# TPB Version 2.3 Travel Forecasting Model for the 3,722-Zone Area System: Calibration Report # Draft Report February 28, 2011 This publication was funded, in part, by grants from the District of Columbia Department of Transportation, the Maryland Department of Transportation, the Virginia Department of Transportation, the Federal Highway Administration and the Federal Transit Administration. The material herein does not necessarily reflect the views of the sponsoring agencies. | Title | Date | February 28, 2011 | |--------------------------------------------------|-----------------|-------------------| | TPB Version 2.3 Travel Forecasting Model for the | Number of pages | | | 3,722-Zone Area System: Calibration Report | Publication no. | | | , | Availability | See below | #### Agency National Capital Region Transportation Planning Board (TPB). Transportation planning at the regional level in the Washington area is coordinated by the National Capital Region Transportation Planning Board (TPB), the federally designated Metropolitan Planning Organization (MPO) for the region. The TPB is staffed by the Department of Transportation Planning (DTP) at the Metropolitan Washington Council of Governments (COG). COG is an independent, nonprofit association comprised of elected officials from 21 local governments, members of the Maryland and Virginia state legislatures, and members of the U.S. Congress. | Credits | | |-------------------------|------------------------------------------------------------| | | | | Program Administration: | Ronald Milone, Travel Forecasting Program Director | | | | | Authors: | Hamid Humeida, Maria Martchouk, Ronald Milone, Mark Moran, | | | Meseret Seifu | | | | **Abstract:** This report describes the application of a travel forecasting process, known as the Version 2.3 model, for the Washington, D.C. region. Version 2.3 is distinguished from prior TPB travel models in that it has been developed over a new 3,722 transportation analysis zone system, and it has been calibrated and validated with several sources of recently collected travel data, including the COG/TPB 2007/08 Household Travel Survey. TPB Travel Forecasting Subcommittee provided oversight for the Version 2.3 model development effort. #### Copies of this report can be found on the MWCOG Website: www.mwcog.org Metropolitan Washington Council of Governments 777 N. Capitol Street, N.E., Suite 300 Washington, D.C. 20002-4239 Tel. (202) 962-3200 **COPYRIGHT 2011** # **Table of Contents** | Chapter 1 Introduction | 1 | |---------------------------------------------------------|----| | 1.1 Development history of the Version 2.3 travel model | 2 | | 1.2 Calibration Data | 2 | | 1.2.1 2007/2008 COG/TPB Household Travel Survey | 2 | | 1.2.2 Land activity | 3 | | 1.2.3 Other data | 3 | | 1.3 Features of the Version 2.3 travel model | 4 | | 1.3.1 3,722-TAZ system | 4 | | 1.3.2 Nested-logit mode choice model | 6 | | 1.3.3 Updated models for medium trucks and heavy trucks | 6 | | 1.3.4 Subdivided non-home-based purpose | 7 | | 1.3.5 Refined non-motorized travel | 7 | | 1.4 Overview of the Version 2.3 travel model | 7 | | 1.5 Special modeling applications | 11 | | Chapter 2 Inputs to the Travel Model | 13 | | 2.1 Round 8.0 Land Use | 13 | | 2.2 External and Through Forecasts | 15 | | 2.3 Miscellaneous and Airport-Passenger Trip Forecasts | 18 | | Chapter 3 Demographic models | 21 | | 3.1 Household size sub-model | 22 | | 3.2 Household income sub-model | 25 | | 3.3 Vehicle availability sub-model | 28 | | 3.4 Demographic Model Validation Results | 29 | | Chapter 4 Trip Generation | 31 | | 4.1 Model Structure | 31 | | 4.2 Trip Production Model | 32 | | 4.3 The Internal-to-External Trip Estimation Model | 39 | | 4.4 Area type | 41 | | 4.5 Non-Motorized Production Trip Model | 46 | | 4.6 Trip Attraction Model | 48 | |------------------------------------------------------------------------------------|----| | 4.7 Non-motorized Attraction Trip Model | 49 | | 4.8 Home-based Trip Attraction Income Disaggregation Model | 50 | | 4.9 Truck Model | 54 | | 4.10 Commercial Vehicle Model | 55 | | 4.11 References | 56 | | Chapter 5 Trip Distribution | 57 | | 5.1 Model Structure | 57 | | 5.2 Internal Motorized Person Models | 58 | | 5.3 External Auto Person , commercial vehicle, and truck models | 62 | | 5.4 Friction Factor Summary | 62 | | 5.5 References | 66 | | Chapter 6 Mode choice | 67 | | 6.1 Overview | 67 | | 6.2 Background | 69 | | 6.3 Detailed description of the TPB nested-logit mode choice model | 70 | | 6.3.1 Choice set and nesting structure | 70 | | 6.3.2 Market segmentation | 71 | | 6.3.3 Utility equations, including time and cost coefficients and income constants | 74 | | 6.3.4 Nesting coefficients and nesting constant | 76 | | 6.3.5 Other details | 78 | | 6.4 Calibration process | 78 | | 6.4.1 Observed data and calibration targets | 79 | | 6.4.2 Calibration results | 82 | | 6.5 Model application | 88 | | 6.6 References | 90 | | Chapter 7 Time-of-Day Model | 93 | | 7.1 Model Structure | 93 | | Chapter 8 Traffic Assignment/Feedback | 97 | | 8.1 Updated features | 97 | | 8.2 Model structure | 98 | | 8.3 Two-step traffic assignment | 99 | | | | # TPB Version 2.3 Travel Forecasting Model for the 3,722-Zone Area System: Calibration Report | | 8.4 Double run of the travel model to address Northern Virginia HOV/HOT lane policy | . 102 | |----|-------------------------------------------------------------------------------------|-------| | | 8.5 Convergence in traffic assignment | . 103 | | | 8.6 Removal of queuing delay function | . 105 | | | 8.7 Volume Delay Functions | . 108 | | | 8.8 Speed and Capacity Tables | . 112 | | | 8.9 Peaking Factor Assumptions | . 113 | | Cl | hapter 9 Validation | . 115 | | | 9.1 Validation summaries | . 115 | # **List of Figures** | Figure 1 Modeled area: 3,722-TAZ area system covering 22 jurisdictions | 5 | |-------------------------------------------------------------------------------------------------------------------|-----| | Figure 2 Version 2.3 Travel Model Structure | 8 | | Figure 3 VMT by Iteration | 10 | | Figure 4 Household size sub-model: Graphical form | 23 | | Figure 5 Household income sub-model: Graphical form | 26 | | Figure 6 Internal-to-External Trip Extraction Model | 40 | | Figure 7 Revised area types used in the Version 2.3 travel model: Modeled area | 42 | | Figure 8 Revised area types used in the Version 2.3 travel model: the 10-mile square | 43 | | Figure 9 HBW Friction Factors | 64 | | Figure 10 HBS Friction Factors | 64 | | Figure 11 HBO Friction Factors | 65 | | Figure 12 NHB Friction Factors | 65 | | Figure 13 Nesting structure of the nested-logit mode choice model in the Version 2.3 travel model | 67 | | Figure 14 Seven superdistricts used in the Version 2.3 nested-logit mode choice model | 72 | | Figure 15 Example of a nest in a nested logit mode choice model (with hypothetical values for $\Phi$ and NC) | 77 | | Figure 16 Examples of possible values for nesting coefficients and nesting constants | 78 | | Figure 17 Example of calculating a top-level nesting constant from the lower-level nesting constants that come | į | | out of CALIBMS | 87 | | Figure 18 Traffic assignment in the Version 2.2 Travel Model prior to fall 2008: three assignments, each with fi | ve | | market segments (user classes), resulting in 180 user equilibrium iterations | 100 | | Figure 19 Traffic assignment in the Version 2.2 Travel Model after fall 2008: five assignments, with one, four, o | or | | five user classes, resulting in 300 user equilibrium iterations | 102 | | Figure 20 Relative gap by user equilibrium traffic assignment iteration: Version 2.2 Travel Model (final speed | | | feedback iteration, i6) | 104 | | Figure 21 Relative gap by user equilibrium traffic assignment iteration: Version 2.3 Travel Model (final speed | | | feedback iteration, i4) | 105 | | Figure 22 Conical volume-delay functions used in the Version 2.3 travel model: V/C > 1 | 111 | | Figure 23 Conical volume-delay functions used in the Version 2.3 travel model: V/C < 1 | 111 | | Figure 24 Freeway Speed | 112 | | Figure 25 Highway Network Screen lines Map 1 of 2 | 119 | | Figure 26 Highway Network Screen lines (Inside the Capital Beltway) Map 2 of 2 | 120 | # **List of Tables** | Table 1 2007 "Pseudo Round 8.0" Land Activity Totals | 3 | |----------------------------------------------------------------------------------------------------------------|----| | Table 2 3,722-TAZ Numbering Allocation by Jurisdiction | 6 | | Table 3 Round 8.0 Land Use Forecasts for Version 2.3 Modeling (w/ CTPP Employment Adjustments) | 14 | | Table 4 External and Through Auto/Truck Trips by Year | 16 | | Table 5 External Auto/Truck Productions by Year | 17 | | Table 6 External Auto/Truck Attractions by Year | 18 | | Table 7 Miscellaneous Auto Driver Forecasts | 19 | | Table 8 Air Passenger Auto Driver Trips by Year and Airport | 20 | | Table 9 Household income quartiles computed from the ACS | 22 | | Table 10 Household size sub-model: Tabular form | 24 | | Table 11 Household income sub-model: Tabular form | 27 | | Table 12 Vehicle availability model | 28 | | Table 13 2007 Regional Estimated and Observed Households by Size | 29 | | Table 14 2007 Regional Estimated and Observed Households by Income Level | 30 | | Table 15 2007 Regional Estimated and Observed Households by Vehicles Available | 30 | | Table 16 Final HBW Trip Production Rates | 33 | | Table 17 Final HBS Trip Production Rates | 34 | | Table 18 Final HBO Trip Production Rates | 35 | | Table 19 Final NHW Trip Production Rates | 36 | | Table 20 Final NHO Trip Production Rates | 37 | | Table 21 Daily trip productions per household (average weekday), summary across the trip purposes | 38 | | Table 22 Categorization of trips into four markets, based on whether the starting and ending points of the tri | p | | are within or beyond the modeled area | 39 | | Table 23 Area Type Definitions (1-7) as a function of population and employment density | 41 | | Table 24 Description of each area type and examples of each area type | 44 | | Table 25 Area-type adjustments developed in trip generation calibration | 46 | | Table 26 Production End Non-Motorized Trip Percentages for Area Types 3-6 | 47 | | Table 27 HBW Non-Motorized Production-End Trip Model | 48 | | Table 28 Home-Based Shop (HBS) and Home-Based Other (HBO) Non-Motorized Production Trip Model | 48 | | Table 29 Attraction End Non-Motorized Trip Percentages for Area Types 3-6 | 50 | | Table 30 HBS/HBO/NHO Non-Motorized Attraction Trip Model | 50 | | Table 31 NHW Non-Motorized Attraction Trip Model | 50 | | Table 32 HBW Motorized Trip Attractions by Area Type and Income | 52 | | Table 33 HBS Motorized Trip Attractions by Area Type and Income | 53 | | Table 34 HBO Motorized Trip Attractions by Area Type and Income | 54 | | Table 35 Truck trip generation rates as a function of truck type, area type, and land use category | 55 | | Table 36 Trip distribution markets | 57 | | Table 37 Trip distribution markets that were re-calibrated | 58 | | Table 38 Internal Motorized Trips and Transit Percentages by Purpose and Mode | 60 | | Table 39 Time Valuation (Minutes/2007\$) by Purpose and Income Level | 61 | | Table 40 Time valuation (minutes per year 2007 dollar) by vehicle type and time period, used in traffic | | | assignment | 62 | | Table 41 Estimated Gamma Distribution Values by Purpose and Income Strata | 63 | | Table 42 Regional Estimated and Observed Trip lengths and Intra-zonal Percentages | 66 | | Table 43 Comparison of characteristics found in both the AECOM/WMATA NLMC model and the TPB NLMC in | model | |----------------------------------------------------------------------------------------------------------------------------------|-------| | | | | Table 44 Production and attraction market segments used in the TPB Version 2.3 NLMC model | | | Table 45 20 geographic market segments used in the TPB nested-logit mode choice model | | | Table 46 Equivalency between seven super-districts and the 20 geographic market segments | 73 | | Table 47 Equivalency between nested-logit mode choice superdistricts and TPB TAZ 3,722 | 73 | | Table 48 Time and cost coefficients in the Version 2.3 nested-logit mode choice model | | | Table 49 Income constants used in the TPB Ver. 2.3 NLMC model | 76 | | Table 50 Interpretation of nesting coefficient values in nested-logit mode choice models | 77 | | Table 51 Transit person trip control totals ("targets") for 2007, average weekday | 80 | | Table 52 Average weekday auto person trip control totals ("targets") for 2007 used for the calibration to a simulated trip table | 81 | | Table 53 Transit surveys used to calculate transit trip targets | | | Table 54 Top-level equivalent nesting constants for HBW | | | Table 55 Top-level equivalent nesting constants for HBS | | | Table 56 Top-level equivalent nesting constants for HBO | | | Table 57 Top-level equivalent nesting constants for NHW | | | Table 58 Top-level equivalent nesting constants for NHO | | | Table 59 Person trips by travel mode and trip purpose, summed for all 20 geographic market segments | | | Table 60 Total person trips by market segment | | | Table 61 Transit person trips by market segment | | | Table 62 Version 2.3 Temporal Factors (Percentages) For Truck and Non-Modeled Travel Markets | | | Table 63 Temporal travel distributions by purpose, mode, and direction | | | Table 64 A comparison of traffic assignment features in the Version 2.2 and 2.3 travel models | 97 | | Table 65 Specs of travel model server tms3 | 98 | | Table 66 Conical volume-delay functions used in the Version 2.3 travel model: Tabular format | | | Table 67 Free Flow Capacities | 112 | | Table 68 Free Flow Speeds | 113 | | Table 69 Peak Hour Percentage by Time Period based on Total Auto Driver Trips in Motion Distribution | 113 | | Table 70 2007 Estimated/Observed (HPMS) VMT for the Washington, DC MSA (in thousands) | 116 | | Table 71 Year 2007 Estimated and Observed VMT Summary by Jurisdiction (in thousands) | 116 | | Table 72 Year 2007 Estimated and Observed Daily Screenline Crossings | 121 | | Table 73 Comparison of 2007 Estimated and Observed Trips Purpose and Mode | 123 | | Table 74 Summary of Version 2.2 and Version 2.3 travel model output: Years 2005, 2007 and 2011 | 124 | | Table 1 Jurisdictional Production Adjustment Factors | A-1 | | Table 2 Jurisdictional Attraction Adjustment Factors | A-2 | | Table 3 K-Factors used in Trip Distribution to Calibrate Potomac River Crossings | A-3 | | Table 4 HBW K-Factors (Overrides to Potomac River Crossing K-Factors) | A-4 | | Table 5 Non-HBW Intra-Jurisdictional K-Factors | A-4 | | | | # **List of Equations** | Equation 1 Income ratio equation | 25 | |------------------------------------------------------------------------------------------------------|-----| | Equation 2 Percent of total trips productions that are I-X | 40 | | Equation 3 Trip Attraction by Income Level | 51 | | Equation 4 Trip generation of commercial vehicle trips | 55 | | Equation 5 Composite time | 59 | | Equation 6 Equation for calculating the top-level equivalent value of a nesting coefficient | 86 | | Equation 7 Equation for calculating the implied minutes of impedance of a top-level nesting constant | 86 | | Equation 8 Queuing delay function (QDF): Sigmoid | 106 | | Equation 9 Akçelik curve | 107 | | Equation 10 Akçelik Delay Function (HCM 2000) | 108 | | Equation 11 Conical VDF function (Spiess 1990) | 108 | # **Chapter 1 Introduction** Transportation planning at the regional level in the Washington area is coordinated by the National Capital Region Transportation Planning Board (TPB), the federally designated Metropolitan Planning Organization (MPO) for the region. The TPB is staffed by the Department of Transportation Planning (DTP) at the Metropolitan Washington Council of Governments (COG). COG is an independent, nonprofit association comprised of elected officials from 21 local governments, members of the Maryland and Virginia state legislatures, and members of the U.S. Congress. The TPB coordinates transportation planning among federal, state, and local transportation agencies in the region. TPB staff maintains a travel forecasting capability that is used to support regional, corridor, and local transportation planning needs. The Models Development work activity in the TPB's Unified Planning Work Program (element 4.C in the FY2011 UPWP) is established to maintain and refine the TPB's travel forecasting methods and practice on a continuing basis. This report documents the development of a newly developed travel forecasting process known as the Version 2.3 travel model. Version 2.3 is similar to the TPB's existing model, Version 2.2, in that it is a trip-based model incorporating the standard "four-step" process applied by most MPOs. However, the Version 2.3 model is different from Version 2.2 in two key respects. First, Version 2.3 operates on a more detailed zone system consisting of 3,722 Transportation Analysis Zones (TAZs). This represents an almost doubling of internal TAZs that are currently used by the Version 2.2 model. The increase in TAZs will allow for greater sensitivity to land development patterns, particularly for areas of intense land development. Second, the Version 2.3 model has also been calibrated with an array of newly collected travel survey data. The primary data source supporting the Version 2.3 calibration is the COG/TPB 2007/08 Household Travel Survey. The previous regional travel survey supporting the existing Version 2.2 model was conducted in 1994. Version 2.3 also includes several additional technical refinements which are described in greater detail below. The oversight body of the TPB's Models Development program is the Travel Forecasting Subcommittee (TFS), a subcommittee of the Transportation Planning Board's Technical Committee. The TFS is comprised of representatives from state and local transportation agencies, local transportation consultants, and interested citizens. As many TFS members are active users of the regional model, the subcommittee has been engaged on all facets of the Version 2.3 development process on a bi-monthly basis during the past two years. The remainder of this chapter briefly describes background on the data that was prepared for the Version 2.3 calibration process. It also describes technical features of the model that are not considered in the TPB's existing Version 2.2 model. Chapter 2 describes some of the basic inputs to the travel model. The remainder of this report addresses the specific calibration work undertaken for each step of the model chain (Chapters 3 to 8). Validation summaries are presented in Chapter 9. The report also contains an appendix section which includes detailed calibration summaries. ## 1.1 Development history of the Version 2.3 travel model The TPB's currently adopted travel model, Version 2.2, was released on March 1, 2008. The Version 2.2 travel model was developed on the 2,191-TAZ area system and most of its sub-models were estimated/calibrated with data from the COG/TPB 1994 Household Travel Survey. At the time Version 2.2 was released, a parallel effort was also underway to combine a nested logit mode choice model and revised truck models into the Version 2.2 framework. This development effort proved to be viable and resulted in a release of what was then called the "draft Version 2.3 travel model" in June of 2008. The draft Version 2.3 model, like Version 2.2, was developed on the 2,191-TAZ area system. The draft Version 2.3 model was not brought into production given that two related events were in motion during 2008. First, a new round of travel data collection was underway, including a major regional household travel survey (2007/08 HTS) and a bus on-board survey. Second, a new TAZ system was in development. The new zone system was envisioned to be developed over the same geographic area as the 2,191-TAZ system, but with smaller average zone sizes. TPB staff ultimately decided that the Version 2.3 travel model should not become the approved regional travel model until it incorporated the new zone system and the new data from the 2007/2008 Household Travel Survey. The last two years have been spent compiling and cleaning new survey data, preparing calibration files based on the new 3,722 TAZ system, and estimating/calibrating the models that make up the regional travel model. This report documents the culmination of the Version 2.3 model calibration effort. #### 1.2 Calibration Data #### 1.2.1 2007/2008 COG/TPB Household Travel Survey The COG/TPB 2007/08 Household Travel Survey (HTS) served as the primary data source for estimation and calibration of the Version 2.3 model. The survey included a sample of 11,400 households drawn from all 22 jurisdictions comprising the Version 2.3 study area. The 2007/08 HTS survey yielded approximately 88,000 un-weighted trip records occurring on weekdays. The previous regional household travel survey, conducted in the spring and fall of 1994, included a 4,800-household sample drawn from a subset of jurisdictions in the modeled region (13 of the 22). The 2007/08 HTS was not conducted during a specific season of the year, but rather, was collected on a continuing basis over a 15-month period, from February 2007 through May of 2008. As some of the sampled travel data were collected on federal holidays, staff decided to remove all holiday-related data \_ <sup>&</sup>lt;sup>1</sup> Ronald Milone et al., *TPB Travel Forecasting Model, Version 2.2: Specification, Validation, and User's Guide* (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, March 1, 2008). <sup>&</sup>lt;sup>2</sup> National Capital Region Transportation Planning Board, Metropolitan Washington Council of Governments, 2007/2008 TPB Household Travel Survey: Technical Documentation, Draft report (Washington, D.C.: National Capital Region Transportation Planning Board, Metropolitan Washington Council of Governments, August 27, 2010). from the final calibration file to ensure that the data reflected truly normal weekday conditions.