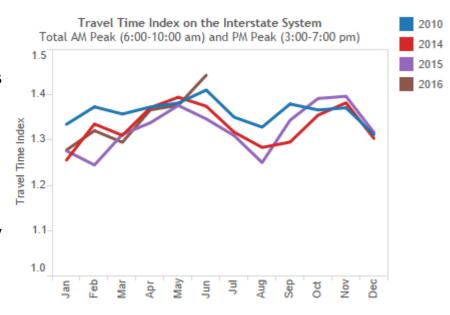
Download Data

- Be cautious in using "Saved TMC Set" as it could be outdated
 - TMCs usually updated twice a year
 - Use "Region" to select counties/cities
 - To VPP Suite: can you update "Saved TMC Set" with map updates?
- Be cautious in selecting "4. Time of Day" when downloading "today's data" as incomplete data set could exist
 - Make sure the entire selected time period has already happened. e.g., 12:00 AM to 11:59 PM 1:00 PM (other wise, incomplete data may exist)
 - To VPP Suite: any reason?
 National Capital Region

Transportation Planning Board

Import Data to SAS

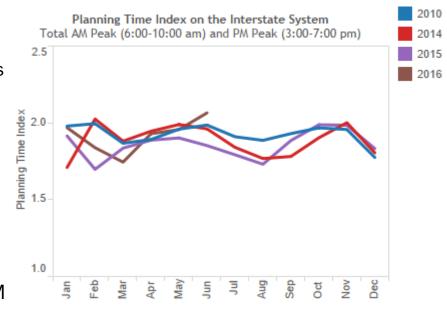
National Capital Region

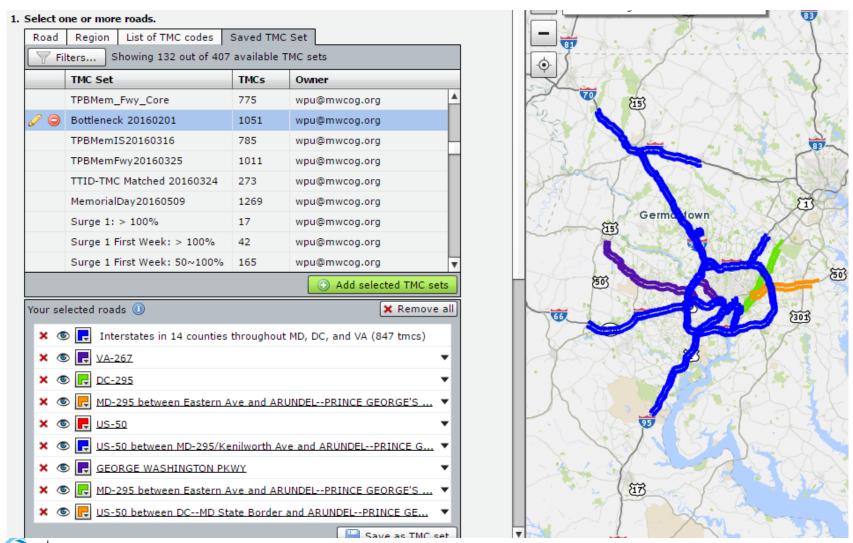

Transportation Planning Board

```
data a: infile P:\INRIXFull\01Raw\VPPSuite\2016g2\TPBMem1Hr2016g2\TPBMem1Hr2016g2.csv"
delimiter = '.' missover dsd firstobs=2:
informat TMC $9.;
informat Datetime $19.:
informat Speed best.;
informat AveSpeed best.;
informat RefSpeed best.:
informat TravelTimeMinutes best.:
informat Score best.:
informat Cvalue best .:
format TMC $9.:
format Datetime $19.:
format Speed best.;
format AveSpeed best.;
format RefSpeed best.;
format TravelTimeMinutes best.:
format Score best.:
format Cvalue best.:
input TMC Datetime Speed AveSpeed RefSpeed TravelTimeMinutes Score Cvalue;
run;
data r.TPBMem2016q2; set a;
informat ET datetime .:
format ET datetime .:
ET = dhms(mdy(substrn(Datetime, 6, 2), substrn(Datetime, 9, 2), substrn(Datetime, 1, 4)),
substrn(Datetime, 12, 2), substrn(Datetime, 15, 2), 0);
drop Datetime:
run;
```

