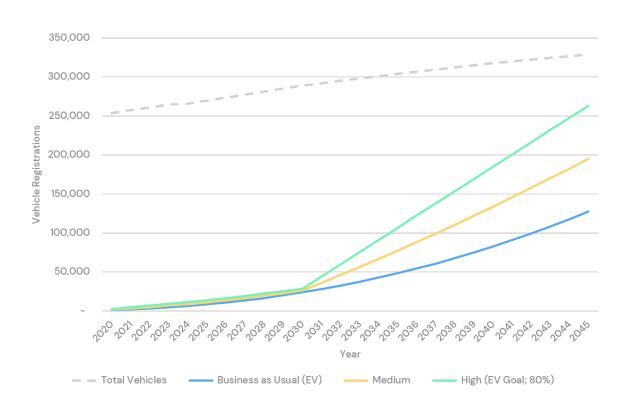





Regional Electric Vehicle (EV) Infrastructure Implementation Strategy

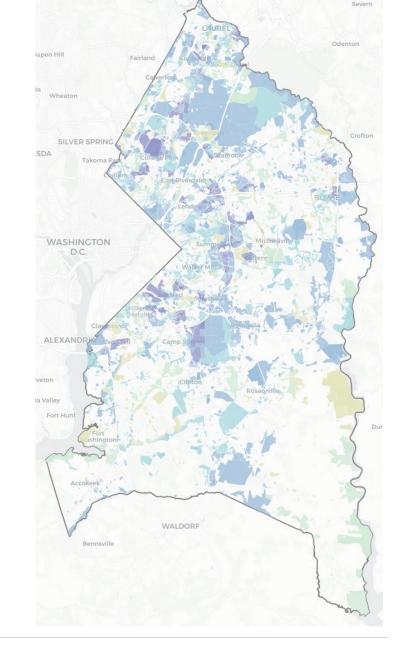


MWCOG REVD Working Group ICF




EV and Charging Needs Assessment and Forecast

&


**EV Charger Deployment Planning** 

- EV projections for 2030, 2035, and 2045 by county and region
- Scenario development will be informed by:
  - Technology readiness
  - Total cost of ownership
  - Existing and upcoming federal policies
  - Barriers to EV adoption
- Evaluate existing projections for the region for inclusion in this assessment or for an update



#### — EV and Charging Needs Assessment and Forecast

- Use EV projections to estimate number and type of chargers needed
- Engage utilities for electric capacity information
- Recommendations will be developed using a threestep process intended to identify sites that have a high probability for charging demand.
  - Step 1: Census Tract Level Screening
  - Step 2: High Priority Parcel Analysis
  - Step 3: Site Selection
- This will build on past work completed for Prince George's County and the City of Rockville.



### EV Charger Deployment Planning

# Step 1: Census Tract Level Screening

- Screening analysis of all census tracts in COG region
- Data sources: income, HEV ownership, home ownership, dwelling type, the travel demand forecasting model, AFCs, Justice40, COG's Regional Activity Centers (RAC), Equity Emphasis Areas (EEA), High-Capacity Transit Stations (HCT), and utility EV capacity, and more
- Three types of charging: residential, workplace, and opportunity

# Step 2: High Priority Parcel Analysis

- Potential parcels will be scored according to the following example criteria:
  - Distance to existing charging stations
  - Distance to multi-unit dwellings
  - Distance to highway onramp or off-ramp
  - Location in or near a disadvantaged community
  - Distance to public transportation connection

#### Step 3: Site Selection

- Review of each high scoring parcel to determine suitability for a public EV charging station
- Review will consider factors such as the following:
  - Parcel size and parking availability
  - Facility access
  - Retail chains with EV charger programs
  - Utility electric service capacity



#### **EV and Charging Needs Assessment and Forecast**

- Methodology Memo
- EV projections for 2030, 2035, and 2045
- Presentation of Draft Results to REVD Working Group

#### **EV Charger Deployment Planning**

- Methodology Memo
- Report of Deployment Implementation Strategy
- Meetings with Electric Utilities
- GIS Maps for Local Jurisdiction Staff
- Public-Facing GIS Maps
- Presentation of Draft Results to REVD Working Group