<sup>3</sup> The removing of holiday-related data reduced the household sample by about 300 households. TPB staff spent several months during the fall of 2010 checking the geo-coding, logic, and internal consistency of the household travel data, and summarizing the data by purposes, modes, political geography, and by time of day. #### 1.2.2 Land activity The provision of zonal land activity posed a significant challenge as no such data was readily available for the new TAZ system during the early stages of the calibration effort (spring of 2010). At that point in time, the adopted land activity projections (Round 7.2a Cooperative Forecasts) were developed for the 2,191 TAZ-system only. Consequently, TPB staff assembled American Community Survey (ACS) and proprietary employment inventory data to develop what was referred to as the 2007 "Pseudo Round 8.0" land use for the 3,722-TAZ system. The 2007 land activity totals are shown on Table 1. Table 1 2007 "Pseudo Round 8.0" Land Activity Totals | Households | 2,339,832 | |-----------------------|-----------| | HH Population | 5,860,693 | | Group Quarters | 119,669 | | Total Population | 5,980,362 | | Total Employment | 3,801,935 | | Industrial Employment | 547,612 | | Retail Employment | 665,172 | | Office Employment | 179,6018 | | Other Employment | 793,133 | | Land Area (sq. mi) | 6,795.684 | #### 1.2.3 Other data Staff compiled several sources of recent data beyond the 2007/08 HTS to support the Version 2.3 calibration and validation. These included 2007 Highway Performance Monitoring System (HPMS) traffic <sup>&</sup>lt;sup>3</sup> Ronald Milone et al., *FY-2010 Development Program for TPB Travel Forecasting Models: DRAFT* (Washington, D.C.: National Capital Region Transportation Planning Board, June 30, 2010), sec. 2.4.4. counts, the 2007 Air Passenger Survey, 2007 ACS data, and numerous transit on-board surveys for 2007 and 2008. The transit on-board surveys are discussed in more detail in Chapter 6. ## 1.3 Features of the Version 2.3 travel model The following sections provide greater detail on the new TAZ system and on technical refinements to Version 2.3. #### 1.3.1 3,722-TAZ system The 3,722-TAZ system is comprised of 3,675 internal zones and 47 external stations (see Figure 1). The new TAZ system contains about 85% more internal zones than the existing 2,191-TAZ system. The new TAZ system was developed to improve the connection between transportation planning and local development plans. The delineation of the new zone system was conducted primarily by land use planners and was heavily influenced by the regional activity centers/activity clusters concept adopted by the TPB and COG Board.<sup>4</sup> The modeling benefits of the more detailed zone system are substantial. It allows for a more detailed depiction of zonal access to the highway and transit systems and it also enables improved opportunities for modeling non-motorized travel. One unfortunate aspect of the 3,722 TAZ system is that it does not neatly nest into the existing 2,191 TAZ system, and so, translating zonal attributes between systems is not easily done. However, spatial relationships between the two TAZ systems, complicated as they are, are well defined and can be made available. The 3,722 TAZ numbering has been developed on a jurisdictional basis. The TAZ numbering is shown on Table 2. 4 <sup>&</sup>lt;sup>4</sup> Metropolitan Washington Council of Governments, *Metropolitan Washington Regional Activity Centers and Clusters* (Washington, D.C.: Metropolitan Washington Council of Governments (COG), April 2007). Figure 1 Modeled area: 3,722-TAZ area system covering 22 jurisdictions Table 2 3,722-TAZ Numbering Allocation by Jurisdiction | | Active TAZ | Beginning | Ending | Inactive | |------------------------------------------|------------|-----------|--------|------------------| | Jurisdiction | Count | TAZ | TAZ | TAZs | | District of Columbia | 391 | 1 | 393 | 61, 382 | | Montgomery Co., Md. | 376 | 394 | 769 | | | Prince George's Co., Md. | 633 | 770 | 1404 | 770, 777 | | Arlington Co., Va. | 141 | 1405 | 1545 | | | City of Alexandria, Va. | 65 | 1546 | 1610 | | | Fairfax Co Va. | 549 | 1611 | 2159 | | | Loudoun Co., Va. | 282 | 2160 | 2441 | | | Prince William Co., Va. | 376 | 2442 | 2819 | 2555, 2629 | | Frederick Co., Md. | 130 | 2820 | 2949 | | | Howard Co., Md. | 68 | 2950 | 3017 | | | Anne Arundel Co., Md. | 98 | 3018 | 3116 | 3103 | | Charles Co., Md. | 113 | 3117 | 3229 | | | Carroll Co., Md. | 56 | 3230 | 3287 | 3266, 3267 | | Calvert Co., Md | 47 | 3288 | 3334 | | | St. Mary's Co., Md. | 75 | 3335 | 3409 | | | King George Co., Va. | 25 | 3410 | 3434 | | | City of Fredericksburg, Va. | 14 | 3435 | 3448 | | | Stafford Co., Va. | 90 | 3449 | 3541 | 3478, 3482, 3495 | | Spotsylvania Co., Va. | 61 | 3542 | 3603 | 3544 | | Fauquier Co., Va. | 50 | 3604 | 3653 | | | Clarke Co., Va. | 9 | 3654 | 3662 | | | Jefferson Co., WVa. | 13 | 3663 | 3675 | | | External Stations: | 47 | 3676 | 3722 | | | Reserved TAZ numbers | 1,278 | 3723 | 5000 | | | | | | | | | Total Active Internal TAZs: | 3662 | | | | | Total Active Internal and External TAZs: | 3709 | | | | Ref: 3722TAZ\_Master\_Node\_Table.xls ## 1.3.2 Nested-logit mode choice model Version 2.3 model includes a nested-logit (NL) mode choice model formulation, which replaces the sequential multinomial logit (SMNL) mode choice model used in Version 2.2. The NL model provides for a more exhaustive choice set (15 choices) compared to that offered by the existing SMNL model (5 choices). ## 1.3.3 Updated models for medium trucks and heavy trucks The Version 2.2 model contains revised truck models that were initially developed, with consultant assistance, for the Version 2.3 model on the 2,191-TAZ system. Separate model specifications exist for "medium" (2- axle, 6 tire), and "heavy" (all combination vehicle) trucks. TPB staff has adapted the 2,191-TAZ-based models to operate on the 3,722-TAZ system. ### 1.3.4 Subdivided non-home-based purpose Whereas the Version 2.2 model uses a single Non-Home-Based trip purpose, the Version 2.3 model disaggregates NHB travel among two sub-purposes: Non-Home-Base Work (NHW) and Non-Home Base Other (NHO). This change was also in line with consultant recommendations. TPB staff felt that the observed differences between these travel markets in terms of trip rates, trip lengths, modal preferences, etc. were substantial enough to justify establishing an additional purpose. It should be added that TPB staff considered adding yet another travel purposes into the Version 2.3 framework (such as HB-school), but ultimately decided to defer added trip purposes at the present time. #### 1.3.5 Refined non-motorized travel The Version 2.3 model includes the development of non-motorized trips for all (work and non-work) purposes. The Version 2.2 model develops non-motorized travel for the HBW purpose only. Staff felt that the more detailed TAZ system would facilitate efforts to better reflect this particular travel market. However, the non-motorized travel will be developed at the trip generation stage only. #### 1.4 Overview of the Version 2.3 travel model The Version 2.3 modeled area is the same as that of the existing Version 2.2 model. The study area is comprised of 22 jurisdictions and extends over the District of Columbia and portions of three states: Maryland, Virginia, and West Virginia. The study area extends well beyond the TPB member area, as well as, beyond the non-attainment area that is used in air quality planning work. A graphic showing the essential parts of the Version 2.3 modeling process is shown on Figure 2. Despite the general name for travel models ("four step"), the TPB travel model could more accurately be called a "six step" model. These six steps are described below. \_ <sup>&</sup>lt;sup>5</sup> Cambridge Systematics, Inc., *Fiscal Year 2010 Task Reports*, Final Report (National Capital Region Transportation Planning Board, November 16, 2010), 2-3, 2-12. Figure 2 Version 2.3 Travel Model Structure The demographic models are used to disaggregate the total number of zonal households across 64 cross-classes: 4 household income groups<sup>6</sup> by 4 household size groups (1, 2, 3, 4+ persons) by 4 vehicle availability groups (0, 1, 2, and 3+ vehicles available). The allocation of households to each cross-class is made at the traffic analysis zone (TAZ) level. The figure indicates that peak-hour transit accessibility measures are used as part of the demographic (vehicle availability) submodel step. The trip generation models are next applied to compute daily person trip productions and attractions by purpose. Five modeled purposes are modeled: Home-Based Work [HBW], Home-Based Shop [HBS], Home-Based Other [HBO], Non-Home-Based Work [NHW], and Non-Home-Based Other [NHO]. A commercial vehicle purpose (consisting of both autos and light duty trucks), and two truck types, Medium and Heavy, are also modeled. Medium trucks are those with two axles and 6 tires. Heavy trucks represent all combination vehicles. Trip generation involves the application of daily trip rates to the number of households, in each of the 64 classes, and to the number of jobs. The trip rates reflect both motorized (i.e., transit and automobile) and non-motorized (i.e., bicycle and walk) person travel. The non-motorized trip-ends produced in the trip generation step are not carried forward into trip distribution. Trip attractions are computed by purpose as a function of zonal land use attributes. External (i.e., external-to-internal, X/I, and internal-to-external, I/X) productions and attractions are entered as an exogenous input, by purpose, into the trip generation process. External travel relates to auto person, commercial vehicle and truck travel only (transit externals are currently not considered in the model). The home-based productions and attractions are developed by the four income levels. The trip distribution model uses the standard gravity model formulation and makes use of a composite time function that represents a blending of transit and highway travel times. The distribution step involves separate gravity model runs for 30 travel markets, given that home-based purposes are income stratified, and external travel is modeled separately by purpose and facility type (interstate travel vs. non-interstate). However, the trip distribution process ultimately results in seven daily trip tables corresponding to the basic motorized person, commercial, and truck purposes. The mode choice process consists of five models corresponding to the HBW, HBS, HBO, NHW, and NHO purposes. The models are used to apportion total motorized person trips among SOVs, 2-occupant HOVs, 3+occupant HOVs, and 12 combinations of transit mode and access to transit. The time-of-day model apportions daily resident travel among four time periods: AM peak period (6:00 AM - 9:00 AM), midday (9:00 AM to 3:00 PM), PM peak period (3:00 PM - 7:00 PM), and the nighttime/early morning hours (7:00 PM to 6:00 AM). The time-of-day model consists of survey-based factors that are applied on the basis of purpose, mode, and directionality (i.e., the home-to-non-home and non-home-to-home directions). This step also includes provisions for apportioning daily residual \_ <sup>&</sup>lt;sup>6</sup> The income levels used approximate household income quartiles, based on the 2007 ACS. travel<sup>7</sup> and truck travel among the three time periods. The time-of-day process ultimately produces three "total vehicle" trip tables, one for each of the three time periods. The traffic assignment process addresses 6 user classes: SOVs, HOV-2, HOV 3+, Commercial Vehicles, trucks, and airport passenger vehicles. Highway link volumes are developed for each of the user classes by time period. Daily transit assignments can also be produced in the Version 2.3 model, though this capability has yet to be calibrated and validated. Figure 2 also indicates that highway speeds resulting from the traffic assignment process are recycled back into the trip distribution and mode choice steps. A method of successive averages (MSA) is applied to daily link volumes to ensure that regional speeds and VMT close in on an equilibrium condition. Figure 3 shows the 2007 VMT that is produced by the Version 2.3 model by speed feedback iteration, and the dampened behavior that results using the MSA procedure. As indicated, the Version 2.3 model execution consists of five iterations: an initial (or "pump prime") iteration using default input highway speeds and default mode choice model percentages, and four "standard" iterations using traffic assignment-based input highway speeds and a mode choice model execution. Figure 3 VMT by Iteration <sup>&</sup>lt;sup>7</sup> Residual travel is also referred to as "miscellaneous" travel which represents special travel markets that are typically not (or not well) represented in home-interview surveys; it is comprised of taxi, school, visitor/tourist, and air passenger auto driver travel. # 1.5 Special modeling applications (To be completed) # **Chapter 2 Inputs to the Travel Model** This chapter describes the land use and exogenous travel files that have been prepared for the Version 2.3 model application. Zonal land use forecasts are periodically updated from COG's Cooperative Forecasting Program. The most recent land use release is known as Round 8.0 and it was released in July 2010. Exogenous trip files used in the Version 2.3 model represent special travel markets that need to be accounted for in the regional forecast. Such markets include external trip-ends, through trips, airport passengers trips, and "miscellaneous" (or taxi, school, and visitor/ tourist) trips. This chapter does not address network-related inputs to the travel model, which are typically discussed in network documentation. #### 2.1 Round 8.0 Land Use The Version 2.3 model requires the preparation of a zonal land use file in a standard format, for each simulation year. The most recently adopted land use projections are the Round 8.0 Cooperative Forecasts (adopted in November 2010). The Cooperative Forecasts are zonal (both 2,191- and 3,722-TAZ systems) projections of households, household population, group quarters population, and employment by category (i.e., retail, office, industrial, and other). The Round 8.0 forecasts include land use projections from 2005 to 2040 in five-year increments. The Version 2.3 model requires a few addition data items that are included in the standard land use file. - Zonal area (sq. mi) - Jurisdiction Code (0-23) - Zonal Median Income index (ratio of 2007 zonal median income to the regional median income, in tenths (e.g. a value of "10" indicates the ratio is 1.0 meaning the zonal income equals the regional median income) - Airline Distance to the nearest external station (miles) - X-coordinate of TAZ centroid (NAD83 projection in feet) - Y-coordinate of TAZ centroid The zonal median income index was developed using 2007 ACS information and is normally assumed to remain constant over time. Procedures to prepare standardized land use files supporting the TPB travel model have, in recent years, included a provision to factor employment on a jurisdictional basis to account for definitional differences between local planning agencies. The Round 8.0 regional land use totals over time are listed on Table 3. The totals shown in between the five-year increments have been linearly interpolated. (Intermediate years are typically required for air quality planning work, and so files are generally prepared for all years between the base and horizon year in a given land use round). Table 3 Round 8.0 Land Use Forecasts for Version 2.3 Modeling (w/ CTPP Employment Adjustments) | Year | НН | ННРОР | GQPop | TotPop | TotEMP | OffEMP | RetEMP | IndEMP | OthEMP | |--------------|-----------|-----------------------------|----------------|--------------|----------------|-----------------|------------------|--------------------|------------------------| | 2000 | 2,143,451 | 5,632,014 | 116,105 | 5,748,119 | 3,441,381 | 1,630,149 | 628,912 | 459,906 | 722,414 | | 2001 | 2,183,671 | 5,730,582 | 120,415 | 5,851,012 | 3,493,123 | 1,651,538 | 640,799 | 471,392 | 729,431 | | 2002 | 2,223,890 | 5,829,130 | 124,740 | 5,953,891 | 3,544,852 | 1,672,917 | 652,676 | 482,869 | 736,474 | | 2003 | 2,264,122 | 5,927,655 | 129,102 | 6,056,736 | 3,596,604 | 1,694,239 | 664,507 | 494,309 | 743,465 | | 2004 | 2,304,341 | 6,026,203 | 133,427 | 6,159,615 | 3,648,333 | 1,715,618 | 676,384 | 505,786 | 750,508 | | 2005 | 2,344,561 | 6,124,771 | 137,737 | 6,262,508 | 3,700,075 | 1,737,007 | 688,271 | 517,272 | 757,525 | | 2006 | 2,373,295 | 6,196,646 | 138,757 | 6,335,407 | 3,745,215 | 1,756,046 | 700,656 | 523,177 | 765,338 | | 2007 | 2,402,012 | 6,268,475 | 139,783 | 6,408,278 | 3,790,330 | 1,775,055 | 713,043 | 529,082 | 773,150 | | 2007 | 2,339,832 | 5,860,693 | 119,669 | 5,980,362 | 3,801,935 | 1,796,018 | 665,172 | 547,612 | 793,133 | | 2008 | 2,430,726 | 6,340,350 | 140,837 | 6,481,167 | 3,835,434 | 1,794,100 | 725,370 | 534,987 | 780,977 | | 2009 | 2,459,443 | 6,412,179 | 141,863 | 6,554,038 | 3,880,549 | 1,813,109 | 737,757 | 540,892 | 788,789 | | 2010 | 2,488,177 | 6,484,054 | 142,883 | 6,626,937 | 3,925,689 | 1,832,148 | 750,142 | 546,797 | 796,602 | | 2011 | 2,524,150 | 6,562,726 | 143,920 | 6,706,665 | 3,982,448 | 1,860,822 | 762,224 | 552,967 | 806,367 | | 2012 | 2,560,126 | 6,641,442 | 144,994 | 6,786,434 | 4,039,250 | 1,889,515 | 774,342 | 559,164 | 816,163 | | 2013 | 2,596,143 | 6,720,132 | 146,038 | 6,866,172 | 4,096,084 | 1,918,247 | 786,467 | 565,363 | 826,073 | | 2014 | 2,632,119 | 6,798,848 | 147,112 | 6,945,941 | 4,152,886 | 1,946,940 | 798,585 | 571,560 | 835,869 | | 2015 | 2,668,092 | 6,877,520 | 148,149 | 7,025,669 | 4,209,645 | 1,975,614 | 810,667 | 577,730 | 845,634 | | 2016 | 2,702,192 | 6,954,419 | 148,452 | 7,102,874 | 4,276,603 | 2,014,539 | 822,186 | 585,908 | 853,940 | | 2017 | 2,736,270 | 7,031,287 | 148,762 | 7,180,051 | 4,343,579 | 2,053,440 | 833,723 | 594,056 | 862,270 | | 2018 | 2,770,344 | 7,108,250 | 149,081 | 7,257,329 | 4,410,604 | 2,092,399 | 845,309 | 602,272 | 870,714 | | 2019 | 2,804,422 | 7,185,118 | 149,391 | 7,334,506 | 4,477,580 | 2,131,300 | 856,846 | 610,420 | 879,044 | | 2020 | 2,838,522 | 7,262,017 | 149,694 | 7,411,711 | 4,544,538 | 2,170,225 | 868,365 | 618,598 | 887,350 | | 2021 | 2,870,184 | | | | 4,599,869 | | 877,523 | 624,893 | 894,682 | | 2022 | 2,901,857 | | | | 4,655,240 | | 886,683 | 631,204 | 902,006 | | 2023 | 2,933,527 | | | | 4,710,506 | | 895,868 | 637,520 | 909,402 | | 2024 | 2,965,200 | | | 7,699,677 | | 2,300,313 | 905,028 | 643,831 | 916,726 | | 2025 | 2,996,862 | | | 7,771,689 | | 2,332,838 | 914,186 | 650,126 | 924,058 | | 2026 | 3,024,306 | | 154,389 | 7,834,459 | | 2,357,519 | 922,961 | 657,237 | 930,578 | | 2027 | 3,051,804 | | 154,953 | 7,897,243 | | 2,382,209 | 931,694 | 664,379 | 937,125 | | 2028 | 3,079,378 | 7,804,473 | 155,544 | 7,960,009 | | 2,406,933 | 940,512 | 671,523 | 943,702 | | 2029 | 3,106,876 | 7,866,702 | 156,108 | 8,022,793 | | 2,431,623 | 949,245 | 678,665 | 950,249 | | 2030 | 3,134,320 | 7,928,909 | 156,654 | 8,085,563 | | 2,456,304 | 958,020 | 685,776 | 956,769 | | 2031 | 3,158,341 | 7,984,123 | 157,111 | 8,141,244 | | 2,478,581 | 966,151 | 692,053 | 962,650 | | 2032 | 3,182,385 | 8,039,333 | 157,584 | 8,196,924 | | 2,500,839 | 974,322 | 698,358 | 968,567 | | 2033 | 3,206,445 | 8,094,523 | 158,064 | | 5,184,826 | | 982,549 | 704,656 | 974,531 | | 2034 | | 8,149,733 | | | 5,227,507 | | 990,720 | 710,961 | 980,448 | | 2035 | 3,254,510 | | | | | 2,567,714 | 998,851 | 717,238 | 986,329 | | 2036 | | 8,254,463 | | | | 2,587,634 | | 720,919 | 992,210 | | 2037 | | 8,303,964 | | | | 2,607,540 | 1,014,501 | 724,623 | 998,114 | | 2038<br>2039 | | 8,353,473 | | | | 2,627,515 | | 728,372 | 1,004,051 | | 2039 | | 8,402,974 | | | | 2,647,421 | | 732,076<br>735,757 | 1,009,955<br>1,015,836 | | 2040 | | 8,452,490<br>nd 8.0 Employn | | | | 2,667,341 | 1,038,070 | 735,757 | 1,013,630 | | | | esum of emp. | | • | | | es for internals | ated vears due | e to | | | | unding | - aboutogories | HOL CAR | , oqual ilic i | car crip. rigur | oo ror antorpole | and yours due | | | | | 2007 "Pseudo' | 'Round 8 0 La | and Activity | | l | | | | | | 2001 | _55 56440 | . Wana 0.0 Lc | a / todavity | | | | | | $Ref: I:\ateam\mod_inputs\lu\Rnd80\_taz2191\Rnd_80\_Controls.xlsx I:\ateam\mod_inputs\lu\V2.3\_LandUse\_taz3722\CHECK\_LAND\_USE\_fILE.TXT$ ## 2.2 External and Through Forecasts External stations represent the entry and exit points of the highway network along the periphery of the modeled study area. External and through travel files are geographically referenced to 47 external stations, numbered from 3676 to 3722. The Version 2.3 model requires three files relating to external (I-X and X-I) and through (X-X) travel, for a given simulation year. These include: - A through auto driver trip table file; - A through commercial vehicle and truck (medium/heavy) trip table file; - A file containing external productions and attractions by mode (auto, commercial vehicle, medium trucks, and heavy trucks). The Version 2.3 external and through trip forecasts were recently updated to accommodate the revised truck models. Previously, the external and through trip forecasts were developed from base-year (year-2000) counts at each external station. The updated forecasts, however, were built from 2005 counts, the year for which the revised truck models were calibrated. Care was taken to respect the same traffic growth levels for 2030 that were established previously. A summary of the revised external and through trips are shown on Table 4. The projected total level of external travel between 2005 and 2040 is shown to grow from 1,320,900 to 2,082,700, which reflects an average annual growth rate of about 1.3%. External productions and attractions are shown by travel mode and purpose, in Table 5 and Table 6, respectively. Table 4 External and Through Auto/Truck Trips by Year | | | Auto Drv | Truck | Auto XX | ComVehXX | Auto XI | Auto IX | TruckXX | Truck XI | Truck IX | |------|-----------|-----------|---------|-----------|-----------|-----------|-----------|-----------|----------|----------| | Year | AAWDT | Control | Control | Trip-Ends | Trip-Ends | Adr Trips | Adr Trips | Trip-Ends | Trips | Trips | | 2000 | 1,215,783 | 1,003,776 | 114,016 | 70,027 | 5,318 | 486,084 | 442,347 | 59,702 | 27,157 | 27,157 | | 2001 | 1,236,031 | 1,020,677 | 116,024 | 71,258 | 5,413 | 