Safety Applications of
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* Launched in 2018

* Surface transportation
focused

* Intended to build upon
and enhance current
safety efforts related to
data, analysis, and
policymaking

* Cross-cutting, collaborative effort:
+ Office of the Secretary of Transportation (OST)
* Policy Office
+ Office of the Chief Information Officer

* Bureau of Transportation Statistics

* Federal Highway Administration (FHWA)

+ National Highway Traffic Safety Administration
(NHTSA)

* Other surface operating administrations (OAs)
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Integrate existing Use advanced data Create
DOT data and new analytics to provide data visualizations
"big data” sources predictive insights to help policymakers

into safety risks arrive at solutions
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Safety Data Initiative — Waze Pilot Project

 DOT became a Waze Connected Citizens partner (data from April, 2017)

e Developed the Secure Data Commons: AWS cloud platform to process, curate,
and analyze big data within DOT (Waze and other transportation data)

 NHTSA Electronic Data Transfer (EDT): daily updated crash reports for 7+ states

* Waze pilot: Integrate transportation data to develop rapid crash indictors
e Phase 1: State-wide indicators of police-reportable traffic crashes

e Phase 2: State and local applications of Waze analysis pipeline

* Tennessee: Crash propensity model to target safety risk with highway patrols a8
* Bellevue: Crash risk model to inform Vision Zero action plan Q b
DUTSMARTING ;F‘;AFHG;‘I’HER. A
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Phase |: State-Wide Crash Models using Waze data

» Assessed spatial and temporal relationships between
Waze events and police-reported traffic crashes

* Integrated statewide Waze, traffic volume, job, and
weather data for MD, VA, CT, and UT

* Applied machine learning to reliably estimate hourly
police reportable crashes in four states

e Created interactive Tableau dashboards: when and
where are model estimates accurate?

Our Waze data integration, modeling, and visualization pipeline
can support nationwide studies or state and local applications
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Statistical Approach: Supervised Classification

Random Forests ,
Random FKorest Simplified

e Machine learning approach which minimizes
overfitting

lnstance

Random Forest / '

e Trained models on 70% of data using EDT reports as
our labeled “ground-truth”

e Tested model performance using 30% of data to

compare estimated EDT crashes with observed EDT Tree-1 Treen
crashes Class-A C‘lalss-B Class-B
e Rigorously trained and tested data feature [ Majority-Voting | |

combinations (50+ models)

Final-Class

* Best CraSh estimation mOdeIS minimize false pOSItlveS Image credit: https://medium.com/@williamkoehrsen/random-
and false negatives forest-simple-explanation-377895a60d2d
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Model Performance (April-Sept 2017 in MD

Model estimates highly accurate overall; miss some precise patterns

Crashes by Day
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Models perform well across multiple states

Variation by hour and location related to Waze coverage
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Phase ll: Tennessee Case Study

e Highway Patrol uses machine
learning to predict crash
propensity and target patrols

e |Integrating Waze data with existing
grid models improves estimates

% of Observed Estimated

I

A4/1/2017

e Spatial resolution: 42 to 1 sq mile

May June July August September October MNovember December January February

e Temporal resolution: 4 hrsto 1 hr

| } M Ll .
" Results will help HP better target 'rA/\” VJ o rM AV el '\ il M | 4‘.;"\*"/*/'(\;'. T‘W

high crash risk locations and times
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Maximum Crash Probability - mode/ 05, May 6, 2019 - May 13, 2019 in Tennessee

Maximum Crash Probability by Day of Week Maximum Crash Probability
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Maximum Crash Probability - rvode/ 05, May 6, 2019- May 13, 2019 in Tennessee

Maximum Crash Probability by Day of Week Maximum Crash Probability
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Phase |l: Bellevue Case Study

Crowdsourced traffic incident data to
improve traffic safety management

Approach:

* Integrate data sources and create dashboards

e Develop crash estimation models: conditions,
times, locations with high propensity

e Transfer methods to Bellevue (CC partner)

Outcomes:

e First integrated view of 3 traffic crash datasets
highlights unique contributions of each by
time and location

e Segment-level crash models will guide
transportation safety investment decisions
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Waze Accidents, Bellevue Crash Reports, and NORCOM Crash Reports
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Insights = What Have We Learned?

Maximum Crash Probability - tiogerio5. May e

Waze data provide important contextual information to
inform state and local safety applications

* Crash models using integrated Waze, traffic volume,
job, and weather data give reliable estimates

e Tennessee Highway Patrol will more effectively
target high-risk times and areas

* Crash propensity models will guide city-wide safety
investment decisions

Crowd-sourced trdffic data can enhance other roadway data to
illuminate safety risk patterns and inform decision making
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Waze Pilot: Next Steps

¥ ¥ WV s S |
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* Transfer data integration, modeling, and visualization approaches to state and local
case study partners (grid and segment models)

e Tennessee: Deploy updated crash propensity models with Waze data at finer
spatial and temporal resolution

* Bellevue: Transfer analytical methods and dashboard development process.

e Explore safety applications with other state and local partners

e OST SDI Procurements: https://www.transportation.gov/content/safety-data-initiative

https://www.volpe.dot.gov/news/using-crowdsourced-data-estimate-crash-risk

https://www.wired.com/story/waze-data-help-predict-car-crashes-cut-response-time/

‘ U.S. Department of Transportation
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