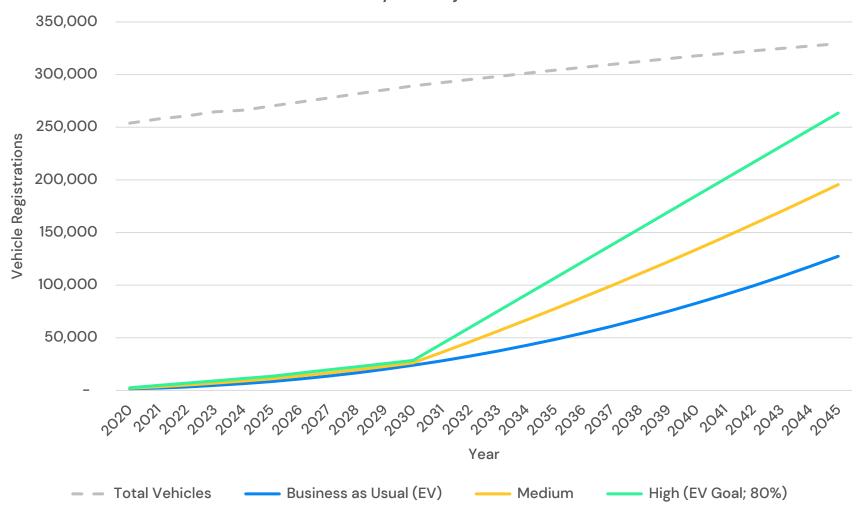
### → Key Deliverables



Example: Frederick County Community EV Projections

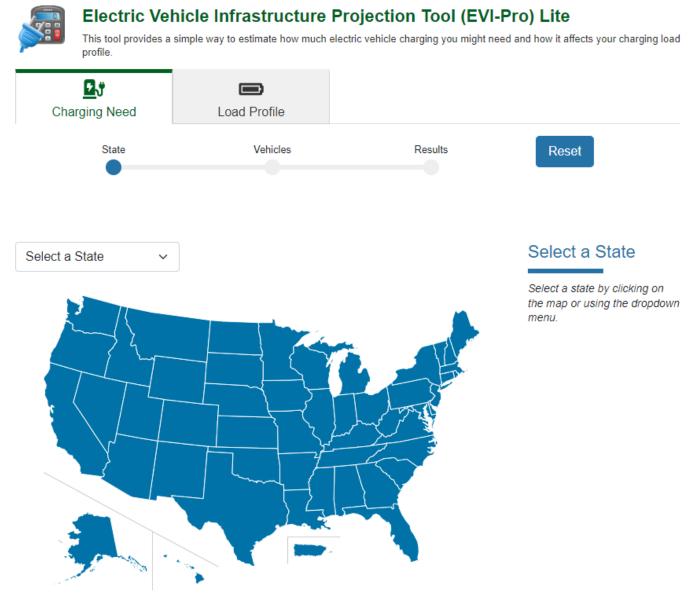
• Business as Usual (BAU): Growth rate informed by historical vehicle registration data and knowledge of the jurisdiction

Medium: Average of BAU and high scenarios


 High: Jurisdiction's proportion of State ZEV adoption goals through 2030; subsequent goal of 80% ZEVs by 2045

Projection Scenarios

| Input Data                 | Source                      |
|----------------------------|-----------------------------|
| State Population           | Maryland State Data Center  |
| Jurisdiction Population    | MWCOG Cooperative Forecasts |
| Vehicle Registration       | Maryland DOT                |
| EV and PHEV Registrations  | Maryland DOT                |
| Maryland ZEV Adoption Goal | Maryland DOT                |