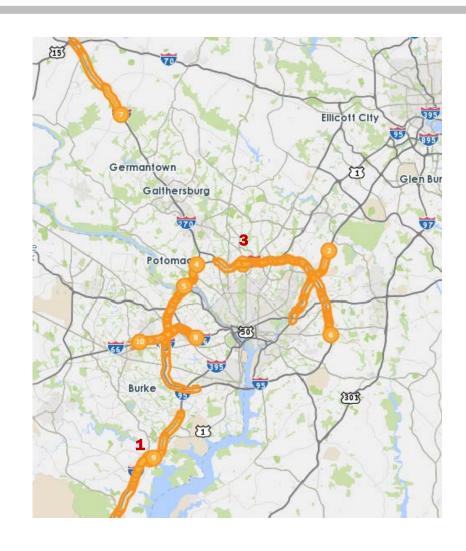
Good practice:
Always import TMC Table
"TMC_Identification.csv"
with each speed data
import; TMCs and Speed
Data go hand in hand.

Monthly Travel Time Index


- 1. Aggregate the hourly data to monthly average data by day of the week and hour of the day.
 - Harmonic Mean should be used to aggregate speeds
 - For each TMC, the monthly data has 7 weekdays
 * 24 hours a day = 168 observations
- For each TMC's 168 observations: TTI = Reference Speed/Speed and impose constraint: if TTI < 1 then TTI = 1
- 3. Calculate regional average TTI for non-holiday weekday AM peak (6:00-10:00 am) and PM Peak (3:00-7:00 pm) respectively, using segment length as the weight
- 4. Calculate the average TTI of the AM Peak and the PM Peak to obtain an overall monthly TTI for the region


Monthly Planning Time Index

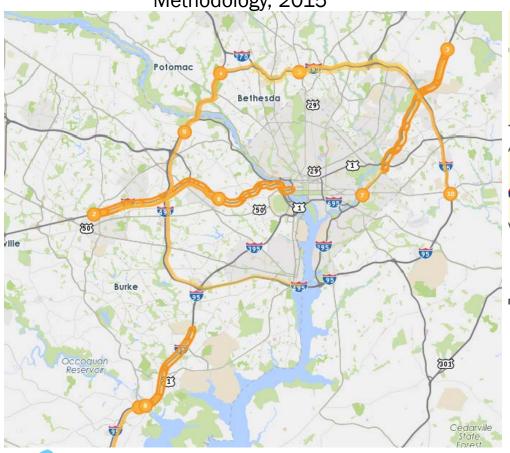
- 1. Aggregate the hourly data to monthly average data by day of the week and hour of the day.
 - Harmonic Mean should be used to aggregate speeds
 - For each TMC, the monthly data has 7 weekdays
 * 24 hours a day = 168 observations
- 2. For each TMC's 168 observations: TTI = Reference Speed/Speed
- 3. For each TMC: PTI = 95th TTI for non-holiday weekday AM peak (6:00-10:00 am) and PM Peak (3:00-7:00 pm) respectively.
- 4. Calculate regional average PTI for AM and PM peak respectively, using segment length as the weight
- Calculate the average PTI of the AM and PM Peak to obtain an overall monthly PTI

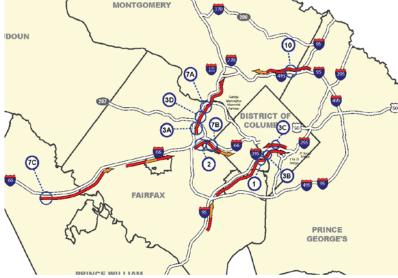

Top 10 Bottlenecks - TMC Selection

Top 10 Bottlenecks – Summary Map

To VPP Suite:

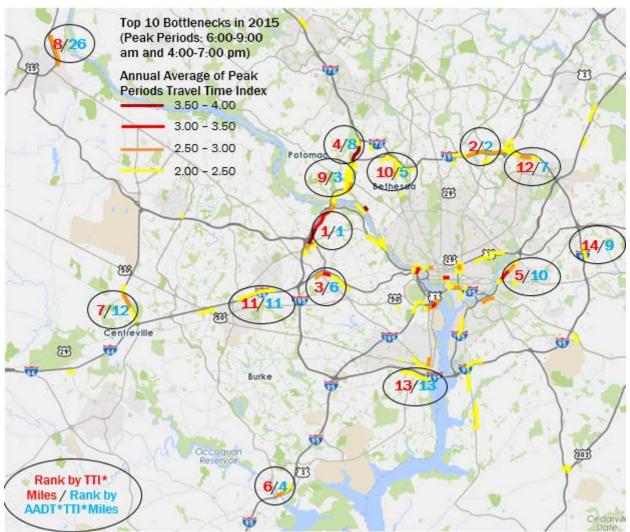
- Rank number too small
- Overlap numbers
- Directionality
- Differentiation between bottlenecks
- Real-time tracking vs. historical performance assessment