494,348 | 449,658 | 60,766 | 27,629 | 27,629 | | 2002 | 1,256,657 | 1,037,896 | 118,072 | 72,513 | 5,510 | 502,769 | 457,104 | 61,851 | 28,110 | 28,110 | | 2003 | 1,277,670 | 1,055,440 | 120,161 | 73,793 | 5,609 | 511,350 | 464,688 | 62,958 | 28,601 | 28,601 | | 2004 | 1,299,076 | 1,073,316 | 122,292 | 75,099 | 5,710 | 520,094 | 472,413 | 64,089 | 29,102 | 29,102 | | 2005 | 1,320,886 | 1,091,530 | 124,466 | 76,430 | 5,813 | 529,005 | 480,281 | 65,242 | 29,612 | 29,612 | | 2006 | 1,343,106 | 1,110,090 | 126,684 | 77,789 | 5,918 | 538,087 | 488,296 | 66,420 | 30,132 | 30,132 | | 2007 | 1,365,745 | 1,129,002 | 128,947 | 79,174 | 6,025 | 547,343 | 496,460 | 67,622 | 30,663 | 30,663 | | 2008 | 1,388,813 | 1,148,275 | 131,256 | 80,587 | 6,135 | 556,776 | 504,777 | 68,848 | 31,204 | 31,204 | | 2009 | 1,412,317 | 1,167,915 | 133,612 | 82,028 | 6,246 | 566,391 | 513,250 | 70,101 | 31,756 | 31,756 | | 2010 | 1,436,269 | 1,187,931 | 136,016 | 83,499 | 6,360 | 576,191 | 521,882 | 71,379 | 32,319 | 32,319 | | 2011 | 1,460,676 | 1,208,331 | 138,469 | 84,999 | 6,476 | 586,180 | 530,676 | 72,684 | 32,893 | 32,893 | | 2012 | 1,485,548 | 1,229,122 | 140,973 | 86,529 | 6,595 | 596,362 | 539,636 | 74,017 | 33,478 | 33,478 | | 2013 | 1,510,895 | 1,250,312 | 143,527 | 88,090 | 6,716 | 606,741 | 548,765 | 75,377 | 34,075 | 34,075 | | 2014 | 1,536,728 | 1,271,912 | 146,135 | 89,683 | 6,839 | 617,322 | 558,067 | 76,766 | 34,684 | 34,684 | | 2015 | 1,563,056 | 1,293,928 | 148,796 | 91,309 | 6,966 | 628,109 | 567,545 | 78,184 | 35,306 | 35,306 | | 2016 | 1,589,891 | 1,316,370 | 151,511 | 92,967 | 7,094 | 639,105 | 577,203 | 79,632 | 35,940 | 35,940 | | 2017 | 1,617,242 | 1,339,246 | 154,283 | 94,660 | 7,226 | 650,316 | 587,045 | 81,111 | 36,586 | 36,586 | | 2018 | 1,645,121 | 1,362,567 | 157,113 | 96,386 | 7,360 | 661,747 | 597,075 | 82,621 | 37,246 | 37,246 | | 2019 | 1,673,539 | 1,386,342 | 160,001 | 98,149 | 7,497 | 673,401 | 607,296 | 84,164 | 37,919 | 37,919 | | 2020 | 1,702,507 | 1,410,580 | 162,950 | 99,947 | 7,637 | 685,283 | 617,713 | 85,739 | 38,605 | 38,605 | | 2021 | 1,719,603 | 1,424,873 | 164,676 | 101,002 | 7,718 | 692,284 | 623,868 | 86,659 | 39,009 | 39,009 | | 2022 | 1,736,886 | 1,439,323 | 166,423 | 102,069 | 7,801 | 699,363 | 630,089 | 87,590 | 39,416 | 39,416 | | 2023 | 1,754,359 | 1,453,933 | 168,189 | 103,149 | 7,885 | 706,521 | 636,378 | 88,532 | 39,829 | 39,829 | | 2024 | 1,772,023 | 1,468,704 | 169,977 | 104,240 | 7,970 | 713,758 | 642,736 | 89,485 | 40,246 | 40,246 | | 2025 | 1,789,883 | 1,483,639 | 171,785 | 105,345 | 8,055 | 721,076 | 649,163 | 90,449 | 40,668 | 40,668 | | 2026 | 1,807,938 | 1,498,739 | 173,615 | 106,462 | 8,142 | 728,475 | 655,659 | 91,425 | 41,095 | 41,095 | | 2027 | 1,826,193 | 1,514,006 | 175,466 | 107,592 | 8,230 | 735,957 | 662,227 | 92,413 | 41,527 | 41,527 | | 2028 | 1,844,649 | 1,529,443 | 177,339 | 108,735 | 8,319 | 743,523 | 668,866 | 93,412 | 41,963 | 41,963 | | 2029 | 1,863,309 | 1,545,051 | 179,233 | 109,892 | 8,408 | 751,173 | 675,578 | 94,424 | 42,405 | 42,405 | | 2030 | 1,882,174 | 1,560,833 | 181,151 | 111,062 | 8,499 | 758,908 | 682,363 | 95,447 | 42,852 | 42,852 | | 2031 | 1,901,249 | 1,576,790 | 183,090 | 112,246 | 8,591 | 766,730 | 689,223 | 96,483 | 43,304 | 43,304 | | 2032 | 1,920,534 | 1,592,924 | 185,053 | 113,443 | 8,684 | 774,640 | 696,157 | 97,531 | 43,761 | 43,761 | | 2033 | 1,940,033 | 1,609,239 | 187,038 | 114,654 | 8,779 | 782,638 | 703,168 | 98,592 | 44,223 | 44,223 | | 2034 | 1,959,749 | 1,625,735 | 189,047 | 115,880 | 8,874 | 790,726 | 710,255 | 99,666 | 44,691 | 44,691 | | 2035 | 1,979,683 | 1,642,415 | 191,080 | 117,120 | 8,970 | 798,904 | 717,421 | 100,752 | 45,164 | 45,164 | | 2036 | 1,999,838 | 1,659,281 | 193,136 | 118,374 | 9,068 | 807,175 | 724,665 | 101,852 | 45,642 | 45,642 | | 2037 | 2,020,217 | 1,676,336 | 195,217 | 119,643 | 9,167 | 815,538 | 731,989 | 102,965 | 46,126 | 46,126 | | 2038 | 2,040,823 | 1,693,582 | 197,323 | 120,927 | 9,266 | 823,996 | 739,393 | 104,091 | 46,616 | 46,616 | | 2039 | 2,061,659 | 1,711,021 | 199,454 | 122,225 | 9,368 | 832,549 | 746,879 | 105,231 | 47,111 | 47,111 | | 2040 | 2,082,727 | 1,728,655 | 201,610 | 123,540 | 9,470 | 841,198 | 754,448 | 106,385 | 47,612 | 47,612 | Ref: I:\ateam\mod\_inputs\externals\2010\_07\_13\_Rnd80Based\ Rnd8Based\_Ext\_Summary.xlsx I:\ateam\docum\FY11\Ver2.3\modelDoc\ Rnd8Based\_Ext\_AutTrk\_CV.xlsx Table 5 External Auto/Truck Productions by Year | | HBWXI | HBSXI | HBOXI | NHBXI | ComvXI | HBWXI | HBSXI | HBOXI | NHBXI | ComvXI | MedTkXI | HeavyTkXI | AutoXI | TruckXI | |------|----------|-----------|----------|----------|---------|----------|-----------|----------|----------|----------|---------|-----------|----------|---------| | Year | AutoDrvs | Auto Drvs | AutoDrvs | AutoDrvs | AutoDrv | AutoPsns | Auto Psns | AutoPsns | AutoPsns | AutoPsns | | | Drv Totl | Total | | 2000 | 236,559 | 42,352 | 117,778 | 56,408 | 32,987 | 272,043 | 69,457 | 189,623 | 72,203 | 42,223 | 3,637 | 23,520 | 486,084 | 27,157 | | 2001 | 240,636 | 43,005 | 119,847 | 57,297 | 33,562 | 276,732 | 70,529 | 192,953 | 73,340 | 42,960 | 3,700 | 23,929 | 494,348 | 27,629 | | 2002 | 244,792 | 43,670 | 121,956 | 58,202 | 34,149 | 281,510 | 71,619 | 196,348 | 74,499 | 43,711 | 3,765 | 24,346 | 502,769 | 28,110 | | 2003 | 249,027 | 44,346 | 124,106 | 59,123 | 34,748 | 286,381 | 72,727 | 199,810 | 75,678 | 44,477 | 3,831 | 24,771 | 511,350 | 28,601 | | 2004 | 253,344 | 45,034 | 126,298 | 60,061 | 35,358 | 291,346 | 73,855 | 203,340 | 76,878 | 45,258 | 3,898 | 25,204 | 520,094 | 29,102 | | 2005 | 257,744 | 45,733 | 128,533 | 61,016 | 35,979 | 296,406 | 75,002 | 206,939 | 78,100 | 46,054 | 3,966 | 25,646 | 529,005 | 29,612 | | 2006 | 262,229 | 46,444 | 130,813 | 61,987 | 36,613 | 301,564 | 76,168 | 210,609 | 79,344 | 46,865 | 4,036 | 26,096 | 538,087 | 30,132 | | 2007 | 266,801 | 47,168 | 133,137 | 62,977 | 37,260 | 306,822 | 77,355 | 214,351 | 80,610 | 47,692 | 4,108 | 26,555 | 547,343 | 30,663 | | 2008 | 271,462 | 47,903 | 135,508 | 63,984 | 37,919 | 312,181 | 78,562 | 218,167 | 81,900 | 48,536 | 4,180 | 27,024 | 556,776 | 31,204 | | 2009 | 276,213 | 48,652 | 137,925 | 65,010 | 38,591 | 317,645 | 79,789 | 222,059 | 83,213 | 49,396 | 4,254 | 27,501 | 566,391 | 31,756 | | 2010 | 281,057 | 49,413 | 140,390 | 66,055 | 39,276 | 323,216 | 81,038 | 226,028 | 84,550 | 50,273 | 4,330 | 27,989 | 576,191 | 32,319 | | 2011 | 285,995 | 50,188 | 142,904 | 67,118 | 39,974 | 328,894 | 82,308 | 230,076 | 85,911 | 51,167 | 4,407 | 28,486 | 586,180 | 32,893 | | 2012 | 291,030 | 50,976 | 145,468 | 68,201 | 40,687 | 334,684 | 83,600 | 234,204 | 87,298 | 52,079 | 4,486 | 28,992 | 596,362 | 33,478 | | 2013 | 296,163 | 51,777 | 148,084 | 69,304 | 41,413 | 340,587 | 84,915 | 238,415 | 88,709 | 53,009 | 4,566 | 29,509 | 606,741 | 34,075 | | 2014 | 301,396 | 52,593 | 150,751 | 70,427 | 42,154 | 346,606 | 86,252 | 242,710 | 90,147 | 53,957 | 4,648 | 30,037 | 617,322 | 34,684 | | 2015 | 306,732 | 53,423 | 153,472 | 71,571 | 42,910 | 352,742 | 87,613 | 247,091 | 91,611 | 54,925 | 4,731 | 30,574 | 628,109 | 35,306 | | 2016 | 312,174 | 54,267 | 156,248 | 72,737 | 43,680 | 359,000 | 88,997 | 251,559 | 93,103 | 55,911 | 4,816 | 31,123 | 639,105 | 35,940 | | 2017 | 317,722 | 55,126 | 159,079 | 73,923 | 44,466 | 365,380 | 90,406 | 256,118 | 94,622 | 56,917 | 4,903 | 31,683 | 650,316 | 36,586 | | 2018 | 323,380 | 55,999 | 161,968 | 75,132 | 45,268 | 371,887 | 91,839 | 260,768 | 96,169 | 57,943 | 4,992 | 32,254 | 661,747 | 37,246 | | 2019 | 329,149 | 56,889 | 164,914 | 76,363 | 46,086 | 378,521 | 93,297 | 265,512 | 97,745 | 58,990 | 5,082 | 32,837 | 673,401 | 37,919 | | 2020 | 335,033 | 57,793 | 167,920 | 77,618 | 46,920 | 385,288 | 94,781 | 270,351 | 99,350 | 60,057 | 5,174 | 33,431 | 685,283 | 38,605 | | 2021 | 338,495 | 58,333 | 169,685 | 78,361 | 47,410 | 389,270 | 95,666 | 273,193 | 100,302 | 60,684 | 5,228 | 33,780 | 692,284 | 39,009 | | 2022 | 341,997 | 58,878 | 171,471 | 79,113 | 47,905 | 393,296 | 96,560 | 276,068 | 101,264 | 61,319 | 5,283 | 34,133 | 699,363 | 39,416 | | 2023 | 345,538 | 59,428 | 173,276 | 79,872 | 48,407 | 397,368 | 97,463 | 278,975 | 102,236 | 61,961 | 5,339 | 34,490 | 706,521 | 39,829 | | 2024 | 349,118 | 59,984 | 175,102 | 80,639 | 48,914 | 401,486 | 98,375 | 281,915 | 103,218 | 62,610 | 5,395 | 34,851 | 713,758 | 40,246 | | 2025 | 352,739 | 60,546 | 176,950 | 81,415 | 49,427 | 405,650 | 99,296 | 284,889 | 104,211 | 63,266 | 5,451 | 35,217 | 721,076 | 40,668 | | 2026 | 356,400 | 61,114 | 178,818 | 82,199 | 49,945 | 409,860 | 100,226 | 287,897 | 105,214 | 63,930 | 5,509 | 35,586 | 728,475 | 41,095 | | 2027 | 360,103 | 61,687 | 180,707 | 82,991 | 50,470 | 414,118 | 101,166 | 290,939 | 106,228 | 64,601 | 5,567 | 35,960 | 735,957 | 41,527 | | 2028 | 363,847 | 62,266 | 182,619 | 83,792 | 51,000 | 418,424 | 102,115 | 294,016 | 107,253 | 65,280 | 5,625 | 36,338 | 743,523 | 41,963 | | 2029 | 367,633 | 62,850 | 184,552 | 84,601 | 51,536 | 422,778 | 103,075 | 297,128 | 108,289 | 65,967 | 5,685 | 36,720 | 751,173 | 42,405 | | 2030 | 371,463 | 63,441 | 186,507 | 85,419 | 52,079 | 427,182 | 104,043 | 300,276 | 109,336 | 66,661 | 5,745 | 37,107 | 758,908 | 42,852 | | 2031 | 375,335 | 64,038 | 188,485 | 86,245 | 52,628 | 431,635 | 105,022 | 303,461 | 110,394 | 67,363 | 5,805 | 37,498 | 766,730 | 43,304 | | 2032 | 379,251 | 64,640 | 190,485 | 87,080 | 53,183 | 436,138 | 106,010 | 306,681 | 111,463 | 68,074 | 5,867 | 37,894 | 774,640 | 43,761 | | 2033 | 383,211 | 65,249 | 192,509 | 87,925 | 53,744 | 440,693 | 107,009 | 309,939 | 112,544 | 68,792 | 5,929 | 38,294 | 782,638 | 44,223 | | 2034 | 387,216 | 65,864 | 194,555 | 88,778 | 54,312 | 445,299 | 108,018 | 313,234 | 113,636 | 69,519 | 5,992 | 38,699 | 790,726 | 44,691 | | 2035 | 391,266 | 66,486 | 196,626 | 89,641 | 54,886 | 449,956 | 109,037 | 316,567 | 114,740 | 70,254 | 6,055 | 39,109 | 798,904 | 45,164 | | 2036 | 395,363 | 67,113 | 198,720 | 90,512 | 55,466 | 454,667 | 110,066 | 319,939 | 115,856 | 70,997 | 6,119 | 39,523 | 807,175 | 45,642 | | 2037 | 399,505 | 67,747 | 200,838 | 91,394 | 56,054 | 459,431 | 111,106 | 323,349 | 116,984 | 71,749 | 6,184 | 39,942 | 815,538 | 46,126 | | 2038 | 403,695 | 68,388 | 202,981 | 92,284 | 56,648 | 464,249 | 112,156 | 326,799 | 118,124 | 72,509 | 6,250 | 40,366 | 823,996 | 46,616 | | 2039 | 407,932 | 69,035 | 205,148 | 93,184 | 57,249 | 469,122 | 113,217 | 330,289 | 119,276 | 73,279 | 6,317 | 40,795 | 832,549 | 47,111 | | 2040 | 412,217 | 69,689 | 207,341 | 94,094 | 57,857 | 474,050 | 114,289 | 333,819 | 120,441 | 74,056 | 6,384 | 41,229 | 841,198 | 47,612 | $Ref: I: \exists t= m \bmod inputs \externals \end{mod_inputs} a find sead \end{mod_inputs} I: \exists t= m \bmod Pry11 \end{mod_inputs} in the input \end{mod_inputs} I: \exists t= m \bmod Pry11 \end{mod_inputs} in the input In$ Table 6 External Auto/Truck Attractions by Year | | HBWIX | HBSIX | HBOIX | NHBIX | ComvIX | HBWIX | HBSIX | HBOIX | NHBIX | ComvIX | MedTkIX | HeavyTkIX | AutoIX | TruckIX | |------|----------|-----------|----------|----------|---------|----------|-----------|----------|----------|----------|---------|-----------|----------|---------| | Year | AutoDrvs | Auto Drvs | AutoDrvs | AutoDrvs | AutoDrv | AutoPsns | Auto Psns | AutoPsns | AutoPsns | AutoPsns | | | Drv Totl | Total | | 2000 | 146,581 | 41,644 | 164,738 | 56,400 | 32,983 | 168,568 | 68,297 | 265,229 | 72,193 | 42,219 | 3,637 | 23,520 | 442,347 | 27,157 | | 2001 | 148,926 | 42,318 | 167,565 | 57,289 | 33,559 | 171,265 | 69,402 | 269,780 | 73,330 | 42,956 | 3,700 | 23,929 | 449,658 | 27,629 | | 2002 | 151,314 | 43,004 | 170,447 | 58,194 | 34,146 | 174,011 | 70,526 | 274,419 | 74,488 | 43,707 | 3,765 | 24,346 | 457,104 | 28,110 | | 2003 | 153,744 | 43,702 | 173,384 | 59,115 | 34,744 | 176,806 | 71,670 | 279,148 | 75,667 | 44,472 | 3,831 | 24,771 | 464,688 | 28,601 | | 2004 | 156,218 | 44,411 | 176,378 | 60,053 | 35,354 | 179,650 | 72,834 | 283,968 | 76,867 | 45,253 | 3,898 | 25,204 | 472,413 | 29,102 | | 2005 | 158,736 | 45,133 | 179,430 | 61,007 | 35,976 | 182,546 | 74,019 | 288,882 | 78,089 | 46,049 | 3,966 | 25,646 | 480,281 | 29,612 | | 2006 | 161,299 | 45,868 | 182,541 | 61,979 | 36,609 | 185,494 | 75,224 | 293,890 | 79,333 | 46,860 | 4,036 | 26,096 | 488,296 | 30,132 | | 2007 | 163,909 | 46,616 | 185,712 | 62,968 | 37,256 | 188,495 | 76,450 | 298,997 | 80,600 | 47,687 | 4,108 | 26,555 | 496,460 | 30,663 | | 2008 | 166,565 | 47,376 | 188,946 | 63,976 | 37,915 | 191,550 | 77,697 | 304,203 | 81,889 | 48,531 | 4,180 | 27,024 | 504,777 | 31,204 | | 2009 | 169,270 | 48,150 | 192,242 | 65,001 | 38,586 | 194,661 | 78,966 | 309,510 | 83,202 | 49,391 | 4,254 | 27,501 | 513,250 | 31,756 | | 2010 | 172,024 | 48,938 | 195,603 | 66,046 | 39,271 | 197,827 | 80,258 | 314,921 | 84,539 | 50,267 | 4,330 | 27,989 | 521,882 | 32,319 | | 2011 | 174,828 | 49,739 | 199,030 | 67,109 | 39,970 | 201,052 | 81,572 | 320,439 | 85,900 | 51,161 | 4,407 | 28,486 | 530,676 | 32,893 | | 2012 | 177,682 | 50,554 | 202,525 | 68,192 | 40,682 | 204,335 | 82,909 | 326,064 | 87,286 | 52,073 | 4,486 | 28,992 | 539,636 | 33,478 | | 2013 | 180,589 | 51,384 | 206,088 | 69,295 | 41,409 | 207,678 | 84,270 | 331,801 | 88,698 | 53,003 | 4,566 | 29,509 | 548,765 | 34,075 | | 2014 | 183,549 | 52,228 | 209,721 | 70,418 | 42,149 | 211,082 | 85,655 | 337,651 | 90,135 | 53,951 | 4,648 | 30,037 | 558,067 | 34,684 | | 2015 | 186,564 | 53,088 | 213,426 | 71,562 | 42,905 | 214,548 | 87,064 | 343,616 | 91,600 | 54,918 | 4,731 | 30,574 | 567,545 | 35,306 | | 2016 | 189,633 | 53,962 | 217,205 | 72,727 | 43,675 | 218,078 | 88,498 | 349,699 | 93,091 | 55,904 | 4,816 | 31,123 | 577,203 | 35,940 | | 2017 | 192,760 | 54,852 | 221,058 | 73,914 | 44,461 | 221,673 | 89,958 | 355,904 | 94,610 | 56,910 | 4,903 | 31,683 | 587,045 | 36,586 | | 2018 | 195,943 | 55,758 | 224,988 | 75,123 | 45,263 | 225,335 | 91,443 | 362,231 | 96,157 | 57,936 | 4,992 | 32,254 | 597,075 | 37,246 | | 2019 | 199,186 | 56,680 | 228,997 | 76,354 | 46,080 | 229,064 | 92,955 | 368,685 | 97,733 | 58,982 | 5,082 | 32,837 | 607,296 | 37,919 | | 2020 | 202,488 | 57,618 | 233,085 | 77,608 | 46,914 | 232,861 | 94,493 | 375,267 | 99,338 | 60,050 | 5,174 | 33,431 | 617,713 | 38,605 | | 2021 | 204,447 | 58,176 | 235,490 | 78,351 | 47,404 | 235,114 | 95,408 | 379,138 | 100,290 | 60,677 | 5,228 | 33,780 | 623,868 | 39,009 | | 2022 | 206,426 | 58,740 | 237,921 | 79,103 | 47,900 | 237,390 | 96,333 | 383,053 | 101,251 | 61,311 | 5,283 | 34,133 | 630,089 | 39,416 | | 2023 | 208,426 | 59,309 | 240,380 | 79,862 | 48,401 | 239,690 | 97,267 | 387,012 | 102,223 | 61,953 | 5,339 | 34,490 | 636,378 | 39,829 | | 2024 | 210,448 | 59,885 | 242,867 | 80,629 | 48,908 | 242,015 | 98,211 | 391,015 | 103,206 | 62,602 | 5,395 | 34,851 | 642,736 | 40,246 | | 2025 | 212,490 | 60,466 | 245,381 | 81,405 | 49,420 | 244,364 | 99,164 | 395,064 | 104,198 | 63,258 | 5,451 | 35,217 | 649,163 | 40,668 | | 2026 | 214,554 | 61,053 | 247,924 | 82,189 | 49,939 | 246,738 | 100,127 | 399,158 | 105,202 | 63,922 | 5,509 | 35,586 | 655,659 | 41,095 | | 2027 | 216,641 | 61,646 | 250,496 | 82,981 | 50,463 | 249,137 | 101,100 | 403,299 | 106,216 | 64,593 | 5,567 | 35,960 | 662,227 | 41,527 | | 2028 | 218,749 | 62,246 | 253,097 | 83,781 | 50,993 | 251,561 | 102,083 | 407,486 | 107,240 | 65,272 | 5,625 | 36,338 | 668,866 | 41,963 | | 2029 | 220,879 | 62,851 | 255,727 | 84,591 | 51,530 | 254,011 | 103,076 | 411,721 | 108,276 | 65,958 | 5,685 | 36,720 | 675,578 | 42,405 | | 2030 | 223,032 | 63,463 | 258,388 | 85,408 | 52,072 | 256,487 | 104,079 | 416,004 | 109,323 | 66,652 | 5,745 | 37,107 | 682,363 | 42,852 | | 2031 | 225,208 | 64,081 | 261,078 | 86,235 | 52,621 | 258,989 | 105,093 | 420,336 | 110,380 | 67,355 | 5,805 | 37,498 | 689,223 | 43,304 | | 2032 | 227,407 | 64,705 | 263,799 | 87,070 | 53,176 | 261,518 | 106,117 | 424,716 | 111,450 | 68,065 | 5,867 | 37,894 | 696,157 | 43,761 | | 2033 | 229,630 | 65,336 | 266,551 | 87,914 | 53,737 | 264,074 | 107,151 | 429,147 | 112,530 | 68,783 | 5,929 | 38,294 | 703,168 | 44,223 | | 2034 | 231,876 | 65,973 | 269,334 | 88,768 | 54,304 | 266,657 | 108,196 | 433,628 | 113,622 | 69,510 | 5,992 | 38,699 | 710,255 | 44,691 | | 2035 | 234,146 | 66,617 | 272,149 | 89,630 | 54,879 | 269,268 | 109,252 | 438,160 | 114,726 | 70,245 | 6,055 | 39,109 | 717,421 | 45,164 | | 2036 | 236,440 | 67,268 | 274,996 | 90,502 | 55,459 | 271,906 | 110,319 | 442,744 | 115,842 | 70,988 | 6,119 | 39,523 | 724,665 | 45,642 | | 2037 | 238,759 | 67,925 | 277,875 | 91,383 | 56,046 | 274,573 | 111,397 | 447,380 | 116,970 | 71,739 | 6,184 | 39,942 | 731,989 | 46,126 | | 2038 | 241,103 | 68,589 | 280,788 | 92,273 | 56,640 | 277,268 | 112,486 | 452,068 | 118,110 | 72,500 | 6,250 | 40,366 | 739,393 | 46,616 | | 2039 | 243,471 | 69,260 | 283,733 | 93,174 | 57,241 | 279,992 | 113,586 | 456,811 | 119,262 | 73,269 | 6,317 | 40,795 | 746,879 | 47,111 | | 2040 | 245,865 | 69,937 | 286,713 | 94,083 | 57,849 | 282,745 | 114,697 | 461,607 | 120,427 | 74,047 | 6,384 | 41,229 | 754,448 | 47,612 | ## 2.3 Miscellaneous and Airport-Passenger Trip Forecasts The remaining exogenous travel markets consist of taxis, school, and visitor/tourist auto driver trips (collectively referred to as "miscellaneous trips") and airport-passenger auto driver trips. The miscellaneous trip totals, shown by year on Table 7, are based on surveyed travel patterns that have been growth factored through time. The airport-passenger forecasts are shown on Table 8. The airport trips have been recently updated using the 2007 COG Air Passenger Survey. The trip tables represent auto travel to each of the three major airports serving the Washington/Baltimore area. **Table 7 Miscellaneous Auto Driver Forecasts** | | | | Visitor/ | |------|---------|---------|----------| | Year | School | Taxi | Tourist | | 2000 | 250,448 | 111,246 | 222,227 | | 2001 | 255,158 | 112,989 | 226,423 | | 2002 | 259,861 | 114,586 | 230,605 | | 2003 | 264,556 | 116,329 | 234,769 | | 2004 | 269,271 | 117,928 | 238,970 | | 2005 | 273,930 | 119,671 | 243,045 | | 2006 | 277,301 | 121,103 | 246,065 | | 2007 | 280,645 | 122,504 | 249,010 | | 2008 | 283,994 | 123,938 | 251,972 | | 2009 | 287,368 | 125,477 | 254,993 | | 2010 | 290,712 | 126,881 | 257,941 | | 2011 | 294,940 | 128,748 | 261,728 | | 2012 | 299,119 | 130,536 | 265,388 | | 2013 | 303,334 | 132,394 | 269,139 | | 2014 | 307,557 | 134,263 | 272,918 | | 2015 | 311,736 | 136,057 | 276,574 | | 2016 | 315,734 | 138,233 | 280,147 | | 2017 | 319,733 | 140,385 | 283,723 | | 2018 | 323,707 | 142,564 | 287,229 | | 2019 | 327,698 | 144,721 | 290,788 | | 2020 | 331,653 | 146,891 | 294,257 | | 2021 | 335,374 | 148,724 | 297,598 | | 2022 | 339,052 | 150,476 | 300,828 | | 2023 | 342,766 | 152,304 | 304,155 | | 2024 | 346,445 | 154,101 | 307,391 | | 2025 | 350,158 | 155,830 | 310,714 | | 2026 | 353,359 | 157,324 | 313,529 | | 2027 | 356,574 | 158,933 | 316,376 | | 2028 | 359,810 | 160,395 | 319,284 | | 2029 | 363,022 | 161,984 | 322,126 | | 2030 | 366,220 | 163,486 | 324,934 | | 2031 | 369,030 | 164,826 | 327,428 | | 2032 | 371,830 | 166,186 | 329,898 | | 2033 | 374,676 | 167,632 | 332,479 | | 2034 | 377,476 | 169,010 | 334,951 | | 2035 | 380,292 | 170,339 | 337,456 | | 2036 | 382,740 | 171,540 | 339,623 | | 2037 | 385,196 | 172,762 | 341,808 | | 2038 | 387,653 | 173,952 | 343,989 | | 2039 | 390,110 | 175,134 | 346,174 | | 2040 | 392,556 | 176,445 | 348,328 | Table 8 Air Passenger Auto Driver Trips by Year and Airport | | Airport | | | | | | | | |------|----------|--------|--------|---------|--|--|--|--| | Year | National | Dulles | BWI | Total | | | | | | 2000 | 18,746 | 16,585 | 14,486 | 49,723 | | | | | | 2001 | 18,343 | 16,595 | 14,810 | 49,656 | | | | | | 2002 | 17,941 | 16,604 | 15,134 | 49,588 | | | | | | 2003 | 17,538 | 16,614 | 15,459 | 49,521 | | | | | | 2004 | 17,136 | 16,623 | 15,783 | 49,453 | | | | | | 2005 | 16,733 | 16,633 | 16,107 | 49,386 | | | | | | 2006 | 16,714 | 17,000 | 16,918 | 50,544 | | | | | | 2007 | 16,694 | 17,368 | 17,729 | 51,703 | | | | | | 2008 | 16,673 | 17,737 | 18,540 | 52,863 | | | | | | 2009 | 16,653 | 18,105 | 19,351 | 54,022 | | | | | | 2010 | 16,634 | 18,471 | 20,162 | 55,180 | | | | | | 2011 | 16,870 | 19,407 | 20,626 | 56,814 | | | | | | 2012 | 17,106 | 20,343 | 21,091 | 58,449 | | | | | | 2013 | 17,347 | 21,279 | 21,556 | 60,089 | | | | | | 2014 | 17,583 | 22,214 | 22,020 | 61,724 | | | | | | 2015 | 17,820 | 23,150 | 22,485 | 63,358 | | | | | | 2016 | 18,058 | 24,133 | 22,969 | 65,061 | | | | | | 2017 | 18,298 | 25,116 | 23,452 | 66,765 | | | | | | 2018 | 18,541 | 26,101 | 23,938 | 68,476 | | | | | | 2019 | 18,781 | 27,084 | 24,421 | 70,180 | | | | | | 2020 | 19,019 | 28,068 | 24,906 | 71,883 | | | | | | 2021 | 19,233 | 29,032 | 25,393 | 73,547 | | | | | | 2022 | 19,448 | 29,997 | 25,883 | 75,214 | | | | | | 2023 | 19,667 | 30,962 | 26,372 | 76,885 | | | | | | 2024 | 19,882 | 31,927 | 26,861 | 78,552 | | | | | | 2025 | 20,096 | 32,891 | 27,349 | 80,216 | | | | | | 2026 | 20,284 | 33,850 | 27,856 | 81,868 | | | | | | 2027 | 20,474 | 34,810 | 28,362 | 83,522 | | | | | | 2028 | 20,667 | 35,771 | 28,869 | 85,180 | | | | | | 2029 | 20,857 | 36,731 | 29,376 | 86,835 | | | | | | 2030 | 21,046 | 37,690 | 29,883 | 88,487 | | | | | | 2031 | 21,171 | 38,518 | 30,360 | 89,917 | | | | | | 2032 | 21,298 | 39,347 | 30,839 | 91,350 | | | | | | 2033 | 21,425 | 40,175 | 31,316 | 92,781 | | | | | | 2034 | 21,551 | 41,004 | 31,795 | 94,213 | | | | | | 2035 | 21,677 | 41,832 | 32,272 | 95,643 | | | | | | 2036 | 21,765 | 42,416 | 32,724 | 96,766 | | | | | | 2037 | 21,852 | 43,001 | 33,175 | 97,890 | | | | | | 2038 | 21,938 | 43,586 | 33,627 | 99,012 | | | | | | 2039 | 22,025 | 44,171 | 34,078 | 100,135 | | | | | | 2040 | 22,113 | 44,755 | 34,530 | 101,258 | | | | | $Ref: I: \label{like} Ref: I: \label{like} Ref: I: \label{like} Romando Line \label{like} Ref: I: \label{like}$ # **Chapter 3 Demographic models** This chapter describes the specification of the demographic modeling process used within the Version 2.3 travel model. The demographic models, or sub-models, refer to the household size, household income, and vehicle availability models that are run prior to trip generation. The models are applied at the zone level and are used to apportion the total number households among 64 size, income, and vehicle availability categories or cross classifications: - Household size (1, 2, 3, or 4+ persons per household); - Household income (Income "quartile" 1, 2, 3, or 4); and - Vehicle ownership/availability (0, 1, 2, or 3+ vehicles per household). Prior to this latest update, the last two updates of the demographic models, or sub-models, were completed in 2004, using the 1990 Census Transportation Planning Package (CTPP) data, and in 2006, using the 2000 CTPP data. The demographic models used in the Version 2.3 travel model are similar to those used in the Version 2.2 travel model, with the following exceptions. First, the validation of the three demographic sub-models was updated to year 2007 conditions, using the American Community Survey (ACS). 