## ightarrow EV Projection Inputs

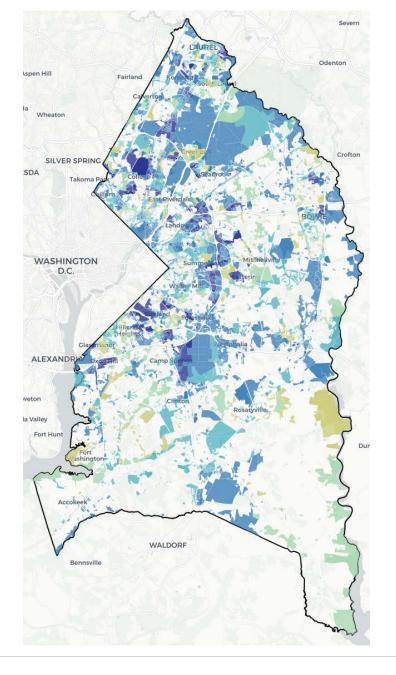
#### Frederick County EV Projections Over Time



## Frederick County EV Projections

- Number of Vehicles
   Supported
- Vehicle Mix
- PHEV Support
- Home Charging Access




— EV Charging Demand Inputs

| Scenario                        |                                |                | 2025   | 2030   | 2035    | 2040    | 2045    |
|---------------------------------|--------------------------------|----------------|--------|--------|---------|---------|---------|
| Business As Usual<br>(BAU)      | EVSE Needs<br>(charging ports) | Single Family  | 6,066  | 16,705 | 34,490  | 58,977  | 88,749  |
|                                 |                                | Shared Private | 479    | 1,220  | 2,729   | 4,661   | 6,479   |
|                                 |                                | Public Level 2 | 617    | 1,546  | 3,508   | 6,003   | 8,214   |
|                                 |                                | Public DC Fast | 37     | 77     | 211     | 362     | 406     |
|                                 |                                | Total          | 7,200  | 19,548 | 40,938  | 70,003  | 103,848 |
|                                 | EVs to Support                 |                | 8,523  | 23,991 | 48,461  | 82,866  | 127,450 |
| Medium                          | EVSE Needs<br>(charging ports) | Single Family  | 7,854  | 18,270 | 55,249  | 93,299  | 136,084 |
|                                 |                                | Shared Private | 621    | 1,334  | 4,369   | 6,813   | 9,933   |
|                                 |                                | Public Level 2 | 799    | 1,690  | 5,620   | 8,633   | 12,591  |
|                                 |                                | Public DC Fast | 48     | 80     | 340     | 429     | 623     |
|                                 |                                | Total          | 9,323  | 21,374 | 65,578  | 109,174 | 159,231 |
|                                 | EVs to Support                 |                | 11,035 | 26,238 | 77,629  | 133,986 | 195,433 |
| High (ZEV Goal;<br>80% by 2045) | EVSE Needs<br>(charging ports) | Single Family  | 9,434  | 19,836 | 76,008  | 128,893 | 183,423 |
|                                 |                                | Shared Private | 689    | 1,448  | 6,014   | 9,409   | 13,395  |
|                                 |                                | Public Level 2 | 873    | 1,835  | 7,735   | 11,926  | 16,969  |
|                                 |                                | Public DC Fast | 43     | 91     | 467     | 590     | 842     |
|                                 |                                | Total          | 11,039 | 23,210 | 90,224  | 150,818 | 214,629 |
|                                 | EVs to Support                 |                | 13,548 | 28,486 | 106,796 | 185,106 | 263,416 |

### Frederick County EV Charging Demand Projections



- Provides data relevant to electric vehicle (EV) charging demand in support of siting future charging infrastructure
- Available data includes:
  - Existing and proposed (Pepco) charging stations
  - Multi-family housing
  - Equity Emphasis Areas
  - Government facilities
  - Alternative Fuel Corridors
  - Forecasted employment metrics





- Scores are assigned to specific geographic areas based on the following criteria.
  - Proximity Criteria
    - Parcels have points either awarded or subtracted based on their proximity to:
      - Transit stops
      - Level 2 charging
      - DC Fast charging
      - Multifamily housing
      - Equity Emphasis Areas
  - Travel Demand Scenarios
    - Travel demand is estimated based on the number of non-home-based trips at the Census Block Group scale for three scenarios:
      - Level 2 chargers with high utilization
      - DCFC chargers with high utilization
      - DCFC chargers with equity focus
    - Criteria weighting can be adjusted within the mapping tool to create custom scenarios.

#### Scenarios and Analysis