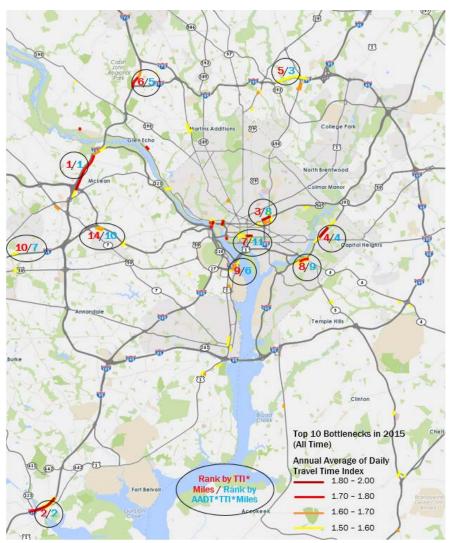
Bottlenecks - VPP Suite vs Skycomp

Vehicle Probe Project (VPP) Suite New Methodology, 2015

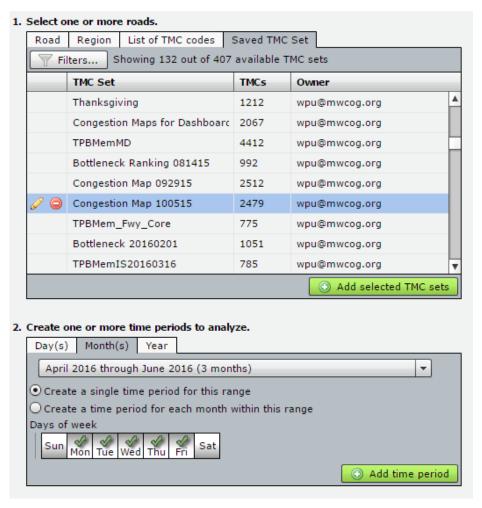

Fop Ten Congested Segments on the Freeway System (2014)

Rank	Route	From	To	Density	Speed Range
1	NB I-395 (8:30-9:30 AM)	VA 27 (Washinton Blvd)	VA 110 (Jefferson Davis Hwy)	150	5 MPH
2	EB I-66 (6:00-7:00 PM)	VA 7 (Leesburgh Pike)	VA 267	140	5 MPH
3A	Inner Loop I-495 (4:30-5:30 PM)	VA 123 (Chain Bridge Rd)	VA 267	120	5-10 MPH
3B	NB I-395 (8:30-9:30 AM)	VA 110 (Jefferson Davis Hwy)	George Washington Memorial Pkwy	120	5-10 MPH
3C	SB I-395 (5:00-6:00 PM)	4th St	12th St	120	5-10 MPH
3D	Inner Loop I-495 (4:30-5:30 PM)	VA 267	VA 193 (Georgetown Pike)	120	5-10 MPH
7A	Inner Loop I-495 (5:30-6:30 PM)	VA 193 (Georgetown Pike)	George Washington Memorial Pkwy	110	10-15 MPH
7B	EB I-66 (6:00-7:00 PM)	VA 267	Westmoreland St	110	10-15 MPH
7C	EB I-66 (6:00-7:00 AM)	VA 234 Bypass	VA 234 (Sudley Rd)	110	10-15 MPH
10	Outer Loop I-495 (7:00-8:00 AM)	MD 650 (New Hampshire Ave)	MD 193 (University Ave)	105	10-15 MPH

Note: Due to construction at the terminus of the Southeast Freeway, eastbound densities along this corridor were not included in the Top Ten list above.