8 Second, the vehicle availability model has been recalibrated based on the 2007/2008 Household Travel Survey. The 2000 Census was the last decennial census to include the long form, a roughly one-in-six sample of the population that included many questions about commuting travel. The long form was the basis for the CTPP data in 1990 and 2000. The American Community Survey (ACS) is a project of the U.S. Census Bureau that replaces the long form in the decennial census. Ideally, when updating the demographic models, one would like to have small area, e.g., zone-level, data. Unfortunately, the ASC data does not generally support development of models at the TAZ level of geography, due to privacy concerns regarding the release of data. Consequently, the ACS updates were done using county-level data. <sup>9</sup> According to the 2007 ACS data, the regional median household income is \$84,280 and the regional mean household income is \$106,780 (in year 2007 dollars). The household income quartiles, based on the 2007 ACS data, are shown in Table 9. <sup>&</sup>lt;sup>8</sup> Hamid Humeida to Files, "Analysis of data from the American Community Survey (ACS): Households by household income, household size, and vehicle availability," Memorandum, March 19, 2010. <sup>&</sup>lt;sup>9</sup> It is thought that some CTPP data may be produced in the future from multiple years of the ACS, but that data is not likely to be available for another few years. Table 9 Household income quartiles computed from the ACS | 1 | | |----------|-----------------------------| | Quartile | Income range (2007 dollars) | | First | Less than \$50,000 | | Second | \$50,000 to \$99,999 | | Third | \$100,000 to \$149,999 | | Fourth | \$150,000 or more | The median household income reported from the 2007/2008 HTS (\$90,086) is slightly higher than that of the ACS (\$84,280). However, both medians fall in the same income interval, \$50,000-\$99,999. One possible explanation for the difference is that the larger ACS sample covered a larger percentage of lower income households than the 2007/2008 HTS. A sub-model was developed for each of the three socio-economic dimensions. The household size sub-model uses Census-based relationships to estimate the percent of households in each integer class of household size, given the zone's average household size. The household income sub-model uses similar Census-based relationships to estimate the percent of households in each income class, given the zone's median household income. Lastly, the vehicle ownership model uses a disaggregate logit formulation to estimate the percentage of households in each of the four vehicle-availability classes. The logit model makes use of the household size and income information developed in prior steps as well as some additional parameters. The model specifications are detailed below. #### 3.1 Household size sub-model The household size sub-model is an "aggregate share" model. The model is essentially a family of four curves used to allocate the total number of households among integer size levels, based on the average household size of a given zone. Each curve uses the same independent variable. | Curve | Dependent variable | Independent variable | |-------|--------------------------------|------------------------------| | 1 | Percent of HHs with 1 person | Average zonal household size | | 2 | Percent of HHs with 2 persons | Average zonal household size | | 3 | Percent of HHs with 3 persons | Average zonal household size | | 4 | Percent of HHs with 4+ persons | Average zonal household size | The final model is shown in graphical form in Figure 4 and in tabular form in Table 10. Figure 4 Household size sub-model: Graphical form Table 10 Household size sub-model: Tabular form | Aug Zonal | Pct of HH with | |------------|----------------|----------------|----------------|----------------| | Avg. Zonal | | | | | | HH Size | 1 person | 2 persons | 3 persons | 4+ persons | | 1.0 | 100.0 | 0.0 | 0.0 | 0.0 | | 1.1 | 86.7 | 10.5 | 1.0 | 1.8 | | 1.2 | 78.2 | 15.8 | 4.1 | 1.9 | | 1.3 | 72.7 | 20.4 | 4.9 | 2.0 | | 1.4 | 67.1 | 24.7 | 5.8 | 2.4 | | 1.5 | 63.0 | 27.1 | 6.7 | 3.2 | | 1.6 | 59.0 | 28.9 | 7.9 | 4.2 | | 1.7 | 55.2 | 30.2 | 8.7 | 5.9 | | 1.8 | 50.9 | 31.1 | 10.1 | 7.9 | | 1.9 | 46.7 | 31.7 | 11.5 | 10.1 | | 2.0 | 42.8 | 32.1 | 12.7 | 12.4 | | 2.1 | 39.0 | 32.3 | 14.0 | 14.7 | | 2.2 | 35.5 | 32.4 | 15.0 | 17.1 | | 2.3 | 32.2 | 32.4 | 16.0 | 19.4 | | 2.4 | 29.1 | 32.3 | 16.9 | 21.7 | | 2.5 | 26.3 | 32.1 | 17.6 | 24.0 | | 2.6 | 23.8 | 31.9 | 18.2 | 26.1 | | 2.7 | 21.5 | 31.5 | 18.7 | 28.3 | | 2.8 | 19.4 | 31.1 | 19.2 | 30.3 | | 2.9 | 17.4 | 30.5 | 19.8 | 32.3 | | 3.0 | 15.6 | 29.8 | 20.3 | 34.3 | | 3.1 | 14.0 | 28.9 | 20.7 | 36.4 | | 3.2 | 12.6 | 27.9 | 20.8 | 38.7 | | 3.3 | 11.3 | 26.6 | 20.9 | 41.2 | | 3.4 | 10.2 | 25.0 | 20.8 | 44.0 | | 3.5 | 9.2 | 23.2 | 20.4 | 47.2 | | 3.6 | 8.3 | 21.2 | 19.6 | 50.9 | | 3.7 | 7.5 | 18.9 | 18.4 | 55.2 | | 3.8 | 6.7 | 15.6 | 17.4 | 60.3 | | 3.9 | 5.9 | 11.2 | 16.5 | 66.4 | # 3.2 Household income sub-model The household income sub-model is also an "aggregate share" model and is, therefore, similar in form to the household size sub-model. The household income sub-model is used to estimate the share of households in each of the four income quartiles in each zone, given the median household income for the zone. Unlike the 2000 CTPP, the most recent census data, the 2007 American Community Survey (ACS), is not available at the census tract level. This fact presented a limitation to any possible updates of the income sub-model using the ACS aggregated data. The county geography is the lowest level that the 2000 CTPP and the 2007 ACS data could be compared. As such, it was decided to use the existing models based on the 2000 CTPP data and to develop an area-based zone equivalency to migrate the 2191 TAZ model to the new 3722 TAZ system. Based on the 2000 CTPP data, the income ratio variable was developed as shown in Equation 1. #### **Equation 1 Income ratio equation** Income ratio = (zonal median HH income) / (regional median HH income) The final model is shown in graphical form in Figure 5 and in tabular form in Table 11. \_ <sup>&</sup>lt;sup>10</sup> Hamid Humeida to Files, "Development of an equivalency file to convert the household income sub-model from the 2191 TAZ system to the new 3722 TAZ system," Memorandum, June 2, 2010. Figure 5 Household income sub-model: Graphical form Table 11 Household income sub-model: Tabular form | | Pct of HH in | |--------------|--------------|--------------|--------------|--------------| | Income Ratio | inc. qrt. 1 | inc. qrt. 2 | inc. qrt. 3 | inc. qrt. 4 | | 0.1 | 100.0 | 0.0 | 0.0 | 0.0 | | 0.2 | 88.8 | 8.2 | 2.3 | 0.6 | | 0.3 | 80.5 | 14.7 | 3.1 | 1.6 | | 0.4 | 73.4 | 20.3 | 4.2 | 2.1 | | 0.5 | 65.3 | 25.4 | 6.4 | 2.8 | | 0.6 | 56.9 | 30.0 | 9.3 | 3.8 | | 0.7 | 48.8 | 33.4 | 12.5 | 5.3 | | 0.8 | 41.3 | 35.9 | 15.7 | 7.2 | | 0.9 | 34.6 | 37.0 | 18.6 | 9.8 | | 1.0 | 28.8 | 36.8 | 21.2 | 13.1 | | 1.1 | 24.3 | 35.7 | 23.3 | 16.8 | | 1.2 | 20.6 | 33.7 | 24.8 | 20.9 | | 1.3 | 17.9 | 31.0 | 25.6 | 25.6 | | 1.4 | 16.0 | 27.9 | 25.8 | 30.3 | | 1.5 | 14.6 | 24.8 | 25.5 | 35.2 | | 1.6 | 13.7 | 21.7 | 24.7 | 39.8 | | 1.7 | 13.0 | 19.1 | 23.5 | 44.4 | | 1.8 | 12.2 | 17.0 | 22.2 | 48.6 | | 1.9 | 11.4 | 15.7 | 20.7 | 52.3 | | 2.0 | 10.5 | 14.7 | 19.2 | 55.6 | | 2.1 | 9.7 | 14.4 | 17.8 | 58.2 | | 2.2 | 8.7 | 14.2 | 16.6 | 60.5 | | 2.3 | 8.1 | 14.1 | 15.5 | 62.4 | | 2.4 | 7.8 | 14.0 | 14.5 | 63.7 | | 2.5 | 7.4 | 13.8 | 14.1 | 64.8 | | 2.6 | 7.3 | 13.5 | 13.6 | 65.7 | | 2.7 | 7.2 | 12.6 | 13.5 | 66.8 | | 2.8 | 6.9 | 12.3 | 13.3 | 67.5 | | 2.9 | 6.9 | 12.0 | 12.7 | 68.4 | | 3.0 | 6.5 | 11.0 | 12.9 | 69.6 | | 3.1 | 6.0 | 10.1 | 13.2 | 70.8 | | 3.2 | 5.2 | 9.3 | 13.5 | 72.0 | | 3.3 | 5.3 | 8.8 | 13.0 | 73.0 | | 3.4 | 5.0 | 8.3 | 12.8 | 74.0 | | 3.5 | 4.7 | 7.6 | 12.6 | 75.1 | | 3.6 | 4.4 | 7.0 | 12.5 | 76.1 | | 3.7 | 4.0 | 6.3 | 12.5 | 77.3 | | 3.8 | 3.7 | 5.6 | 12.4 | 78.4 | # 3.3 Vehicle availability sub-model The vehicle availability sub-model is the last demographic sub-model. It is a disaggregate choice model that apportions households among vehicle availability levels. The variables considered are household size, household income (furnished by the previous sub-models), area type, and transit accessibility defined as the number of jobs accessible in 45 minutes using the "best" AM transit service. The best transit service is defined as the minimum AM walk-/drive-access transit time among the modeled sub-modes (commuter rail, bus-only, Metrorail/Bus, and Metrorail only). The vehicle availability model specification is detailed in Table 12. Table 12 Vehicle availability model | Nun | nber d | of | | | | |-----|--------|----|----|--------------------------------|-------------| | Veh | icles | | | | New | | 0 | 1 | 2 | 3+ | Variable | Coefficient | | | Х | ٠ | - | Constant | 0.5382 | | | | Χ | | Constant | -3.0820 | | | | | Χ | Constant | -6.8508 | | | Х | | | Household Size | 0.1693 | | | | Χ | | Household Size | 1.3439 | | | | | Χ | Household Size | 1.6910 | | | Χ | | | Income level 2 | 1.4535 | | | | Χ | | Income level 2 | 1.8432 | | | | | Χ | Income level 2 | 2.4619 | | | Χ | | | Income level 3 | 2.2589 | | | | Χ | | Income level 3 | 3.4209 | | | | | Χ | Income level 3 | 4.6234 | | | Χ | | | Income level 4 | 2.6558 | | | | Χ | | Income level 4 | 3.9163 | | | | | Χ | Income level 4 | 5.5402 | | | Χ | | | Employment w/in 45 min transit | -1.20E-06 | | | | Χ | | Employment w/in 45 min transit | -2.04E-06 | | | | | Χ | Employment w/in 45 min transit | -2.37E-06 | | | Χ | | | Area type | 0.2092 | | | | Χ | | Area type | 0.4772 | | | | | Χ | Area type | 0.7792 | | | Χ | | | DC dummy | -0.9448 | | | | Χ | | DC dummy | -1.3977 | | | | | Χ | DC dummy | -1.5294 | # 3.4 Demographic Model Validation Results In order to evaluate how well the models fit the data, a comparison was made between the estimated results and data from the 2007 ACS. Table 13, Table 14, and Table 15 show the regional estimates, observed ACS data, the ratio of estimated to observed, and the difference between the estimated and observed results. It is evident that the difference between the estimated and observed data is less than 1% for all three demographic models, which indicates an acceptable fit. The difference in the total number of households of 15,885 is due to Clarke County being omitted from the ACS dataset because the county is small and no data was available at this level of geography. In addition to regional summaries, jurisdictional summaries for household size, household income, and vehicle availability are presented in a memorandum<sup>11</sup>. Table 13 2007 Regional Estimated and Observed Households by Size | | | Es | timated | | | | | | | |------|----------|------------|--------------|---------|-----------|--|--|--|--| | | 1 Psn | 2 Psns | 3 Psns | 4+ Psns | Total | | | | | | HHs | 664,559 | 723,464 | 392,846 | 558,997 | 2,339,865 | | | | | | Pct. | 28.40% | 30.92% | 16.79% | 23.89% | 100.00% | | | | | | | | | | | | | | | | | | Observed | | | | | | | | | | | 1 Psn | 2 Psns | 3 Psns | 4+ Psns | Total | | | | | | HHs | 649,305 | 713,509 | 385,435 | 575,731 | 2,323,980 | | | | | | Pct. | 27.94% | 30.70% | 16.59% | 24.77% | 100.00% | | | | | | | | | | | | | | | | | | | Estimated, | Observed Rat | tio | | | | | | | | 1 Psn | 2 Psns | 3 Psns | 4+ Psns | Total | | | | | | HHs | 1.0235 | 1.0140 | 1.0192 | 0.9709 | 1.0068 | | | | | | Pct. | 1.0165 | 1.0071 | 1.0123 | 0.9643 | 1.0000 | | | | | | | | | | | | | | | | | | | Estimat | ed- Observed | | | | | | | | | 1 Psn | 2 Psns | 3 Psns | 4+ Psns | Total | | | | | | HHs | 15,254 | 9,955 | 7,411 | -16,734 | 15,885 | | | | | | Pct. | 0.46% | 0.22% | 0.20% | -0.88% | 0.00% | | | | | \_ <sup>&</sup>lt;sup>11</sup> Hamid Humeida to Files, "Analysis of data from the American Community Survey (ACS): Households by household income, household size, and vehicle availability," Memorandum, March 19, 2010. Table 14 2007 Regional Estimated and Observed Households by Income Level | | | | Estimated | | | |------|----------|---------------|-----------------|-----------|-----------| | | < 50.00k | 50.00k-99.99k | 100.k-149.99k | > 150.00k | Total | | HHs | 635,803 | 726,626 | 483,261 | 494,175 | 2,339,865 | | Pct. | 27.17% | 31.05% | 20.65% | 21.12% | 100.00% | | | | | Observed | | | | | | | Observed | | | | | < 50.00k | 50.00k-99.99k | 100.k-149.99k | > 150.00k | Total | | HHs | 640,594 | 731,729 | 470,110 | 481,547 | 2,323,980 | | Pct. | 27.56% | 31.49% | 20.23% | 20.72% | 100.00% | | | | | | | | | | | Estima | ted/Observed Ra | tio | | | | < 50.00k | 50.00k-99.99k | 100.k-149.99k | > 150.00k | Total | | HHs | 0.9925 | 0.9930 | 1.0280 | 1.0262 | 1.0068 | | Pct. | 0.9858 | 0.9863 | 1.0210 | 1.0193 | 1.0000 | | | | | | | | | | | Estir | mated- Observed | | | | | | | 100.k- | | | | | < 50.00k | 50.00k-99.99k | 149.99k | > 150.00k | Total | | HHs | -4,791 | -5,103 | 13,151 | 12,628 | 15,885 | | Pct. | -0.39% | -0.43% | 0.42% | 0.40% | 0.00% | Table 15 2007 Regional Estimated and Observed Households by Vehicles Available | | | | Estimated | | | |------|---------|---------|---------------|----------|-----------| | | 0 Vehs. | 1 Veh. | 2 Vehs. | 3+ Vehs. | Total | | HHs | 197,911 | 734,183 | 877,105 | 530,667 | 2,339,865 | | Pct. | 8.46% | 31.38% | 37.49% | 22.68% | 100.00% | | | | | Observed | | | | | 0 Vehs. | 1 Veh. | 2 Vehs. | 3+ Vehs. | Total | | HHs | 200,561 | 733,753 | 865,514 | 524,152 | 2,323,980 | | Pct. | 8.63% | 31.57% | 37.24% | 22.55% | 100.00% | | | | Estima | ited/Observed | Ratio | | | | 0 Vehs. | 1 Veh. | 2 Vehs. | 3+ Vehs. | Total | | HHs | 0.9868 | 1.0006 | 1.0134 | 1.0124 | 1.0068 | | Pct. | 0.9801 | 0.9938 | 1.0065 | 1.0056 | 1.0000 | | | | Esti | mated- Observ | /ed | | | | 0 Vehs. | 1 Veh. | 2 Vehs. | 3+ Vehs. | Total | | HHs | -2,650 | 430 | 11,591 | 6,515 | 15,885 | | Pct. | -0.17% | -0.20% | 0.24% | 0.13% | 0.00% | # **Chapter 4 Trip Generation** The Version 2.3 trip generation process computes zonal trip productions and trip attractions, for each modeled purpose, on the basis of zonal land activity. This chapter details the trip generation model pertaining to resident, commercial vehicle, and truck purposes. "Resident trips" are those made by people who reside in the modeled area. Information on resident trips is obtained from the COG/TPB 2007/2008 Household Travel Survey. ### 4.1 Model Structure The trip generation model is used to compute the number of daily person trips (i.e., on an average weekday) and daily truck/commercial vehicle trips produced by and attracted to each transportation analysis zone (TAZ). Resident trips are stratified into five trip purposes: - Home-Based Work (HBW) - Home-Based Shop (HBS) - Home-Based Other (HBO) - Non-Home-Based Work (NHW) - Non-Home-Based Other (NHO) HBO trips include home-based school and home-based university trips, since these trips are not modeled separately. Following consultant guidance, what used to be one trip purpose – non-home-based (NHB) – has now been divided into two trip purposes: NHW and NHO.<sup>12</sup> In the Version 2.1 travel model and previous TPB travel models, commercial vehicle travel, described below, was assumed to be part of the non-home-based trip purpose, although this is no longer the case. In general, a commercial vehicle is a motor vehicle used to transport goods (freight), services, or, potentially, revenue-paying passengers. However, the usage of this term within the TPB travel model is more limited. Since the TPB travel model has always had a truck model (for medium trucks and heavy trucks), the term "commercial vehicle" is used to refer to light-duty vehicles (auto, light trucks, SUV, etc.) used to transport goods and services.<sup>13</sup> Consequently, there are three commercial/truck vehicle types: - Medium truck (single unit, two axles, 6 or more tires) - Heavy truck (all combination vehicles)<sup>14</sup> - Commercial vehicles (autos and light duty trucks used to transport commercial goods and services) Examples of commercial vehicles include "delivery and courier vehicles (including postal vehicles), light trucks used in construction, tradesmen, craftsmen, equipment service personnel, telephone company trucks, shuttle vans, taxicabs, ambulances, police cars, government vehicles, and 4-tire vans used for 31 <sup>&</sup>lt;sup>12</sup> Cambridge Systematics, Inc., *Fiscal Year 2010 Task Reports*, Final Report (National Capital Region Transportation Planning Board, November 16, 2010), 2-3, 2-12. <sup>&</sup>lt;sup>13</sup> William G., Jr. Allen, *Development of a Model for Commercial Vehicle Trips* (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, May 4, 2007). <sup>&</sup>lt;sup>14</sup> Note that "heavy" and "medium" do not refer strictly to the weight of the vehicle. paratransit and school transportation."<sup>15</sup> As stated earlier, in the Version 2.1 travel model and previous TPB travel models, commercial vehicle travel was assumed to be part of the non-home-based trip purpose. Similar to the Version 2.2 model, the Version 2.3 model now accounts for commercial trips as a separate and distinct trip purpose. The trip generation process also estimates productions and attractions associated with non-motorized (walk and bicycle) trips. The non-motorized trips are removed from the "final" trip-ends prior to the trip distribution step. The resident trip generation process can be envisioned as a series of six sequential steps. These are: - 1) Trip production model; - 2) Internal-to-external trip extraction model; - 3) Non-motorized trip production model; - 4) Trip attraction model; - 5) Non-motorized trip attraction model; and - 6) Home-based attraction income disaggregation model. ### 4.2 Trip Production Model The trip production model is a cross-classification model involving the application of trip rates to households in specific socioeconomic categories. The trip rates are specific to each purpose. The cross-classes established for the Version 2.3 model are structured by the four household income, four household size, and four vehicle availability levels used in the demographic models. The total number of cross-classes equals 64 (i.e., $4 \times 4 \times 4$ ). The trip rates are displayed, by purpose in Table 16, Table 17, Table 18, Table 19, and Table 20. Trip rates are weighted rates, based on the 2007/2008 Household Travel Survey.<sup>16</sup> <sup>&</sup>lt;sup>15</sup> Allen, Development of a Model for Commercial Vehicle Trips, 4. <sup>&</sup>lt;sup>16</sup> Hamid Humeida to Files, Mark Moran, and Ronald Milone, "Estimation of Trip Production Model based on the 2007 Household Travel Survey," Memorandum, January 13, 2011. Table 16 Final HBW Trip Production Rates<sup>17</sup> | | | | | Vehicles | | | |--------------|----------|------|------|----------|------|----------| | Income Level | HH Size | 0 | 1 | 2 | 3+ | Subtotal | | 00k - 50k | 1-PSN | 0.41 | 0.65 | 0.54 | 0.66 | 0.58 | | | 2-PSN | 0.67 | 0.86 | 1.27 | 1.34 | 1.05 | | | 3-PSN | 0.91 | 1.34 | 1.89 | 1.92 | 1.55 | | | 4+PSN | 1.34 | 1.34 | 1.70 | 2.50 | 1.69 | | | Subtotal | 0.55 | 0.80 | 1.35 | 1.75 | 0.94 | | 50k-100k | 1-PSN | 1.00 | 1.06 | 1.04 | 1.04 | 1.05 | | | 2-PSN | 1.20 | 1.29 | 1.41 | 1.51 | 1.39 | | | 3-PSN | 1.25 | 1.70 | 1.95 | 2.05 | 1.93 | | | 4+PSN | 1.34 | 1.82 | 1.99 | 2.69 | 2.24 | | | Subtotal | 1.06 | 1.20 | 1.63 | 2.14 | 1.55 | | 100k-150k | 1-PSN | 1.08 | 0.99 | 1.09 | 1.29 | 1.03 | | | 2-PSN | 1.72 | 1.78 | 1.78 | 1.87 | 1.79 | | | 3-PSN | 1.72 | 1.82 | 2.05 | 2.51 | 2.23 | | | 4+PSN | 1.75 | 1.97 | 1.98 | 2.71 | 2.26 | | | Subtotal | 1.33 | 1.36 | 1.86 | 2.42 | 1.92 | | > 150k | 1-PSN | 1.16 | 1.04 | 1.20 | 0.87 | 1.07 | | | 2-PSN | 1.72 | 1.82 | 1.87 | 1.90 | 1.88 | | | 3-PSN | 1.72 | 2.16 | 2.28 | 2.93 | 2.62 | | | 4+PSN | 1.75 | 2.24 | 2.60 | 2.97 | 2.75 | | | Subtotal | 1.33 | 1.57 | 2.15 | 2.58 | 2.25 | | | TOTAL | 0.72 | 1.10 | 1.78 | 2.33 | 1.63 | $Ref: \ l:\ lateam\ docum\ FY11\ Ver2.3\ memos\ Trip\_production\_memo\_final.docx$ \_ <sup>&</sup>lt;sup>17</sup> Source: Hamid Humeida to Files, Mark Moran, and Ronald Milone, "Estimation of Trip Production Model based on the 2007 Household Travel Survey," Memorandum, January 13, 2011. Table 17 Final HBS Trip Production Rates<sup>18</sup> | | | | | Vehicles | | | |--------------|----------|------|------|----------|------|----------| | Income Level | HH Size | 0 | 1 | 2 | 3+ | Subtotal | | 00k - 50k | 1-PSN | 0.59 | 0.65 | 0.77 | 0.77 | 0.64 | | | 2-PSN | 0.88 | 1.16 | 1.18 | 1.29 | 1.15 | | | 3-PSN | 0.90 | 1.31 | 1.52 | 1.57 | 1.36 | | | 4+PSN | 1.00 | 1.31 | 1.52 | 1.53 | 1.40 | | | Subtotal | 0.69 | 0.85 | 1.25 | 1.35 | 0.94 | | 50k-100k | 1-PSN | 0.59 | 0.67 | 0.64 | 0.77 | 0.66 | | | 2-PSN | 0.88 | 1.26 | 1.31 | 1.31 | 1.28 | | | 3-PSN | 0.92 | 0.94 | 1.64 | 1.74 | 1.52 | | | 4+PSN | 1.25 | 1.59 | 2.12 | 2.15 | 2.07 | | | Subtotal | 0.69 | 0.85 | 1.52 | 1.76 | 1.28 | | 100k-150k | 1-PSN | 0.67 | 0.71 | 0.73 | 0.77 | 0.71 | | | 2-PSN | 0.88 | 1.30 | 1.31 | 1.31 | 1.30 | | | 3-PSN | 0.88 | 1.65 | 1.69 | 1.63 | 1.66 | | | 4+PSN | 1.75 | 1.81 | 2.22 | 2.36 | 2.25 | | | Subtotal | 0.83 | 1.04 | 1.68 | 1.86 | 1.60 | | > 150k | 1-PSN | 0.86 | 0.89 | 0.89 | 0.89 | 0.89 | | | 2-PSN | 1.31 | 1.31 | 1.31 | 1.31 | 1.31 | | | 3-PSN | 0.88 | 1.66 | 1.66 | 1.66 | 1.66 | | | 4+PSN | 1.24 | 2.12 | 2.40 | 2.45 | 2.41 | | | Subtotal | 0.99 | 1.27 | 1.71 | 1.83 | 1.70 | | | TOTAL | 0.70 | 0.90 | 1.58 | 1.79 | 1.36 | <sup>&</sup>lt;sup>18</sup> Source: Hamid Humeida to Files, Mark Moran, and Ronald Milone, "Estimation of Trip Production Model based on the 2007 Household Travel Survey," Memorandum, January 13, 2011. Table 18 Final HBO Trip Production Rates<sup>19</sup> | | | | | Vehicles | | | |--------------|----------|------|------|----------|------|----------| | Income Level | HH Size | 0 | 1 | 2 | 3+ | Subtotal | | 00k - 50k | 1-PSN | 0.80 | 0.89 | 0.89 | 1.17 | 0.87 | | | 2-PSN | 0.78 | 1.57 | 1.98 | 2.22 | 1.70 | | | 3-PSN | 1.55 | 1.57 | 3.00 | 3.00 | 2.25 | | | 4+PSN | 1.66 | 3.76 | 3.76 | 5.91 | 3.93 | | | Subtotal | 0.91 | 1.30 | 2.38 | 3.48 | 1.62 | | 50k-100k | 1-PSN | 0.80 | 0.89 | 0.89 | 1.18 | 0.89 | | | 2-PSN | 1.26 | 2.08 | 2.08 | 2.10 | 2.06 | | | 3-PSN | 1.55 | 3.00 | 3.47 | 3.79 | 3.47 | | | 4+PSN | 1.66 | 6.15 | 6.44 | 6.81 | 6.52 | | | Subtotal | 0.96 | 1.59 | 3.45 | 4.52 | 2.86 | | 100k-150k | 1-PSN | 1.09 | 0.90 | 0.93 | 0.90 | 0.92 | | | 2-PSN | 1.55 | 2.08 | 2.08 | 2.10 | 2.08 | | | 3-PSN | 2.50 | 3.40 | 3.66 | 3.79 | 3.70 | | | 4+PSN | 2.50 | 6.48 | 7.36 | 7.36 | 7.31 | | | Subtotal | 1.35 | 1.87 | 4.24 | 4.93 | 3.96 | | > 150k | 1-PSN | 1.09 | 0.90 | 0.98 | 1.15 | 0.95 | | | 2-PSN | 1.55 | 2.08 | 2.08 | 2.08 | 2.08 | | | 3-PSN | 2.50 | 4.15 | 5.00 | 5.00 | 4.94 | | | 4+PSN | 2.50 | 6.48 | 7.36 | 7.87 | 7.55 | | | Subtotal | 1.23 | 2.35 | 4.25 | 5.09 | 4.34 | | | TOTAL | 0.95 | 1.58 | 3.76 | 4.75 | 3.13 | $Ref: I: \label{lem:lemo_final.docx} Ref: I: \label{lemo_final.docx} I: \label{lemo_final.docx} Ref: \label{lemo_final.docx} Ref: \label{lemo_final.docx} Ref: \label{lemo_final.docx} Ref: \$ \_ <sup>&</sup>lt;sup>19</sup> Source: Hamid Humeida to Files, Mark Moran, and Ronald Milone, "Estimation of Trip Production Model based on the 2007 Household Travel Survey," Memorandum, January 13, 2011. **Table 19 Final NHW Trip Production Rates**<sup>20</sup> | | | | | Vehicles | | | |--------------|----------|------|------|----------|------|----------| | Income Level | HH Size | 0 | 1 | 2 | 3+ | Subtotal | | 00k - 50k | 1-PSN | 0.30 | 0.37 | 0.37 | 0.37 | 0.35 | | | 2-PSN | 0.30 | 0.32 | 0.44 | 0.44 | 0.38 | | | 3-PSN | 0.35 | 0.56 | 0.56 | 0.85 | 0.57 | | | 4+PSN | 0.35 | 0.56 | 0.56 | 1.18 | 0.65 | | | Subtotal | 0.31 | 0.39 | 0.48 | 0.76 | 0.42 | | 50k-100k | 1-PSN | 0.30 | 0.75 | 0.75 | 0.75 | 0.72 | | | 2-PSN | 0.30 | 0.77 | 0.81 | 0.81 | 0.79 | | | 3-PSN | 0.83 | 0.77 | 0.77 | 0.93 | 0.83 | | | 4+PSN | 0.83 | 0.94 | 0.94 | 1.04 | 0.97 | | | Subtotal | 0.33 | 0.77 | 0.83 | 0.94 | 0.81 | | 100k-150k | 1-PSN | 0.30 | 0.75 | 0.75 | 0.75 | 0.73 | | | 2-PSN | 0.75 | 1.03 | 1.03 | 1.18 | 1.06 | | | 3-PSN | 0.95 | 1.03 | 1.15 | 1.18 | 1.15 | | | 4+PSN | 0.98 | 1.03 | 1.15 | 1.33 | 1.21 | | | Subtotal | 0.49 | 1.03 | 1.08 | 1.24 | 1.08 | | > 150k | 1-PSN | 0.75 | 1.00 | 1.00 | 1.05 | 0.99 | | | 2-PSN | 0.80 | 1.08 | 1.08 | 1.08 | 1.08 | | | 3-PSN | 1.26 | 1.26 | 1.30 | 1.42 | 1.36 | | | 4+PSN | 1.26 | 1.35 | 1.35 | 1.42 | 1.38 | | | Subtotal | 0.77 | 1.10 | 1.20 | 1.31 | 1.23 | | | TOTAL | 0.33 | 0.70 | 0.95 | 1.13 | 0.87 | $Ref: I: \label{lem:lemo_final.docx} Ref: I: \label{lemo_final.docx} I: \label{lemo_final.docx} Ref: \label{lemo_final.docx} Ref: \label{lemo_final.docx} Ref: \label{lemo_final.docx} Ref: \$ <sup>&</sup>lt;sup>20</sup> Source: Hamid Humeida to Files, Mark Moran, and Ronald Milone, "Estimation of Trip Production Model based on the 2007 Household Travel Survey," Memorandum, January 13, 2011. Table 20 Final NHO Trip Production Rates<sup>21</sup> | | | | | Vehicles | | | |--------------|----------|------|------|----------|------|----------| | Income Level | HH Size | 0 | 1 | 2 | 3+ | Subtotal | | 00k - 50k | 1-PSN | 0.58 | 0.68 | 0.96 | 1.12 | 0.68 | | | 2-PSN | 0.63 | 1.22 | 1.22 | 1.44 | 1.17 | | | 3-PSN | 0.71 | 1.25 | 1.25 | 1.25 | 1.18 | | | 4+PSN | 1.10 | 1.10 | 1.72 | 1.69 | 1.45 | | | Subtotal | 0.63 | 0.86 | 1.30 | 1.44 | 0.95 | | 50k-100k | 1-PSN | 0.61 | 0.68 | 0.96 | 1.21 | 0.72 | | | 2-PSN | 0.63 | 1.22 | 1.25 | 1.45 | 1.26 | | | 3-PSN | 0.74 | 1.46 | 1.47 | 1.62 | 1.52 | | | 4+PSN | 1.10 | 1.54 | 2.33 | 2.56 | 2.33 | | | Subtotal | 0.64 | 0.89 | 1.56 | 1.95 | 1.35 | | 100k-150k | 1-PSN | 0.61 | 0.72 | 0.94 | 0.88 | 0.76 | | | 2-PSN | 0.87 | 1.22 | 1.25 | 1.53 | 1.30 | | | 3-PSN | 1.00 | 1.46 | 1.47 | 1.62 | 1.53 | | | 4+PSN | 1.38 | 1.54 | 2.33 | 2.56 | 2.38 | | | Subtotal | 0.75 | 0.99 | 1.67 | 2.00 | 1.63 | | > 150k | 1-PSN | 0.67 | 0.72 | 0.99 | 1.36 | 0.84 | | | 2-PSN | 0.95 | 1.22 | 1.49 | 1.62 | 1.50 | | | 3-PSN | 1.00 | 1.46 | 1.56 | 1.66 | 1.61 | | | 4+PSN | 1.49 | 2.39 | 2.41 | 2.56 | 2.48 | | | Subtotal | 0.76 | 1.17 | 1.79 | 1.98 | 1.79 | | | TOTAL | 0.64 | 0.91 | 1.61 | 1.94 | 1.41 | Table 21 shows a summary of the trip production rates across the five trip purposes, indicating an average of about 8.40 trip productions per household on an average weekday. According to NCHRP 365, one would expect about 8.5 daily person trips per household for an urban area with over one million people.<sup>22</sup> <sup>&</sup>lt;sup>21</sup> Source: Hamid Humeida to Files, Mark Moran, and Ronald Milone, "Estimation of Trip Production Model based on the 2007 Household Travel Survey," Memorandum, January 13, 2011. <sup>&</sup>lt;sup>22</sup> William A. Martin and Nancy A. McGuckin, *NCHRP Report 365, Travel Estimation Techniques for Urban Planning*, National Cooperative Highway Research Program (NCHRP) (Washington, D.C.: Transportation Research Board, National Research Council, 1998), 25. Table 21 Daily trip productions per household (average weekday), summary across the trip purposes | | Daily Trip Productions<br>per HH (ave wkday) | |-------|----------------------------------------------| | HBW | 1.63 | | HBS | 1.36 | | НВО | 3.13 | | NHW | 0.87 | | NHO | 1.41 | | Total | 8.40 | Ref: I:\ateam\docum\FY11\Ver2.3\modelDoc\01\_calib\tripProdSummary.xlsx ### 4.3 The Internal-to-External Trip Estimation Model Travel can be categorized into four markets, based on whether the starting and ending points of the trip are within or beyond the modeled area, as can be seen in Table 22. Table 22 Categorization of trips into four markets, based on whether the starting and ending points of the trip are within or beyond the modeled area | Travel market | Acronym | Short-hand name | |----------------------|---------|-----------------| | Internal-to-internal | I-I | Internal | | Internal-to-external | I-X | External | | External-to-internal | X-I | External | | External-to-external | X-X | Through | Since I-X trips and X-I trips are typically referred to as "external travel," one can also think in terms of three markets: internal, external, and through. External and through travel (I-X, X-I and X-X) are entered exogenously into the trip generation process. However, since the trip production rates include both internal (I-I) and internal-to-external (I-X) trips generated by households that reside in the modeled area, it is necessary to remove the I-X portion of total trip productions to avoid double counting. The first I-X trip extraction sub-model was estimated by William Allen in the early 1990s based on the 1987 Home Interview Survey and the 1478 zone system. The model was then updated by TPB staff in 1997 using the 1994 HTS and the 2,191 zone system. <sup>23 24 25</sup> Consequently, this is the third update of the I-X trip extraction model. This latest update is based on the 2007 HTS and the 3,722-zone system, which has 3,675 internal zones. All of these models are based on the premise that the share of I-X trips is inversely related to the distance between the centroid of the production zone and the nearest external station. In Version 2.2 of the travel model, a single curve was developed to extract internal-to-external trips following trip generation. However, during Version 2.3 model calibration, it was noted that Home- <sup>&</sup>lt;sup>23</sup> Parsons, Brinckerhoff, Quade & Douglas, Inc., KPMG Peat Marwick LLP, and William G., Jr. Allen to Metropolitan Washington Council of Governments, "Technical Assistance for 1995 Model Validation: Technical Memorandum #2: Review of 1994 Survey Files," Memorandum, January 19, 1997, 16. <sup>&</sup>lt;sup>24</sup> Parsons, Brinckerhoff, Quade & Douglas, Inc., KPMG Peat Marwick LLP, and William G., Jr. Allen to Metropolitan Washington Council of Governments, "Technical Assistance for 1995 Model Validation: Technical Memorandum #4: Trip Generation and Time-of-Day Models," Memorandum, June 30, 1997, 7. <sup>&</sup>lt;sup>25</sup> Ronald Milone, Hamid Humeida, and Meseret Seifu, *FY-97 Models Development Program for COG/TPB Travel Models*, Draft (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, June 30, 1997), 3-31. Based-Work internal-to-external trip rates are dramatically different for counties in the vicinity of Baltimore. Thus, for the purposes of HBW I-X trip estimation, the region was split into counties near Baltimore (i.e., Anne Arundel, Howard, and Carroll counties) and the rest of the region. The equations developed for I-X trip extraction are described below and shown graphically in Figure 6. This function captures the fact that, as the distance to the nearest external station increases, the share of total trip productions that is attracted to external locations (I-X) drops. ### Equation 2 Percent of total trips productions that are I-X IX\_Baltimore\_HBW= 0.3348 Exp (-0.0938\*DNE) IX\_Baltimore\_Non-HBW= 0.1766 Exp (-0.1957\*DNE) IX Non-Baltimore HBW= 0.2133 Exp (-0.1950\*DNE) where DNE = the "straight-line" distance to the nearest external station (in miles) Exp = the exponential function Figure 6 Internal-to-External Trip Extraction Model <sup>&</sup>lt;sup>26</sup> Hamid Humeida to Mark Moran, "I-X Trip Extraction Sub-Model," Memorandum, January 13, 2011. # 4.4 Area type Area type is an important parameter that is used as a basis for determining link free-flow speed and link capacity, and is also used in a number of models, including the vehicle ownership, trip generation models, and the non-motorized HBW trip end model. In Version 2.2 of the model, area type is defined based on a one-mile "floating" employment and population density. The one-mile floating density for a specified TAZ is calculated by adding the density in the TAZ to the density in other TAZs whose centroid lies within a one-mile radius of the specified TAZ's centroid (this aggregation technique is sometimes referred to as "geographic centroid aggregation"). In the Version 2.2 travel model, there were seven area types, which were a function of the population density and the employment density. <sup>27</sup> In the Version 2.3 travel model on the 3,722-TAZ area system, there are now six area types, as can be seen in Table 23.<sup>28</sup> Changes to the previous definitions included combining area types 6 and 7, changing the employment and population category thresholds, as well as reclassifying some area types. Also, the new scheme has generally a smoother transition from one area type to the next. Table 23 Area Type Definitions (1-7) as a function of population and employment density | One-Mile | One- mile " | Floating" Emp | loyment Dens | ity (Emp/Sq m | ni) | | | |-------------------------------------------|-------------|---------------|--------------|---------------|------------------|-------------------|---------| | "Floating" Population Density (Pop/Sq mi) | 0-100 | 101-350 | 351-1,500 | 1,501-3,550 | 3,551-<br>13,750 | 13,751-<br>15,000 | 15,001+ | | 0-750 | 6 | 6 | 5 | 3 | 3 | 3 | 2 | | 751-1,500 | 6 | 5 | 5 | 3 | 3 | 3 | 2 | | 1,501-3,500 | 6 | 5 | 5 | 3 | 3 | 2 | 2 | | 3,501-6,000 | 6 | 4 | 4 | 3 | 2 | 2 | 1 | | 6,001-10,000 | 4 | 4 | 4 | 2 | 2 | 2 | 1 | | 10,000-15,000 | 4 | 4 | 4 | 2 | 2 | 2 | 1 | | 15,001+ | 2 | 2 | 2 | 2 | 2 | 1 | 1 | Two maps showing the revised area types can be seen in Figure 7and Figure 8. <sup>28</sup> Mary Martchouk to Mark S. Moran, "Area Type Definitions for Version 2.3 Travel Demand Model," Memorandum, June 16, 2010. <sup>&</sup>lt;sup>27</sup> Ronald Milone et al., *TPB Travel Forecasting Model, Version 2.2: Specification, Validation, and User's Guide* (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, March 1, 2008), 4-8. Figure 7 Revised area types used in the Version 2.3 travel model: Modeled area Figure 8 Revised area types used in the Version 2.3 travel model: the 10-mile square The following names are associated with the six area types: Table 24 Description of each area type and examples of each area type | Area<br>Type | Name | Examples | |--------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | High mixed employment and population density | <ol> <li>Downtown DC, between Georgetown, Florida Ave., and 11<sup>th</sup> St. NE &amp; SE</li> <li>Old Town Alexandria</li> <li>The Rosslyn/Court House area of Arlington Co.</li> <li>Pentagon City area of Arlington Co.</li> <li>Downtown Bethesda, Maryland</li> <li>Center of Tysons Corner, Virginia</li> </ol> | | 2 | Medium/high mixed density | <ol> <li>A majority of DC outside the downtown core</li> <li>A majority of Arlington Co., south of Lee Highway</li> <li>A majority of Alexandria</li> <li>Areas of Tysons Corner just beyond the center</li> <li>Annapolis, Maryland</li> <li>Downtown Frederick, Maryland</li> <li>Parts of Reston and Herndon, Virginia, along the Dulles Access/Toll Road </li> </ol> | | 3 | Medium employment density | <ol> <li>Parts of upper NW DC near Rock Creek Park</li> <li>Parts of Arlington along Lee Highway</li> <li>National Airport</li> <li>The Pentagon</li> <li>Arlington Cemetery</li> <li>BWI Airport</li> <li>Potomac Mills mall in Woodbridge, Virginia</li> </ol> | | 4 | Medium population density | <ol> <li>Parts of upper NW DC near Rock Creek Park</li> <li>Parts of north Arlington</li> <li>SE DC near the Capitol Heights Metrorail station</li> <li>Chevy Chase, Maryland, near the DC border</li> </ol> | | 5 | Low density | <ol> <li>Area along McArthur Boulevard in DC</li> <li>Upper north Arlington Co.</li> <li>Fort Hunt section of Fairfax Co.</li> <li>Dulles Airport</li> <li>Andrews Air Force Base</li> </ol> | | 6 | Rural | <ol> <li>Great Falls, Virginia</li> <li>Much of Loudoun Co., Virginia</li> <li>Most of Fauquier Co., Virginia</li> <li>Much of Charles, St. Mary's, and Calvert Counties, Maryland</li> <li>Most of Frederick and Carroll Co., Maryland</li> </ol> | Note that the Pentagon and Arlington Cemetery are area type 3 ("medium employment density"). This is due to the use of the one-mile floating density. Users of the travel model may wish to re-categorize Arlington Cemetery as "rural" (area type 6) and the Pentagon as area type 2 ("medium/high mixed density"). These can be reset using the area-type override capability that currently exists in the travel model. While calibrating the trip generation model, a series of area-type adjustments were added to the model, as seen in Table 25.<sup>29</sup> <sup>&</sup>lt;sup>29</sup> Ronald Milone to Files, "Performance of trip generation models," Memorandum, November 18, 2010. Table 25 Area-type adjustments developed in trip generation calibration #### **Motorized Production Adjustments** | AreaType-> | 1 | 2 | 3 | 4 | 5 | 6 | |------------|--------|--------|--------|--------|--------|--------| | HBW | 1.1358 | 1.1180 | 1.0554 | 0.9175 | 0.9577 | 0.9307 | | HBS | 0.8092 | 0.9504 | 1.0793 | 0.9059 | 1.0751 | 0.8620 | | НВО | 1.1067 | 1.1181 | 1.0303 | 0.9647 | 1.0109 | 0.8324 | | NHB | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | NHO | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | ### **Motorized Attraction Adjustments** | AreaType-> | 1 | 2 | 3 | 4 | 5 | 6 | |------------|--------|--------|--------|--------|--------|--------| | HBW | 1.0765 | 0.8478 | 0.9612 | 1.1045 | 0.9871 | 1.0383 | | HBS | 0.7952 | 1.0967 | 1.1577 | 0.8770 | 0.9437 | 0.5187 | | НВО | 1.1542 | 1.1304 | 0.9307 | 1.0635 | 1.0480 | 0.8032 | | NHB | 1.1457 | 0.8686 | 0.9843 | 1.5731 | 1.1860 | 1.0919 | | NHO | 0.7953 | 1.0652 | 1.0724 | 0.9180 | 1.0899 | 0.7224 | ### Nonmotorized Production Adjustments | AreaType-> | 1 | 2 | 3 | 4 | 5 | 6 | |------------|--------|--------|--------|--------|--------|--------| | HBW | 1.4424 | 1.1007 | 1.0554 | 0.9175 | 0.9577 | 0.9307 | | HBS | 1.2222 | 1.2677 | 1.0793 | 0.9059 | 1.0751 | 0.8619 | | НВО | 0.9363 | 1.3047 | 1.0303 | 0.9647 | 1.0109 | 0.8325 | | NHB | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | NHO | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | ### Nonmotorized Attraction Adjustments | AreaType-> | 1 | 2 | 3 | 4 | 5 | 6 | |------------|--------|--------|--------|--------|--------|--------| | HBW | 1.2809 | 1.0087 | 1.1436 | 1.3141 | 1.1746 | 1.2354 | | HBS | 1.0758 | 1.2904 | 1.3709 | 1.0385 | 1.1175 | 0.6141 | | НВО | 0.6886 | 1.2374 | 1.0476 | 1.1970 | 1.1796 | 0.9041 | | NHB | 1.0477 | 1.0620 | 0.8302 | 1.3269 | 1.0004 | 0.9211 | | NHO | 1.2008 | 1.0651 | 0.8146 | 0.6974 | 0.8280 | 0.5488 | Ref: I:\ateam\meetings\_conf\tfs\2010\2010-11-19\Performance\_of\_Trip\_Generation\_Models.docx In model application, these are supplemented with a series of jurisdiction-level production and attraction modification factors (p-mods and a-mods). # 4.5 Non-Motorized Production Trip Model The trip rates developed in trip generation reflect both motorized and non-motorized travel. The inclusion of non-motorized trips was intended to allow the modeler the ability to relate land use policy (e.g. land use mix, density, etc.) to the level of walking and bicycling, and its explicit effect on the reduction of motorized travel. However, the decision was also made early on that non-motorized trips should not be carried forth into trip distribution and mode choice steps given that the non-motorized trips are extremely dissimilar in spatial scale compared to that of motorized travel (non-motorized trips predominantly occur within zones, or between adjacent zones). In Version 2.2 of the travel model, non-motorized trips were estimated using a fixed percentage developed based on area type and were only modeled for home-based work trips.<sup>30</sup> In Version 2.3 of the model, non-motorized trip are estimated for all purposes. In addition, walking environment factors, sometimes referred to as pedestrian environment factors or PEFs, are considered in modeling these trips. Walking environment can be captured using parameters that can be estimated based on a GIS street layer and include block density, ratio of 4-way intersections to cul-de-sacs, and major/minor street density. All these parameters were considered in the non-motorized model, however, only block density proved to be a significant predictor of non-motorized trip percentage. The percentage of non-motorized trips was modeled using linear regression for high density areas (area types 1 and 2). For other area types, too few non-motorized trips were observed to produce any meaningful model results and thus fixed percentages of non-motorized trips were assumed for each area type as shown in Table 26.<sup>31</sup> For area types 1 and 2, HBW and HBS/HBO models were estimated as shown in Table 27 and Table 28. Note that the no non-motorized trip models are developed at the production end for non-home-based trips. Table 26 Production End Non-Motorized Trip Percentages for Area Types 3-6 | Area Type | HBW | HBS | НВО | NHW | NHO | Total | |-----------|-------|-------|-------|-------|-------|-------| | 3 | 2.45% | 2.79% | 8.19% | 4.69% | 4.20% | 5.00% | | 4 | 1.15% | 2.32% | 7.36% | 2.04% | 3.99% | 4.52% | | 5 | 0.42% | 1.06% | 5.10% | 2.41% | 3.10% | 3.00% | | 6 | 0.81% | 0.17% | 3.58% | 3.07% | 1.77% | 2.08% | <sup>&</sup>lt;sup>30</sup> Milone et al., TPB Travel Forecasting Model, Version 2.2: Specification, Validation, and User's Guide, 4-8. <sup>&</sup>lt;sup>31</sup> Mary Martchouk to Mark Moran, "Validation of Non-Motorized Trip Model," Memorandum, October 27, 2010; Mary Martchouk to Mark Moran, "Development of the Non-motorized Trip End Model," Memorandum, October 7, 2010. **Table 27 HBW Non-Motorized Production-End Trip Model** | Variable | Definition | Coefficient | Std. Error | T- stat. | P-value | Avg. Value | |-------------------------|-----------------------------------------------------------|-------------|------------|----------|---------|------------| | Constant | | -0.00388 | 0.009633 | -0.402 | 0.6875 | | | POPDEN10 | One-mile floating population density (persons/sq. mile) | 2.20E-06 | 1.12E-06 | 1.963 | 0.0496 | 8943 | | EMPDEN10 | One-mile floating employment density (employees/sq. mile) | 3.54E-06 | 1.85E-07 | 19.148 | 0 | 16520 | | BLKDEN05 | Street block density (blocks/sq. mile) | 0.000474 | 0.000124 | 3.82 | 0.0001 | 71.99 | | Adjusted R <sup>2</sup> | | 0.44 | | | | | | Number of C | bservations | 758 | | | | | Table 28 Home-Based Shop (HBS) and Home-Based Other (HBO) Non-Motorized Production Trip Model | Variable | Definition | Coefficient | Std. Error | T- stat. | P-value | Avg. Value | |-------------------------|-----------------------------------------------------------|-------------|------------|----------|---------|------------| | Constant | | -0.00870 | 0.01148 | -0.758 | 0.4485 | | | POPDEN10 | One-mile floating population density (persons/sq. mile) | 1.110E-05 | 1.37E-05 | 8.141 | 0 | 8812 | | EMPDEN10 | One-mile floating employment density (employees/sq. mile) | 2.582E-06 | 2.30E-06 | 11.243 | 0 | 16150 | | BLKDEN05 | Street block density (blocks/sq. mile) | 0.00083426 | 0.00013 | 5.527 | 0 | 70.53 | | Adjusted R <sup>2</sup> | | | 0.40 | | | | | Number of O | bservations | | 786 | | | | # 4.6 Trip Attraction Model The trip attraction models are linear regression equations that use land use data, including employment and population, to predict number of attractions in a TAZ. The equations were developed using district-level data from the 2007/2008 Household Travel Survey. Trip attractions are estimated by trip purpose and two area type groupings (area types 1-2 and area types 3+).