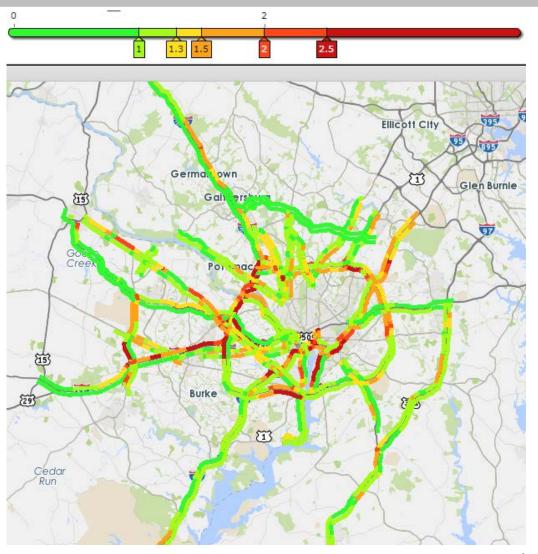


Top Bottlenecks - Peak Periods

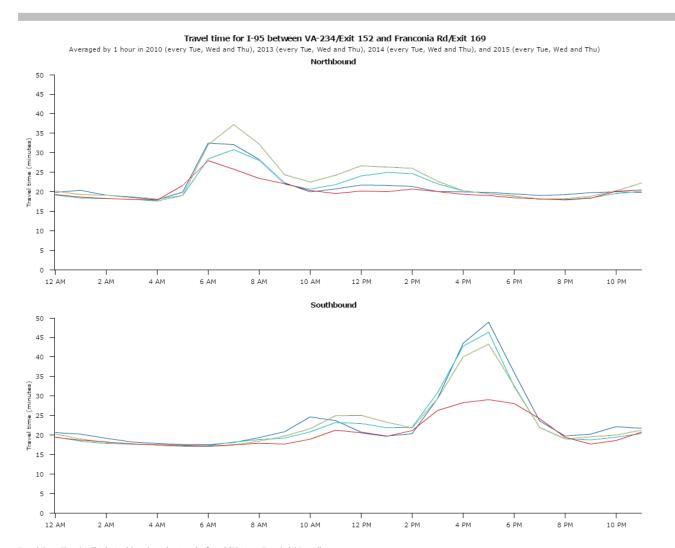


Top Bottlenecks - All Time

Congestion Map - Use Trend Map

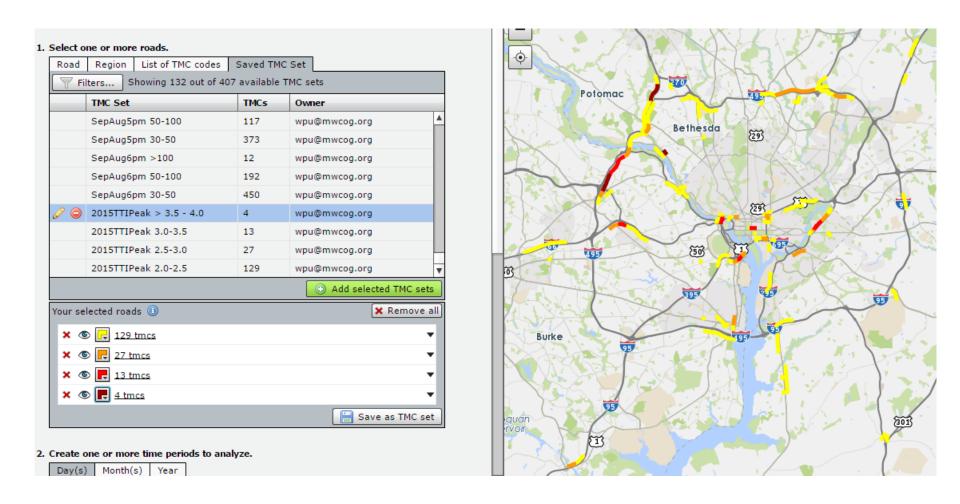


3. Data source						
Your results for each data source will be opened in new tabs.						
HERE						
✓ INRIX						
☐ NPMRDS (Passenger vehicles)						
NPMRDS (Trucks and passenger vehicles)						
☐ NPMRDS (Trucks)						
☐ TomTom						
4. Granularity						
O 1 minute						
○ 5 minutes						
◯ 10 minutes						
○ 15 minutes						
⊙ 1 hour						
	Submit					


Congestion Map

- Select Travel Time Index as the performance measure
- Change scale bar
- Select hour: 8:00-9:00 am for AM peak hour;
 5:00-6:00 pm for PM peak hour

Route Travel Times - Performance Charts



 To VPP Suite: font size too small

Travel time: Time it will take to drive along the stretch of road (Distance Traveled / Speed).

Customized Maps

Summary

- VPP Suite has a number of tools that we can utilize, especially visualization of bottlenecks, maps and performance measures
- Customized computation needed sometimes for the time being
- When averaging speeds, Harmonic Mean should be used
- When averaging Travel Time Index, impose TTI >= 1 first
- Use the same calculation procedure for a performance measure over time
- Speed data and TMC table go hand in hand
- Always double check your calculations, i.e. use the number of observations, total miles of TMCs, etc.
- Don't be afraid of SAS, a small number (<10) of procedures can go a long way (libname; data; proc sql; proc sort; proc summary; proc export)

Wenjing Pu

TPB Transportation Engineer (202) 962-3761 wpu@mwcog.org

mwcog.org/TPB

Metropolitan Washington Council of Governments 777 North Capitol Street NE, Suite 300 Washington, DC 20002