<sup>32</sup> The resulting trip attractions models are shown below. HBW\_Attr\_1-2 = 1.118\* TOTEMP HBW\_Attr\_3+= 0.8546\* TOTEMP HBS\_Attr\_1-2= 1.995\*RETEMP+ 0.301\*TOTPOP HBS\_Attr\_3+= 3.102\*RETEMP+ 0.221\*TOTPOP HBO Attr 1-2= 0.425\*NONRETEMP+ 1.012\*TOTPOP HBO\_Attr\_3+= 1.084\*NONRETEMP+ 0.588\*RETEMP+ 0.777\*TOTPOP NHW\_Attr\_1-2= 0.944\*RETEMP+ 0.557\*OFFEMP+ 0.656\*OTHEREMP NHW Attr 3+= 0.807\*RETEMP+ 0.522\*OFFEMP+ 0.507\*OTHEREMP NHO\_Attr\_1-2= 0.097\*NONRETEMP+ 1.498\*RETEMP+ 0.300\*TOTPOP NHO\_Attr\_1-2= 0.178\*NONRETEMP+ 2.784\*RETEMP+ 0.184\*TOTPOP ### 4.7 Non-motorized Attraction Trip Model The non-motorized trip model on the attraction trip end is estimated similarly to the non-motorized trip model on the production trip end. For area types 3-6, a fixed percentage of non-motorized trips is assumed for each area type as shown in Table 29. For area types 1 and 2, the non-motorized trips are predicted as a function of the land use and walkability factors. The models are split by trip purpose into HBW, HBS/HBO/NHO, and NHW. However, since there are too few HBW non-motorized trip attractions, a fixed percentage of 4.87% is assumed. The HBS/HBO/NHO and NHW models are shown in Table 30 and Table 31. <sup>&</sup>lt;sup>32</sup> Mary Martchouk to Mark Moran, "Development of Trip Attraction Models," Memorandum, September 14, 2010. Table 29 Attraction End Non-Motorized Trip Percentages for Area Types 3-6 | Area Type | HBW | HBS | НВО | NHW | NHO | Total | |-----------|-------|-------|-------|-------|-------|-------| | 3 | 1.71% | 1.48% | 6.19% | 4.59% | 4.26% | 3.87% | | 4 | 2.33% | 4.14% | 9.28% | 1.95% | 3.87% | 6.42% | | 5 | 0.77% | 1.45% | 5.67% | 2.16% | 3.19% | 3.67% | | 6 | 1.41% | 0.74% | 5.28% | 3.46% | 1.23% | 3.42% | Table 30 HBS/HBO/NHO Non-Motorized Attraction Trip Model | Variable | Definition | Coefficient | Std. Error | T- stat. | P-value | Avg. Value | |-------------------------|---------------------------------------------------------|-------------|------------|----------|---------|------------| | Constant | | -0.0157 | 0.00953 | -1.647 | 0.0995 | | | POPDEN10 | One-mile floating population density (persons/sq. mile) | 1.08E-05 | 1.18E-04 | 9.203 | 0 | 8612 | | BLKDEN05 | Street block density (blocks/sq. mile) | 0.001294 | 0.000125 | 10.35 | 0 | 68.87 | | Adjusted R <sup>2</sup> | | 0.37 | | | | | | Number of 0 | Observations | 822 | | | | | **Table 31 NHW Non-Motorized Attraction Trip Model** | | | | | | | 1 | |-------------------------|-----------------------------------------------------------|-------------|------------|----------|---------|------------| | Variable | Definition | Coefficient | Std. Error | T- stat. | P-value | Avg. Value | | Constant | | -0.00383 | 0.012245 | -0.312 | 0.7547 | | | POPDEN10 | One-mile floating population density (persons/sq. mile) | 5.41E-06 | 1.48E-04 | 3.665 | 0.0002 | 8769 | | EMPDEN10 | One-mile floating employment density (employees/sq. mile) | 5.34E-06 | 2.30E-05 | 23.196 | 0 | 18003 | | BLKDEN05 | Street block density (blocks/sq. mile) | 0.001217 | 0.000165 | 7.382 | 0 | 70.43 | | Adjusted R <sup>2</sup> | | 0.57 | | | | | | Number of Observations | | 756 | | | | | # 4.8 Home-based Trip Attraction Income Disaggregation Model The Version 2.3 trip distribution and mode choice models are applied by income level for the home-based trip purposes. Trip production stratification by income is straightforward since trip productions are developed by income, along with size and vehicle availability levels. However, the trip attraction model calculates total trip attractions for each TAZ, and so, a technique is necessary for apportioning the total attractions among the four income levels, for each home-based purpose. The approach for apportioning trip attractions by income level is one that assumes that the zonal income distribution is not substantially different from the regional income distribution. The approach does, however, allow for the income variation by area type which is an important consideration. Ideally, it would be desirable to know the type of employment in each TAZ as a basis for the distributing HBW attractions by income, or the type of retail employment as a basis for distributing HBS attractions by income. Unfortunately, this type of information is not currently available as an input to the travel model and cannot be considered. The income distribution of HBW, HBS, and HBO trip attractions by area type is shown on Table 32, Table 33, and Table 34, respectively. These tables were summarized from the 2007/08 HTS. Table 32 indicates that 12.95% of regional attractions are comprised of income level 1 attractions. Table 32 also indicates that the regional proportion varies somewhat by area type. For example, the proportion of income level 1 attractions in area type 1 (high density urban) is about 9.6% of all attractions in area type 1, and this differential is reflected in the ratios shown at the bottom of Table 32 (the ratio of 9.4% to 12.95% is 0.74). This information will be used to perform the apportioning of total motorized attractions by income level. In application, the technique is will be performed for each purpose as follows: Total motorized attractions will be computed for a TAZ Equation 3 Trip Attraction by Income Level The TAZ level trip attractions will be calculated by income level, by purpose, using the following equation: Attractions(L) = Total Attractions \* Regional Pct(L) \* Ratio (L,AT) where: Attractions(L) = income level L trip attractions Total Attractions = Total trip attractions Regional Pct(L) = Regional percent of trip attractions of income L Ratio (L,T) = Ratio of area type T pct. of income L attractions to the regional pct. The income-based attractions computed in step 2 will be normalized to the step 1 total The regional income percentage and the area type-based ratios for each HB purpose are read into the trip generation program as a parameter table (or a "lookup table"). After all TAZs have been processed, the zonal trip attractions in each income group are scaled to match the computed trip production totals. This method assures that the income distribution of attractions within area types will agree with that of the 2007/08 HTS. It is assumed that this distribution will remain stable over time. Table 32 HBW Motorized Trip Attractions by Area Type and Income | Area Type | Income1 | Income2 | Income3 | Income4 | Total | | |--------------|----------------|----------------|---------------|--------------|-----------|--| | 1 | 80,191 | 241,965 | 287,102 | 222,871 | 832,129 | | | 2 | 101,088 | 288,627 | 309,459 | 204,419 | 903,593 | | | 3 | 147,866 | 350,939 | 345,579 | 195,381 | 1,039,764 | | | 4 | 30,640 | 67,420 | 44,367 | 28,069 | 170,496 | | | 5 | 61,816 | 139,199 | 133,200 | 49,754 | 383,969 | | | 6 | 34,570 | 73,482 | 63,813 | 19,652 | 191,517 | | | Total | 456,170 | 1,161,633 | 1,183,521 | 720,146 | 3,521,469 | | | Income Dis | tribution of H | BW Trip Attı | actions by A | rea Type | | | | Area Type | Income1 | Income2 | Income3 | Income4 | Total | | | 1 | 9.64% | 29.08% | 34.50% | 26.78% | 100.00% | | | 2 | 11.19% | 31.94% | 34.25% | 22.62% | 100.00% | | | 3 | 14.22% | 33.75% | 33.24% | 18.79% | 100.00% | | | 4 | 17.97% | 39.54% | 26.02% | 16.46% | 100.00% | | | 5 | 16.10% | 36.25% | 34.69% | 12.96% | 100.00% | | | 6 | 18.05% | 38.37% | 33.32% | 10.26% | 100.00% | | | Total | 12.95% | 32.99% | 33.61% | 20.45% | 100.00% | | | Ratio of Are | ea Type Incon | ne Distributio | on to the Reg | gional Distr | ibution | | | Area Type | Income1 | Income2 | Income3 | Income4 | | | | 1 | 0.7439 | 0.8815 | 1.0266 | 1.3097 | | | | 2 | 0.8636 | 0.9683 | 1.0190 | 1.1062 | | | | 3 | 1.0978 | 1.0232 | 0.9889 | 0.9189 | | | | 4 | 1.3873 | 1.1988 | 0.7743 | 0.8050 | | | | 5 | 1.2428 | 1.0990 | 1.0322 | 0.6336 | | | | 6 | 1.3935 | 1.1631 | 0.9914 | 0.5018 | | | Source: 2007/2008 HTS Table 33 HBS Motorized Trip Attractions by Area Type and Income | rable 33 1123 Motorized Trip Attractions by Area Type and income | | | | | | | | |------------------------------------------------------------------|---------------------------------------------------------------------|--------------|-------------|-----------|-----------|--|--| | Area Type | Income1 | Income2 | Income3 | Income4 | Total | | | | 1 | 20,757 | 42,349 | 37,159 | 27,709 | 127,974 | | | | 2 | 95,882 | 191,413 | 204,988 | 128,509 | 620,791 | | | | 3 | 165,345 | 381,588 | 368,510 | 159,232 | 1,074,675 | | | | 4 | 56,739 | 117,664 | 112,012 | 58,191 | 344,607 | | | | 5 | 72,449 | 211,873 | 201,293 | 60,035 | 545,650 | | | | 6 | 30,362 | 54,583 | 60,979 | 22,475 | 168,398 | | | | Total | 441,533 | 999,471 | 984,940 | 456,151 | 2,882,095 | | | | Income Dist | tribution of H | BS Trip Attı | ractions by | Area Type | | | | | Area Type | Income1 | Income2 | Income3 | Income4 | Total | | | | 1 | 16.22% | 33.09% | 29.04% | 21.65% | 100.00% | | | | 2 | 15.45% | 30.83% | 33.02% | 20.70% | 100.00% | | | | 3 | 15.39% | 35.51% | 34.29% | 14.82% | 100.00% | | | | 4 | 16.46% | 34.14% | 32.50% | 16.89% | 100.00% | | | | 5 | 13.28% | 38.83% | 36.89% | 11.00% | 100.00% | | | | 6 | 18.03% | 32.41% | 36.21% | 13.35% | 100.00% | | | | Total | 15.32% | 34.68% | 34.17% | 15.83% | 100.00% | | | | Ratio of Are | Ratio of Area Type Income Distribution to the Regional Distribution | | | | | | | | Area Type | Income1 | Income2 | Income3 | Income4 | | | | | 1 | 1.0587 | 0.9542 | 0.8499 | 1.3677 | | | | | 2 | 1.0085 | 0.8890 | 0.9663 | 1.3076 | | | | | 3 | 1.0046 | 1.0239 | 1.0035 | 0.9362 | | | | | ) 3 | 1.0040 | 1.0233 | 1.0055 | 0.5502 | | | | | 3<br>4 | 1.0744 | 0.9844 | 0.9511 | 1.0670 | | | | 1.0796 1.0597 0.6949 0.8433 Source: 2007/2008 HTS 0.8668 1.1769 1.1197 0.9345 5 6 Table 34 HBO Motorized Trip Attractions by Area Type and Income | Area Type | Income1 | Income2 | Income3 | Income4 | Total | | | | |---------------------------------------------------------------------|----------------------------------------------------------|-----------|-----------------|-----------|-----------|--|--|--| | 1 | 62,588 | 104,036 | 102,072 | 91,767 | 360,463 | | | | | 2 | 232,338 | 416,417 | 416,417 418,281 | | 1,352,736 | | | | | 3 | 207,625 | 572,863 | 552,918 | 310,960 | 1,644,367 | | | | | 4 | 136,070 | 326,709 | 315,535 | 187,180 | 965,495 | | | | | 5 | 151,018 | 504,410 | 521,081 | 241,014 | 1,417,524 | | | | | 6 | 60,220 | 235,598 | 277,858 | 106,643 | 680,319 | | | | | Total | 849,860 | 2,160,033 | 2,187,745 | 1,223,265 | 6,420,904 | | | | | Income Distr | Income Distribution of HBO Trip Attractions by Area Type | | | | | | | | | Area Type | Income1 | Income2 | Income3 | Income4 | Total | | | | | 1 | 17.36% | 28.86% | 28.32% | 25.46% | 100.00% | | | | | 2 | 17.18% | 30.78% | 30.92% | 21.12% | 100.00% | | | | | 3 | 12.63% | 34.84% | 33.62% | 18.91% | 100.00% | | | | | 4 | 14.09% | 33.84% | 32.68% | 19.39% | 100.00% | | | | | 5 | 10.65% | 35.58% | 36.76% | 17.00% | 100.00% | | | | | 6 | 8.85% | 34.63% | 40.84% | 15.68% | 100.00% | | | | | Total | 13.24% | 33.64% | 34.07% | 19.05% | 100.00% | | | | | Ratio of Area Type Income Distribution to the Regional Distribution | | | | | | | | | | Area Type | Income1 | Income2 | Income3 | Income4 | | | | | | 1 | 1.3112 | 0.8579 | 0.8312 | 1.3365 | | | | | | 2 | 1.2976 | 0.9150 | 0.9075 | 1.1087 | | | | | | 3 | 0.9539 | 1.0357 | 0.9868 | 0.9927 | | | | | | 4 | 1.0642 | 1.0059 | 0.9592 | 1.0178 | | | | | | 5 | 0.8044 | 1.0577 | 1.0790 | 0.8924 | | | | | | 6 | 0.6684 | 1.0294 | 1.1987 | 0.8231 | | | | | Source: 2007/08 HTS ### 4.9 Truck Model The origin/destination truck trip generation rates are based on area type and land activity variables as shown in Table 35. The truck trip generation model also includes provisions to remove external trucks generated because external truck travel is accounted for exogenously. The truck trip generation process also includes network checks provisions to ascertain whether or not truck access from each TAZ to the highway network is valid. There are some zonal centroids in the regional network that have a single connection to a parkway where trucks are prohibited. In these types of cases, truck trip generation is suppressed. Finally, the truck model also considers a limited number of special generator TAZs, or locations where truck traffic generation is known to be more intensive. Global trip generation adjustments are applied to the special generator TAZs. The medium truck generation is factored by 2.70 while heavy trucks are factored by 5.3. Table 35 Truck trip generation rates as a function of truck type, area type, and land use category<sup>33</sup> | | | Land Use Category | | | | | |----------------------------|-----------|-------------------|--------|------------|-------|-------| | Vehicle Type | Area Type | Office | Retail | Industrial | Other | НН | | Medium Truck | 1 (CBD) | 0.004 | 0.088 | 0.088 | 0.014 | 0.070 | | (Single Unit 6+ Tires) | 2 - 4 | 0.005 | 0.125 | 0.125 | 0.020 | 0.100 | | | 5 | 0.006 | 0.150 | 0.150 | 0.024 | 0.120 | | | 6 | 0.006 | 0.150 | 0.150 | 0.024 | 0.120 | | Heavy Truck | 1 (CBD) | 0.001 | 0.027 | 0.055 | 0.002 | 0.011 | | (All Combination Vehicles) | 2 - 4 | 0.002 | 0.039 | 0.078 | 0.003 | 0.015 | | | 5 | 0.002 | 0.043 | 0.086 | 0.003 | 0.017 | | | 6 | 0.002 | 0.043 | 0.086 | 0.003 | 0.017 | Ref: I:\ateam\docum\FY09\Version2.3\_modelDoc\_2008-07\tgcheck.xls ### 4.10 Commercial Vehicle Model The trip generation of zonal commercial vehicle trips is developed with the equation shown below:<sup>34</sup> #### **Equation 4 Trip generation of commercial vehicle trips** COM productions = (0.056\*indemp + 0.168\*offemp + 0.494\*retemp + 0.082\*othemp + 0.130\* HH)\*ATFAC (attractions = productions, by zone) where: indemp = industrial employment offemp = office employment retemp = retail employment othemp = other employment HH = households ATFAC = area type adjustment factor: | Area type | Factor | |-----------|--------| | 1 | 1.05 | | 2 | 0.90 | | 6 | 1.20 | Note: no factor is applied to area types 3-5. <sup>33</sup> William G. Allen, *Development of a Model for Truck Trips* (Windsor, South Carolina: Prepared for the Metropolitan Washington Council of Governments/National Capital Region Transportation Planning Board, January 14, 2008). <sup>&</sup>lt;sup>34</sup> Allen, Development of a Model for Commercial Vehicle Trips, 46. ### 4.11 References - Allen, William G. *Development of a Model for Truck Trips*. Windsor, South Carolina: Prepared for the Metropolitan Washington Council of Governments/National Capital Region Transportation Planning Board, January 14, 2008. - Allen, William G., Jr. *Development of a Model for Commercial Vehicle Trips*. Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, May 4, 2007. - Cambridge Systematics, Inc. *Fiscal Year 2010 Task Reports*. Final Report. National Capital Region Transportation Planning Board, November 16, 2010. - Humeida, Hamid. Memorandum to Files, Mark Moran, and Ronald Milone. "Estimation of Trip Production Model based on the 2007 Household Travel Survey." Memorandum, January 13, 2011. - ———. Memorandum to Mark Moran. "I-X Trip Extraction Sub-Model." Memorandum, January 13, 2011. - Martchouk, Mary. Memorandum to Mark S. Moran. "Area Type Definitions for Version 2.3 Travel Demand Model." Memorandum, June 16, 2010. - ———. Memorandum to Mark Moran. "Development of the Non-motorized Trip End Model." Memorandum, October 7, 2010. - ———. Memorandum to Mark Moran. "Development of Trip Attraction Models." Memorandum, September 14, 2010. - ———. Memorandum to Mark Moran. "Validation of Non-Motorized Trip Model." Memorandum, October 27, 2010. - Martin, William A., and Nancy A. McGuckin. *NCHRP Report 365, Travel Estimation Techniques for Urban Planning*. National Cooperative Highway Research Program (NCHRP). Washington, D.C.: Transportation Research Board, National Research Council, 1998. - Milone, Ronald. Memorandum to Files. "Performance of trip generation models." Memorandum, November 18, 2010. - Milone, Ronald, Hamid Humeida, Mark Moran, and Meseret Seifu. *TPB Travel Forecasting Model, Version 2.2: Specification, Validation, and User's Guide*. Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, March 1, 2008. - Milone, Ronald, Hamid Humeida, and Meseret Seifu. FY-97 Models Development Program for COG/TPB Travel Models. Draft. Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, June 30, 1997. - Parsons, Brinckerhoff, Quade & Douglas, Inc., KPMG Peat Marwick LLP, and William G., Jr. Allen. Memorandum to Metropolitan Washington Council of Governments. "Technical Assistance for 1995 Model Validation: Technical Memorandum #2: Review of 1994 Survey Files." Memorandum, January 19, 1997. - ——. Memorandum to Metropolitan Washington Council of Governments. "Technical Assistance for 1995 Model Validation: Technical Memorandum #4: Trip Generation and Time-of-Day Models." Memorandum, June 30, 1997. # **Chapter 5 Trip Distribution** The Version 2.3 trip distribution model involves a standard gravity model approach and the use of a composite (highway and transit) travel time impedance measure. The model also employs income stratification as well as special external (i.e., external-to-internal, X/I, and internal-to-external, I/X) auto and truck distribution models. The Version 2.3 trip distribution process is identical to that of Version 2.2, except that, first, the truck F-Factors have been revised, 35 and, second, the output formats of trip table have been changed from an integer format to a real number format (two-decimals). ### **5.1 Model Structure** The Version 2.3 trip distribution model is used to develop zonal trip tables corresponding to the eight basic trip purposes: - HBW, HBS, HBO, NHW, and NHO motorized person trips, - Commercial vehicle trips, and - Medium and heavy truck trips. The Version 2.3 trip distribution process consists of several different distribution models that are developed for special travel markets within the eight basic purposes. As can be seen in Table 36, there are 17 markets for internal (I-I) trips and 13 markets for external (I-X, X-I) trips, which leads to 30 trip distribution markets. **Table 36 Trip distribution markets** | Purpose/Mode | Internal (I-I) trips | External (I-X, X-I) trips | |-----------------------------|----------------------|-------------------------------------------| | HBW person | 4 income strata | 2 facility types: interstate and arterial | | HBS person | 4 income strata | 2 facility types: interstate and arterial | | HBO person | 4 income strata | 2 facility types: interstate and arterial | | NHW person | 1 (non-stratified) | 2 facility types: interstate and arterial | | NHO person | 1 (non-stratified) | 2 facility types: interstate and arterial | | Commercial vehicles | 1 (non-stratified) | 1 (non-stratified) | | Medium truck | 1 (non-stratified) | 1 (non-stratified) | | Heavy truck | 1 (non-stratified) | 1 (non-stratified) | | Total internal/ext. markets | 17 | 13 | | Total markets modeled | | 30 | For the current calibration effort, 14 of the 30 trip distribution markets have been re-calibrated using the observed motorized trips from the 2007/2008 Household Travel Survey data and year 2007 highway - <sup>&</sup>lt;sup>35</sup> William G. Allen, *Development of a Model for Truck Trips* (Windsor, South Carolina: Prepared for the Metropolitan Washington Council of Governments/National Capital Region Transportation Planning Board, January 14, 2008). and transit networks (See Table 37).<sup>36</sup> These 14 markets account for the vast majority of motorized travel in the region. The external distribution models were not re-estimated as no external survey data has been recently collected for these markets. Similarly, the internal trip distribution markets for commercial vehicles and trucks were not re-estimated. Consequently, the "legacy" friction factor (Ffactor) curves used in the Version 2.2 model will be maintained for the other 16 markets. The commercial vehicle and truck models calibrated in 2008 on the 2,191-TAZ area system were preserved and adapted to operate on the 3,722-TAZ area system.<sup>37</sup> Table 37 Trip distribution markets that were re-calibrated | Purpose/Mode | Internal Person Models | | | |---------------|------------------------|--|--| | HBW person | 4 Income Strata | | | | HBS person | 4 Income Strata | | | | HBO person | 4 Income Strata | | | | NHW person | 1 (non-stratified) | | | | NHO person | 1 (non-stratified) | | | | Total Markets | 14 | | | ### **5.2 Internal Motorized Person Models** The Version 2.3 trip distribution model includes income stratification for the home-based trip purposes. The model also makes use of a composite time formulation involving both highway and transit travel times. The composite time formulation is desirable since many corridors in the Washington region are well served by transit and the consideration of highway time only (as has been used in some previous model versions) has the potential to understate accessibility. The definition of the composite time is: <sup>&</sup>lt;sup>36</sup> Ron Milone to Files, "Version 2.3 Trip Distribution Calibration," Memorandum, January 2, 2011. <sup>&</sup>lt;sup>37</sup> Ronald Milone to Hamid Humeida and Mark Moran, "Conversion Truck Modeling Inputs for the 3722 System," Memorandum, March 26, 2010; Hamid Humeida to Files, "Development of an equivalency file to convert truck modeling inputs from the 2191 TAZ system to the new 3722 TAZ system," Memorandum, April 16, 2010. #### **Equation 5 Composite time** $$CT_i = \frac{1}{\frac{1}{HT + TollT_i} + \frac{P_i}{TT}}$$ where $CT_i$ = Composite time for income level i HT =Congested highway time (minutes), including terminal time $TollT_i$ = Time equivalent (minutes) of tolls associated with the minimum-time path for income i $P_i$ = Regional transit share of income i for the trip purpose TT = Metrorail-related transit time (min.), including in-vehicle and out-of-veh. time components The highway and transit times used in the formulation vary by purpose. AM peak highway/transit times are used for the HBW purpose and midday highway/transit times are used for the remaining HBS, HBO, NHW and NHO purposes. The highway time (HT) includes both over-the-network times as well as terminal times, e.g., parking and retrieving a vehicle, which vary from 1 to 5 minutes depending on the area type of the origin/destination. Since the trip distribution model not only distributes trips between zones, but also determines the number of trips that stay within each zone, the average travel time for intra-zonal trips must be estimated. The intra-zonal highway times have been set to 85% of the minimum inter-zonal time. The previous assumption (50% of the minimum intra-zonal time) was found to yield an overestimation in intra-zonal travel and so the percentage was increased to better approximate the observed intra-zonal proportions. The regional share of transit trips made by each income group (P<sub>i</sub>) is shown in Table 38 as percents. The table indicates that work transit shares vary by income, from 0.1483 to 0.1851. The transit percentages for the remaining purposes vary by income group from 0.0104 to 0.1239. Since these values are relatively small, the effect of highway times will be generally more pronounced on the overall composite time function compared to the effect of transit times for most interchanges. Table 38 Internal Motorized Trips and Transit Percentages by Purpose and Mode | | | Income Level | | | | | |---------|--------------------|--------------|-----------|-----------|-----------|------------| | | | 50k - 100k - | | | | | | Purpose | Mode | <50k | 100k | 150k | >150k | Total | | HBW | Transit | 84,443 | 181,611 | 199,065 | 106,767 | 571,886 | | | Auto Person & | | | | | | | | Transit | 456,170 | 1,161,633 | 1,183,520 | 720,145 | 3,521,468 | | | Transit Percentage | 18.51% | 15.63% | 16.82% | 14.83% | 16.24% | | HBS | Transit | 35,553 | 18,377 | 11,572 | 4,748 | 70,250 | | | Auto Person & | | | | | | | | Transit | 441,532 | 999,471 | 984,941 | 456,151 | 2,882,095 | | | Transit Percentage | 8.05% | 1.84% | 1.17% | 1.04% | 2.44% | | НВО | Transit | 105,308 | 49,816 | 41,030 | 19,324 | 215,478 | | | Auto Person & | | | | | | | | Transit | 849,860 | 2,160,034 | | 1,223,266 | 6,420,905 | | | Transit Percentage | 12.39% | 2.31% | 1.88% | 1.58% | 3.36% | | NHW | Transit | 20,858 | 38,214 | 51,402 | 29,110 | 139,584 | | | Auto Person & | | | | | | | | Transit | 183,863 | 549,589 | 557,211 | 320,450 | 1,611,113 | | | Transit Percentage | 11.34% | 6.95% | 9.22% | 9.08% | 8.66% | | NHO | Transit | 35,845 | 10,999 | 12,305 | 6,216 | 65,365 | | | Auto Person & | | | | | | | | Transit | 478,859 | 1,050,166 | 950,672 | 437,335 | 2,917,032 | | | Transit Percentage | 7.49% | 1.05% | 1.29% | 1.42% | 2.24% | | All | Transit | 282,007 | 299,017 | 315,374 | 166,165 | 1,062,563 | | | Auto Person & | | | | | | | | Transit | 2,410,284 | 5,920,893 | 5,864,089 | 3,157,347 | 17,352,613 | | | Transit Percentage | 11.70% | 5.05% | 5.38% | 5.26% | 6.12% | Source: 2007/08 HTS, Ref: 2007\_HTS\_Trips\_by\_Mode&Income.xlsx Some points can be made regarding the composite time function. First, for interchanges that are not served by transit, the composite time function reflects highway time. Second, the presence of transit service will generally contribute a small benefit to the travel time, since the regional transit shares are relatively small. Nonetheless, the composite time function will still reflect some travel time benefit with the presence of competitive transit service. This benefit would not be captured with an impedance measure based on highway time alone. The highway time in the composite time function consists of both over-the-network time combined with terminal times (both production and attraction-end times). The highway time also includes toll values accumulated along the path that have been transformed into equivalent minutes. The time-cost equivalents are provided by income level and purpose, and are shown on Table 39. These equivalents were developed using 2007 ACS income data and are described in greater detail in Chapter 2 ("Set-Up Programs and Highway Network Building") of the Version 2.3 mode user's guide. The basis of the TollT<sub>i</sub> term calculation is specified in Table 39. The table indicates the average time valuation (minutes per 2007 dollar) assigned to a toll value by income level and trip type (in 2007 dollars). The table indicates, for example, that a \$1.00 toll equates to 8.7 minutes of travel time for a traveler in income level 1. More generally, the table indicates that travelers commuting to work are less sensitive to tolls than non-work-bound travelers because the time valuation of commuters is relatively high. The table also reflects the intuitive generalization that lower income travelers are more sensitive to tolls than the higher income travelers. Table 40 indicates assumed average time valuations by time period and mode. The values shown on Table 40 are not used in the distribution step, but will be used in the traffic assignment process, where income is not considered but highway mode is considered. Table 39 Time Valuation (Minutes/2007\$) by Purpose and Income Level | III I a a sua a Constilla | Mid Daint of | Havely Date | 2007 Time Valuation<br>(Minutes per Dollar) | | |---------------------------|-----------------|----------------|---------------------------------------------|--------------| | HH Income Quartile | Mid-Point of | Hourly Rate | Work Trips | Non-work | | Range (1) | HH Income Range | per Worker (2) | (75% V.O.T.) | (50% V.O.T.) | | | | | | | | \$ 0 - \$ 50,000 | \$25,000 | \$9.23 | 8.7 | 13.0 | | \$ 50,000 - \$ 100,000 | \$75,000 | \$27.70 | 2.9 | 4.3 | | \$100,000 - \$150,000 | \$125,000 | \$46.17 | 1.7 | 2.6 | | \$150,000 + | \$175,000 | \$64.64 | 1.2 | 1.9 | #### Notes: <sup>(1)</sup> Income groups based on 2007 ACS-based quartiles <sup>(2)</sup> Hourly rate based on 1,920 annual hours/worker \* 1.41 workers/HH = 2,707 hrs/HH <sup>(3)</sup> Median 2007 Annual Income for modeled area is \$84,280 Table 40 Time valuation (minutes per year 2007 dollar) by vehicle type and time period, used in traffic assignment | | | Equivalent Minutes per Dollar | | | | | |--------------------------------|---------|-------------------------------|---------|-------|--|--| | Mode | AM Peak | Midday | PM Peak | Night | | | | SOV | 2.5 | 3.0 | 3.0 | 3.0 | | | | HOV 2-occupant auto | 1.5 | 4.0 | 2.0 | 4.0 | | | | HOV 3+occupant auto | 1.0 | 4.0 | 1.0 | 4.0 | | | | Light duty commercial vehicle | 2.0 | 2.0 | 2.0 | 2.0 | | | | Truck | 2.0 | 2.0 | 2.0 | 2.0 | | | | Auto serving airport passenger | 2.0 | 2.0 | 2.0 | 2.0 | | | Time\_Valuation\_V2.3.xls ### 5.3 External Auto Person, commercial vehicle, and truck models The external trip distribution models segment markets by purpose and facility. Facilities are distinguished as interstates (or interstate-like facilities) and arterial facilities. The rationale behind this distinction is that arterial facilities tend to serve more localized traffic associated with shorter trip lengths while interstate travel is associated with longer trip lengths. In contrast, the external commercial vehicle and truck models (medium and heavy) are not segmented by facility types. The highway time is used as the impedance measure in the distribution of external trips. AM peak time is used for the HBW purpose and midday times are used for all remaining purposes. The external calibration does not make use of time penalties added into the impedance files. However, the impedances are altered in that extremely large time values were inserted into internal and through (I-I, X-X) interchanges to preclude those types of interchanges from occurring in the trip distribution process. # **5.4 Friction Factor Summary** The process of calibrating F-factors for each purpose and income strata was established after the observed trip files and network files were prepared. Developing F-factors is a trial-and-error process. Test F-factors are used in a gravity model (GM) execution and then subsequently adjusted based on a comparison of observed and estimated trip lengths made for each one-minute increment of travel time. The calculation used to adjust the F-factor is as follows: $F_{adjusted} = F_{used} * Observed Pct./Estimated Pct.$ where $F_{adjusted}$ = Adjusted F-factor to be used in a future GM execution F<sub>used</sub> = Tested F-factor used in a previous GM execution Observed Pct. = Percentage of observed trips observed Estimated Pct. = Percentage of estimated trips resulting from the use of the test F-factors The resulting adjusted F-curve typically appears as a "saw-tooth" looking function because the observed trip percent is subject to varying degrees of sampling error from one impedance unit to the next. An irregular function is not desirable for modeling. Consequently, a nonlinear curve fitting is used for "smoothing" the adjusted F-factor curve. The Gamma function was selected for smoothing the adjusted F-factor function. The form of the function is: $$F_i = A \times I^B \times e^{-GI}$$ where $F_i$ = "Smoothed", adjusted F-factor at impedance unit I I = travel impedance (usually time in minutes) A, B, G = Gamma function coefficients to be statistically estimated *e* = Euler's number; base of natural logarithms The resulting Gamma coefficients are listed on Table 41. Friction factors are also shown graphically in Figure 9, Figure 10, Figure 11, and Figure 12. Table 41 Estimated Gamma Distribution Values by Purpose and Income Strata | Purpose | Strata | Beta | Gamma | |---------|----------|----------|----------| | HBW | Income 1 | -0.95818 | -0.04622 | | | Income 2 | -1.41425 | -0.02571 | | | Income 3 | -1.49461 | -0.01920 | | | Income 4 | -1.88024 | -0.00835 | | HBS | Income 1 | -2.46334 | -0.07853 | | | Income 2 | -1.33371 | -0.12170 | | | Income 3 | -1.99113 | -0.09033 | | | Income 4 | -2.91461 | -0.06704 | | НВО | Income 1 | -1.83692 | -0.09635 | | | Income 2 | -1.92946 | -0.07128 | | | Income 3 | -1.72297 | -0.08637 | | | Income 4 | -2.44221 | -0.05837 | | NHW | | -2.34915 | -0.01478 | | NHO | | -1.77486 | -0.07430 | **Figure 9 HBW Friction Factors** **Figure 10 HBS Friction Factors** **Figure 11 HBO Friction Factors** **Figure 12 NHB Friction Factors** Table 42 presents a summary of estimated and observed trip lengths and intra-zonal percentages resulting from the calibrated F-factors, which are reasonable. Table 42 Regional Estimated and Observed Trip lengths and Intra-zonal Percentages | | Income | HTS | Trip Lengt | th in Compo | osite mins. | Intrazo | nal Perce | ntage | |---------|--------|-----------|------------|-------------|-------------|---------|-----------|---------| | Purpose | Level | Trips | Est. | Obs. | EstObs. | Est. | Obs. | EstObs. | | | | | | | | | | | | HBW | 1 | 456,200 | 33.69 | 35.58 | -1.89 | 3.12 | 3.22 | -0.10 | | | 2 | 1,161,600 | 46.54 | 47.21 | -0.67 | 3.00 | 2.92 | 0.08 | | | 3 | 1,183,500 | 52.47 | 51.33 | 1.14 | 2.02 | 1.97 | 0.05 | | | 4 | 720,100 | 53.57 | 52.21 | 1.36 | 1.41 | 1.62 | -0.21 | | HBS | 1 | 441,500 | 16.56 | 16.81 | -0.25 | 9.13 | 9.33 | -0.20 | | | 2 | 999,500 | 16.82 | 17.17 | -0.35 | 8.98 | 9.84 | -0.86 | | | 3 | 984,900 | 17.30 | 17.70 | -0.40 | 7.88 | 7.68 | 0.20 | | | 4 | 456,200 | 16.83 | 17.13 | -0.30 | 6.37 | 5.19 | 1.18 | | НВО | 1 | 849,900 | 16.73 | 18.31 | -1.58 | 9.36 | 7.90 | 1.46 | | | 2 | 2,160,000 | 17.61 | 17.86 | -0.25 | 11.60 | 11.06 | 0.54 | | | 3 | 2,187,700 | 17.15 | 17.77 | -0.62 | 9.92 | 12.15 | -2.23 | | | 4 | 1,223,300 | 17.00 | 17.92 | -0.92 | 9.56 | 9.12 | 0.44 | | NHW | (n/a) | 1,611,100 | 24.63 | 23.58 | 1.05 | 10.63 | 7.44 | 3.19 | | NHO | (n/a) | 2,917,000 | 17.13 | 17.50 | -0.37 | 17.33 | 14.61 | 2.72 | The calibration procedure is described in more detail in a recent memorandum,<sup>38</sup> which includes triplength frequency distributions comparing estimated and observed trips. ## 5.5 References Allen, William G. *Development of a Model for Truck Trips*. Windsor, South Carolina: Prepared for the Metropolitan Washington Council of Governments/National Capital Region Transportation Planning Board, January 14, 2008. Humeida, Hamid. Memorandum to Files. "Development of an equivalency file to convert truck modeling inputs from the 2191 TAZ system to the new 3722 TAZ system." Memorandum, April 16, 2010. Milone, Ron. Memorandum to Files. "Version 2.3 Trip Distribution Calibration." Memorandum, January 2, 2011. Milone, Ronald. Memorandum to Hamid Humeida and Mark Moran. "Conversion Truck Modeling Inputs for the 3722 System." Memorandum, March 26, 2010. <sup>&</sup>lt;sup>38</sup> Milone to Files, "Version 2.3 Trip Distribution Calibration." # **Chapter 6 Mode choice** ### 6.1 Overview A mode choice model is used to apportion motorized person trips by travel mode. The mode choice model in the TPB Version 2.3 travel model on the 3,722-TAZ area system is a 15-choice, nested-logit mode choice (NLMC) model. The model includes three auto modes (drive alone, shared ride 2-person, and shared ride 3+person) and four transit modes (commuter rail, all bus, all Metrorail, and combined bus/Metrorail) by three modes of access to transit (park and ride, kiss and ride, and walk), as shown in Figure 13. Figure 13 Nesting structure of the nested-logit mode choice model in the Version 2.3 travel model The definition of high-occupancy vehicle (HOV) trips has changed, compared to the definition that was used in Version 2.2 and before. Previously, HOV trips coming out of the mode choice model referred to only those that use HOV facilities for a substantial portion of their trip. Similarly, in previous models, the definition of low-occupancy vehicle (LOV) included both drive-alone and carpools (provided the carpools did not use a preferential HOV facility). By contrast, in the Version 2.3 NLMC model, the term LOV refers to only the drive-alone trips. Similarly, HOV refers to all shared-ride 2 (2-person carpools) and shared-ride 3 (3+ person carpools), irrespective of whether they use an HOV facility or not. In terms of access to transit, park-and-ride (PNR) access means driving to transit and parking a motor vehicle at the PNR lot, for the purpose of boarding a transit vehicle at the transit stop. Similarly, kiss-and-ride (KNR) access, also known as "ride to transit," means accessing transit by driving in cases where one either 1) is dropped-off/picked-up or 2) rides with a PNR driver. Motorized person trips are those that occur in motorized vehicles, such as cars, trains, buses, and subways. Motorized trips exclude walk and bike trips. However, as noted above, walking is represented in the model as one of the three access modes to transit. The NLMC model is applied at the zone-to-zone interchange level after trip distribution and before highway and transit assignment (i.e., within what is known as the "speed feedback loop" of the four-step model). The model is applied using a Fortran program named AEMS (AECOM mode split modeling package).<sup>39</sup> AEMS is completely parametric, i.e., all characteristics for any given mode choice model are specified in a control file. Characteristics represented in the control file include nesting structure, market segmentation, utility/disutility functions, and the values of coefficients and constants. AEMS can handle models with any nesting structure and up to 15 choices.<sup>40</sup> AEMS and its control files are described in more detail in the Version 2.3 travel model user's guide. There are five NLMC models – one for each trip purpose: home-based work (HBW), home-based shop (HBS), home-based other (HBO), non-home-based work (NHW), and non-home-based other (NHO). Each of the five models shares the same nesting structure (shown in Figure 13), but each has its own set of coefficients and constants, discussed later in this chapter. In model application, the inputs to the TPB Version 2.3 nested logit mode choice model are - Motorized person trips, segmented by four income levels and 20 geographic market segments, in production/attraction format (these are output from the trip distribution step); - Highway "skims" (i.e., zone-to-zone travel times and costs), which come from the highway path building and skimming process; - Transit "skims," which come from the transit path building and skimming process; and - Zonal attributes, such as parking cost, terminal time (i.e., the time to park and "unpark" a car), and the percent of each zone that is within walking distance to transit (where two walking distances are defined: short and long). The HBW mode choice model was calibrated with and is applied with transit and highway skims corresponding to the AM peak period. The non work (i.e., HBS, HBO, NHW, and NHO) mode choice models were calibrated with and are applied with transit and highway skims corresponding to the midday period. Two of the most significant changes between the NLMC model and its predecessor (the sequential multinomial logit, or SMNL, mode choice model found in the Version 2.2 travel model) are that the NLMC model handles 15 choices (up from five, previously) and the NLMC model provides sufficiently detailed output, such that a transit assignment can be performed. Although not explicitly listed as one of the four transit travel modes, the NLMC model can also model light rail transit (LRT), bus rapid transit (BRT), and street car. <sup>41</sup> A description of how LRT, BRT, and streetcar are represented in the model can be found in the mode choice chapter of the Version 2.3 travel model user's guide (Chapter 11). Other significant changes, compared to past TPB mode choice models, include the new definition of HOV trips (mentioned earlier), revised methods for coding access to transit (both walk and drive), revised procedures for calculating the percent of each zone within walking distance to transit, and more detailed transit path-building procedures -- transit paths by transit \_ <sup>&</sup>lt;sup>39</sup> AECOM Consult, Inc., *AECOM Consult Mode Choice Computation Programs, AEMS, Users Guide*, Draft report (Fairfax, Virginia: AECOM Consult, Inc., April 5, 2005). <sup>&</sup>lt;sup>40</sup> A newer version of AEMS is now available that can handle up to 18 choices. <sup>&</sup>lt;sup>41</sup> Manish Jain to Ronald Milone and Mark Moran, "MWCOG network coding guide for Nested Logit Model," Memorandum, February 2008, 10. sub-mode and access mode, yielding 11 paths for each of the two time-of-day periods (AM peak period and midday period). # 6.2 Background The nested-logit mode choice model in the TPB Version 2.3 travel model nested-logit mode choice model is a descendant of an earlier nested-logit model developed by AECOM Consult, Inc. for the Washington Metropolitan Area Transit Authority (WMATA). The TPB nested-logit mode choice model and its predecessor, the AECOM/WMATA nested logit mode choice model, share many traits, but also have some key differences. Table 43 summarizes the key differences between these two models. More information can be found on pages 6-2 to 6-8 of the earlier Version 2.3 model documentation.<sup>42</sup> <sup>&</sup>lt;sup>42</sup> Ronald Milone et al., *TPB Travel Forecasting Model, Version 2.3: Specification, Validation, and User's Guide,* Draft report (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, June 30, 2008), 6-2 to 6-8. Table 43 Comparison of characteristics found in both the AECOM/WMATA NLMC model and the TPB NLMC model | Item | AECOM/WMATA NLMC | TPB NLMC | |------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------| | Travel modes | 15 (3 auto, 12 transit) | Same | | Nesting structure | 3 levels, including auto by occupancy and transit by | Same | | | access mode | | | Model application code | AEMS Fortran program | Same | | How the mode choice | As a post process to the regional travel model | Within the speed feedback loop of the regional travel | | model is applied | | model (i.e., after trip distribution and before traffic | | | | assignment) | | Trip purposes | 3 (HBW, HBS/O, and NHB) | 5 (HBW, HBS, HBO, NHW, and NHO) | | Types of travel skims | 2 (AM peak period and off peak period) | 2 (AM peak period and <b>midday</b> period) | | Number of mode choice | 6 (HBW AM, HBW OP, HBS/O AM, HBS/O OP, NHB AM, | 5 (HBW AM, HBS MD, HBO MD, NHW MD, and NHO | | models | and NHB OP) | MD) | | Geographic market | 7 superdistricts; 20 production/attraction interchanges | Same | | segmentation | | | | Economic market | Households stratified by income (four levels) | Same | | segmentation | | | | Revised transit access | <ul> <li>Additional information to describe transit</li> </ul> | Same, except the item in the fourth bullet has not been | | coding | stations; | adopted: | | | <ul> <li>A new way to code sidewalks and walk-</li> </ul> | Additional coding detail around Metrorail | | | access-to-transit links; | stations with "park and ride" access; | | | A new way to code drive-access-to-transit | | | | links; | | | | Additional coding detail around Metrorail | | | | stations with "park and ride" access; and | | | | Revised procedures for calculating the | | | | percent of each zone that is within walking | | | Colling III | distance to transit | 2007/2000 | | Calibration year | 2002 | 2007/2008 | | Data used for<br>calibration | 2002 WMATA Metrorail survey; 2000 Regional bus | 2008 Metrorail Survey; 2008 Regional Bus Survey, | | Campration | survey; Boarding counts for express bus and commuter rail | supplemented by the Fairfax Connector Bus Survey;<br>2007-2008 On-Board Survey of Maryland Transit | | | Idii | Administration (MTA) Riders; 2005 Virginia Railway | | | | Express (VRE) Passenger Survey | | Calibration approach | Calibrated by AECOM for 6 models applied as a post | Re-calibrated by TPB staff for 5 models. Applied as an | | canoration approach | process | integral part of the speed feedback loop | | Calibration programs | Used the Fortran program CALIBMS to automate the | Same | | Compression programs | process of calculating nesting constants | Sume | | | process or calculating heating constants | | ## 6.3 Detailed description of the TPB nested-logit mode choice model The NLMC model in TPB's Version 2.3 travel model can be thought of as consisting of four parts, each of which is described below: - 1. A set of available modes/choices (15) and a nesting structure; - 2. Rules for market segmentation - 3. A set of utility equations, which include time and cost coefficients and also income constants; - 4. A set of nesting *coefficients* (a.k.a. logsum parameters or $\Phi$ ) and nesting *constants* (NC). ## 6.3.1 Choice set and nesting structure The choice set and nesting structure of the NLMC model in the Version 2.3 travel model was already described in section 6.1 on page 67. ## 6.3.2 Market segmentation The TPB NLMC model is market segmented by household income level, geography, and by access to transit. This three-way market segmentation scheme was developed by AECOM Consult, Inc. for the AECOM/WMATA NLMC model and was retained by TPB staff. The income segmentation is the same that is used for the first two steps of the travel model (i.e., trip generation and trip distribution), namely households are segmented by the four household income levels. As for geographic market segmentation, AECOM Consult, Inc. divided the modeled area into seven superdistricts: <sup>43</sup> - 1. DC core - 2. VA core - 3. DC urban - 4. MD urban - 5. VA urban - 6. MD suburban - 7. VA suburban These seven superdistricts are also shown in Figure 14. Although seven market areas could lead to 49 (= 7 x 7) geographic interchanges, AECOM Consult, Inc. grouped them into the 20 paired production/attraction areas shown in Table 45. Another way to view the 20 geographic market segments is shown in Table 46. ### Table 44 Production and attraction market segments used in the TPB Version 2.3 NLMC model #### **Production Areas** Attraction Areas 1. DC Core / Urban 1. DC Core 2. MD Urban 2. VA Core 3. VA Core / Urban 3. Urban 4. MD Suburban 4. Suburban 5. VA Suburban $Ref: \ O:\\ \\ \\ model\_dev\\ \\ nest\_log\\ \\ marketSeg.xls$ <sup>&</sup>lt;sup>43</sup> Bill Woodford, "Development of Revised Transit Components of Washington Regional Demand Forecasting Model" (presented at the Transit Modeling Meeting, held at the Metropolitan Washington Council of Governments, Washington, D.C., December 1, 2004), 30. Figure 14 Seven superdistricts used in the Version 2.3 nested-logit mode choice model $Ref: \ O:\\ model\_dev\\ nest\_log\\ marketSegment2\_rejoined.mxd, \\ O:\\ model\_dev\\ nest\_log\\ marketSegment2\_rejoined\_forBlackAndWhite.emf$ Table 45 20 geographic market segments used in the TPB nested-logit mode choice model | Market | Prod | Attr | Production | Attraction | |---------|----------|----------|---------------|------------------| | Seg No. | Superdis | Superdis | Area | Area | | 1 | 1,3 | 1 | DC | DC core | | 2 | 1,3 | 2 | DC | VA core | | 3 | 1,3 | 3,4,5 | DC | Urban DC, MD, VA | | 4 | 1,3 | 6,7 | DC | Suburban MD, VA | | 5 | 4 | 1 | MD urban | DC core | | 6 | 4 | 2 | MD urban | VA core | | 7 | 4 | 3,4,5 | MD urban | Urban DC, MD, VA | | 8 | 4 | 6,7 | MD urban | Suburban MD, VA | | 9 | 2,5 | 1 | VA core/urban | DC core | | 10 | 2,5 | 2 | VA core/urban | VA core | | 11 | 2,5 | 3,4,5 | VA core/urban | Urban DC, MD, VA | | 12 | 2,5 | 6,7 | VA core/urban | Suburban MD, VA | | 13 | 6 | 1 | MD suburban | DC core | | 14 | 6 | 2 | MD suburban | VA core | | 15 | 6 | 3,4,5 | MD suburban | Urban DC, MD, VA | | 16 | 6 | 6,7 | MD suburban | Suburban MD, VA | | 17 | 7 | 1 | VA suburban | DC core | | 18 | 7 | 2 | VA suburban | VA core | | 19 | 7 | 3,4,5 | VA suburban | Urban DC, MD, VA | | 20 | 7 | 6,7 | VA suburban | Suburban MD, VA | $Ref: \ O:\\ \\ model\_dev\\ \\ nest\_log\\ \\ marketSeg.xls$ Table 46 Equivalency between seven super-districts and the 20 geographic market segments | | | 1<br>DC<br>core | 2<br>VA<br>core | 3<br>DC<br>urban | 4<br>MD<br>urban | 5<br>VA<br>urban | 6<br>MD<br>suburban | 7<br>VA suburban | |---|-------------|-----------------|-----------------|------------------|------------------|------------------|---------------------|------------------| | 1 | DC core | 1 | 2 | 3 | 3 | 3 | 4 | 4 | | 3 | DC urban | 1 | 2 | 3 | 3 | 3 | 4 | 4 | | 4 | MD urban | 5 | 6 | 7 | 7 | 7 | 8 | 8 | | 2 | VA core | 9 | 10 | 11 | 11 | 11 | 12 | 12 | | 5 | VA urban | 9 | 10 | 11 | 11 | 11 | 12 | 12 | | 6 | MD suburban | 13 | 14 | 15 | 15 | 15 | 16 | 16 | | 7 | VA suburban | 17 | 18 | 19 | 19 | 19 | 20 | 20 | Ref: O:\model\_dev\nest\_log\superDistr\_marketSeg.xlsx Table 47 shows the equivalency between the seven NLMC superdistricts and the new 3,722-TAZ area system. Table 47 Equivalency between nested-logit mode choice superdistricts and TPB TAZ 3,722 | No. Name | TAZs (TPB TAZ 3,722) | |----------|----------------------| |----------|----------------------| | No. | Name | TAZs (TPB TAZ 3,722) | |-----|-------------|------------------------------------------------------------------------------| | 1 | DC core | 1-4,6-47,49-63,65,181-287,374-381 | | 2 | VA core | 1471-1476,1486-1489,1493,1495-1504,1507,1508,1510,1511 | | 3 | DC urban | 5,48,51,64,66-180,210-281,288-373,382-393 | | 4 | MD urban | 603,606,612-628,630-640,662-664,669,670,913,916,917,939-957,959,961-982,985, | | 4 | MD urban | 986 | | 5 | VA urban | 1405-1422,1427-1435,1448,1452,1454-1464,1477-1485,1490-1492,1494,1505,1506, | | 5 | VA urban | 1509,1512-1545,1569-1609 | | 6 | MD suburban | 394-602,604,605,607-611,629,641-661,665-668,671-912,914,915,918-938,958,960, | | 6 | MD suburban | 983,984,987-1404,2820-3102,3104-3409 | | 7 | VA suburban | 1423-1426,1436-1447,1449-1451,1453,1465-1470,1546-1568,1610-2554,2556-2628, | | 7 | VA suburban | 2630-2819,3410-3477,3479-3481,3483-3494,3496-3675 | Ref: O:\model\_dev\nest\_log\equiv\_tpbTaz3722\_nlmc\_superdistr.txt and O:\model\_dev\nest\_log\Market\_segment\_NewTAZs\_sorted.xlsx Finally, the mode choice model is segmented by access to transit: - Park and ride (PNR), - Kiss and ride (KNR, or "ride to transit"), and - Walk Walk-access is further segmented by the length of walk to transit: - Short walk (<= 0.5 miles) - Long walk (> 0.5 miles and <= 1.0 mile).</li> This contrasts with the Version 2.2 mode choice model, which used slightly different definitions of short walk (0 to 0.3333 mile) and long walk (0.3333 mile to 1.0 mile). ## 6.3.3 Utility equations, including time and cost coefficients and income constants The TPB nested-logit mode choice model has five utility equations -- one per trip purpose. The time and cost coefficients used in the utility equations are shown in Table 48. Table 48 Time and cost coefficients in the Version 2.3 nested-logit mode choice model | | | Trip Purpose (5) | | | | | | | |----------------------------|----------|------------------|----------|----------|----------|----------|--|--| | Variable | | HBW | HBS | НВО | NHBW | NHBO | | | | In-vehicle time | ivt | -0.02128 | -0.02168 | -0.02322 | -0.02860 | -0.02860 | | | | Auto access time | aat | -0.03192 | -0.03252 | -0.03483 | -0.04290 | -0.04290 | | | | Walk access time | ovtwa | -0.04256 | -0.04336 | -0.04644 | -0.05720 | -0.05720 | | | | Other out-of-vehicle time* | ovtot | -0.05320 | -0.05420 | -0.05805 | -0.07150 | -0.07150 | | | | Cost - Income group 1 | costinc1 | -0.00185 | -0.00202 | -0.00202 | -0.00994 | -0.00994 | | | | Cost - Income group 2 | costinc2 | -0.00093 | -0.00101 | -0.00101 | -0.00994 | -0.00994 | | | | Cost - Income group 3 | costinc3 | -0.00062 | -0.00067 | -0.00067 | -0.00994 | -0.00994 | | | | Cost - Income group 4 | costinc4 | -0.00046 | -0.00051 | -0.00051 | -0.00994 | -0.00994 | | | | * Includes boarding penal | ty | | | | | | | | #### A note about calibration and estimation of coefficient values Some of the coefficients in Table 48 are statistically estimated, others are set using professional judgment and rules of thumb. Before discussing which are statistically estimated and which are set using professional judgment, it is useful to understand how calibration approaches have changed in the past few years. In previous mode choice models developed by TPB staff (e.g., the sequential, multinomial-logit mode choice model in the Version 2.1 and Version 2.2 travel models), coefficients in the utility equations of the mode choice model were statistically estimated. 44 Following the estimation of coefficients, TPB staff would check the reasonableness of coefficients by using various rules of thumb. For example, one rule of thumb is that the ratio of the out-of-vehicle travel time coefficient to the in-vehicle travel time coefficient (C<sub>ovtt</sub>/C<sub>ivtt</sub>) should be between 2.0 and 3.0. This rule of thumb has always been used by TPB staff in mode choice model estimation and has also been proposed by the Federal Transit Administration.<sup>45</sup> In cases where the estimated coefficients did not agree with the rule of thumb, one was left to ponder the cause of the discrepancy. For example: Was there a problem with the estimation data? Was a utility equation misspecified? Was the estimation software not used correctly? Did the discrepancy in the ratio value represent a true difference in travel behavior of Washington, D.C. area travelers compared to other travelers in the U.S? Or, since the values of the coefficients are, in part, a function of the other coefficients in the utility equation, would a different set of utility variables have resulted in coefficient values that met the rule of thumb? Due to issues such as these, and the increased interest in getting proposed transit projects to pass muster with the FTA, many consulting firms and agencies have started taking a new approach in calibrating mode choice models: namely, using a combination of statistically estimated coefficients and coefficients that are set by fiat, typically based on rules of thumb. This latter approach is what was used by AECOM when they calibrated their nestedlogit mode choice model in 2004-2005, and it is also the approach used by TPB staff in calibrating the NLMC model. ## Discussion of coefficient values in the TPB nested-logit mode choice model The in-vehicle time (IVT) coefficients are all about -0.02 and were statistically estimated using Alogit software. These come from earlier estimation work done by TPB staff, for the 2.1C and 2.1D travel models. These values are in the range of values expected by FTA, which expects IVT coefficients in the range of -0.03 to -0.02. <sup>46</sup> The next three time coefficients have been set as multiples of the IVT coefficient. For example, the auto access time coefficient is set equal to 1.5 times the IVT coefficient, indicating that time spent in a car for accessing transit is perceived as 1.5 times as burdensome as time spent in the transit vehicle itself. Similarly, the walk-access time coefficient is set equal to 2.0 time the <sup>&</sup>lt;sup>44</sup> Using a maximum likelihood estimation (MLE) technique in a software package such as Alogit. <sup>&</sup>lt;sup>45</sup> Jim Ryan, "Travel Forecasting for New Starts: The FTA Perspective," April 7, 2004, 55; Federal Transit Administration, "12 - Early Quality-of-Service Analysis of the Alternatives" (presented at the Travel Forecasting for New Starts Proposals Workshop, Minneapolis, Minnesota, June 16, 2006), 38, http://www.fta.dot.gov/planning/newstarts/planning\_environment\_5402.html. <sup>&</sup>lt;sup>46</sup> Ryan, "Travel Forecasting for New Starts: The FTA Perspective," 53; Federal Transit Administration, "12 - Early Quality-of-Service Analysis of the Alternatives," 37. IVT coefficient, indicating that time spent walking to access transit is perceived as 2.0 times as burdensome as time spent in the transit vehicle. Lastly, the other-out-of-vehicle time coefficient is set to a value of 2.5 times the IVT coefficient. These last two out-of-vehicle time coefficients conform to FTA expectations that the ratio of $C_{ovt}/C_{ivt}$ should be between 2.0 and 3.0, unless an agency can provide compelling evidence to the contrary. Next come four cost coefficients, one per household income group (income group 1, 2, 3, and 4). The first cost coefficient, like the IVT coefficient, was statistically estimated from a previous version of the regional travel model. The remaining three cost coefficients, in the case of the three home-based purposes, are set as factors of the cost coefficient for income group 1. Specifically, the cost coefficient for income group 2 is equal to ½ the cost coefficient for income group 1, and the cost coefficient for income group 4 is equal to 1/4 the cost coefficient for income group 1. The TPB NLMC model also uses a set of income constants, which were developed for the AECOM/WMATA NLMC model and retained for use in the TPB model (See Table 49). AECOM introduced the income constants to help reduce the high number of modeled boardings in Northwest DC.<sup>47</sup> Table 49 Income constants used in the TPB Ver. 2.3 NLMC model | | Income stratification | | | | | |------------------------|-----------------------|--------|------|--|--| | Mode | Low | Middle | High | | | | All auto modes | 0.0 | 0.0 | 0.0 | | | | Walk to commuter rail | 2.0 | 0.0 | -2.0 | | | | Walk to all bus | 2.0 | 0.0 | -2.0 | | | | Walk to bus/Metrorail | 2.0 | 0.0 | -2.0 | | | | Walk to all Metrorail | 2.0 | 0.0 | -2.0 | | | | PNR and KNR to transit | 0.0 | 0.0 | 0.0 | | | The income constants apply to all trip purposes. "Low income" means income group 1. "Middle income" means income groups 2 and 3. "High income" means income group 4. These income constants have the effect of increasing the probability (due to the +2.0) that low income travelers will choose walk to transit and decreasing the probability (due to the -2.0) that high income travelers will choose walk to transit. ### 6.3.4 Nesting coefficients and nesting constant Each nest in a nested-logit mode choice model has at least two alternatives. For example, in the TPB NLMC model, the transit nest has three alternatives: PNR, KNR, and walk access. Each nest has N nesting coefficients (a.k.a. logsum parameters, or $\Phi$ ) and N-1 constants (NCs), where N is the number of alternatives in the nest. So, for example, in the example nest shown in Figure 15, the transit nest has three alternatives, three nesting coefficients, and two (non-zero) nesting constants. <sup>&</sup>lt;sup>47</sup> Bruce Williams, "Revised Calibration Results with Additional Revisions to Transit Components of Washington Regional Demand Forecasting Model" (presented at the Transit Modeling Meeting, held at the Metropolitan Washington Council of Governments, Washington, D.C., March 2, 2005), 5. Figure 15 Example of a nest in a nested logit mode choice model (with hypothetical values for Φ and NC) Ref: O:\model\_dev\nest\_log\NestedChoice\_Struct3.vsd In the TPB NL MC model, nesting coefficients ( $\Phi$ ) have been set using professional judgment and nesting constants (NC) are estimated in the calibration process. This follows the lead set by AECOM in their calibration of the AECOM/WMATA NL MC model. ### **Nesting coefficients** The nesting coefficients ( $\Phi$ ) in a nested-logit mode choice model are a function of the underlying correlation between the unobserved components for pairs of alternatives in a nest, and they characterize the degree of substitutability between those alternatives. The values of the nesting constants should lie between 0 and 1, as indicated in Table 22. All the nesting coefficients in the TPB NL MC model have been set, by fiat, to 0.5. The TPB NL MC model has three layers of nests, but the bottom layer does not have nesting coefficients, so it has two layers of nests with nesting coefficients. The top-level equivalent of the nesting coefficients can be calculated by multiplying the nesting coefficient values of the two layers, i.e., 0.5 \* 0.5 = 0.25, which is in the range of what would be considered reasonable (See Figure 16). Table 50 Interpretation of nesting coefficient values in nested-logit mode choice models | Nesting coefficient | | |---------------------|---------------------------------------------------------------------------------| | value | Implication | | 0 < Φ < 1 | The range of acceptable values for Φ. Decreasing values of Φ indicate increased | | | substitution among alternatives in a nest. | | Φ = 0 | Implies perfect correlation between pairs of alternatives in the nest | | Φ = 1 | Zero correlation among mode pairs in the nest. This means the nested-logit (NL) | | | model becomes a multinomial logit (MNL) model. | | Ф > 1 | Reject the nested-logit model | Figure 16 Examples of possible values for nesting coefficients and nesting constants #### **Nesting constants** As stated earlier, AECOM developed 20 production/attraction market segments, based on seven superdistricts. We have chosen to retain this same geographic market segmentation in our model. There is one nesting constant for each market segment (20), each travel mode (15), and each trip purpose (5). Calibrating the nested-logit mode choice model essentially consists of estimating these nesting constants. Details of the calibration process can be found in section 6.4 on page 78. #### 6.3.5 Other details In past documentation, there was documentation regarding other details of the NL MC model, such as revised transit access coding conventions, transit path-building procedures, and the treatment of parking costs and terminal times. <sup>48</sup> It is intended to include this information in either the user's guide and/or the network documentation. # **6.4 Calibration process** To calibrate the TPB NLMC model, one assumes that the time and cost coefficients are known. The calibration consists of finding a set of nesting constants that allow the NLMC model to most closely replicate the observed market shares (known as "targets"). As mentioned in section 6.2 on page 69, an automated routine, implemented as a Fortran program named CALIBMS, is used to perform the calibration. Once one has run CALIBMS, one should ideally check the values of the output nesting constants to make sure that none of the constants are overly large. If one or more of the constants are overly large, their values can be manually overridden. For this particular calibration effort, due to time constraints, none of the calculated values were overridden. The NLMC calibration process was performed twice: first, using an <u>observed</u>, year-2007 trip table from the 2007/2008 COG/TPB - <sup>&</sup>lt;sup>48</sup> Milone et al., TPB Travel Forecasting Model, Version 2.3: Specification, Validation, and User's Guide, 6-10. Household Travel Survey (HTS);<sup>49</sup> and second, using a <u>simulated</u>, year-2007 trip table.<sup>50</sup> Details of these two calibration efforts can be found in the cited memos. ## 6.4.1 Observed data and calibration targets A "calibration target" is a control total representing the number of person trips (for an average weekday) for each trip purpose (5), travel mode (15), and geographic market segment (20). The following on-board transit surveys were used to develop trip targets: - 2008 Metrorail Survey<sup>51</sup> - 2008 Regional Bus Survey (supplemented by the Fairfax Connector Bus Survey)<sup>52</sup> - 2007-2008 On-Board Survey of Maryland Transit Administration (MTA) Riders, which would include survey information from riders of the Maryland Area Regional Commuter (MARC) train service<sup>53</sup> - 2005 Virginia Railway Express (VRE) Passenger Survey<sup>54</sup> Since the calibration year is 2007, it is preferable to have a survey from that year. In some cases this was not possible (e.g., no survey was conducted in 2007) or not desirable (e.g., a survey in another year was of better quality), or both. In the case of Metrorail, there was, in fact, a 2007 Metrorail Passenger Survey, <sup>55</sup> but it was believed that the 2008 survey had more complete information. For example, the 2008 survey, in contrast with the 2007 survey, included production-end mode of access to the first transit vehicle for every observation. <sup>56</sup> The 2008 Metrorail survey was collected by WB&A, geocoded by Rummel, Klepper & Kahl, LLP (RK&K), and cleaned by Parsons Brinckerhoff (PB). The final survey <sup>&</sup>lt;sup>49</sup> Mark S. Moran to Ronald Milone, "Using CALIBMS and an observed trip table to calibrate the nested-logit mode choice model that is part of the TPB Version 2.3 travel model on the 3,722-TAZ area system," Memorandum, January 19, 2011. <sup>&</sup>lt;sup>50</sup> Mark S. Moran to Ronald Milone, "Using CALIBMS and a simulated trip table to calibrate the nested-logit mode choice model that is part of the TPB Version 2.3 travel model on the 3,722-TAZ area system," Memorandum, February 19, 2011. <sup>&</sup>lt;sup>51</sup> WB&A Market Research, "2008 Metrorail Passenger Survey," 2008. <sup>&</sup>lt;sup>52</sup> Robert E. Griffiths, "2008 Regional Bus Survey: Preliminary Results" (presented at the Travel Forecasting Subcommittee of the TPB Technical Committee of the National Capital Region Transportation Planning Board, held at the Metropolitan Washington Council of Governments, Washington, D.C., May 22, 2009); NuStats, 2008 Regional Bus Survey: Draft Report (Austin, Texas: Metropolitan Washington Council of Governments (COG), June 2009); Clara Reschovsky, Analysis of 2008 Bus Survey Data, WMATA On-Board Survey, Internal Report (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, June 30, 2010). <sup>&</sup>lt;sup>53</sup> NuStats, Baltimore 2007-2008 On-Board Study: Final Report (Austin, Texas: Maryland Transit Administration, December 2008). <sup>&</sup>lt;sup>54</sup> Virginia Railway Express, 2005 Passenger Survey (Virginia Railway Express, n.d.), http://www.vre.org/feedback/cs\_survey/survey\_results\_index.htm. <sup>&</sup>lt;sup>55</sup> WB&A Market Research, 2007 Metrorail Passenger Survey Final Report (Washington Metropolitan Area Transit Authority, October 16, 2007). <sup>&</sup>lt;sup>56</sup> Mary Martchouk to Mark S. Moran, "Developing Transit Calibration Targets for 2007," Memorandum, June 2, 2010. 5. <sup>&</sup>lt;sup>57</sup> WB&A Market Research, "2008 Metrorail Passenger Survey." included 35,966 records, which were expanded to 786,813 daily Metrorail trips (the average number of trips in September 2008).<sup>58</sup> Survey results were not factored to 2007 conditions, given the proximity of the two years. Information about bus-only trips was obtained from the 2008 Regional Bus Survey (supplemented by the Fairfax Connector Bus Survey). Again, data was not explicitly factored to year-2007 conditions. Details can be found in a recent memo. <sup>59</sup> Commuter rail information was obtained from the 2007-2008 MTA survey (which included MARC riders) and the 2005 VRE survey (which included VRE riders). The MTA survey was collected by NuStats and provided to MWCOG by PB. The total number of MARC survey records after it was cleaned and geocoded by PB was 1,915, which were then expanded to 26,451 trips. Although VRE conducts a survey on an annual basis, the 2007 survey was "Deemed Statistically Invalid," according to the VRE website (http://www.vre.org/feedback/cs\_survey/survey\_results\_index.htm). We have used the 2005 survey and factored the results to year-2007 conditions. <sup>60</sup> The transit person trip control totals ("targets") can be seen in Table 51. Table 51 Transit person trip control totals ("targets") for 2007, average weekday | - | | | | | | | |-------------|---------|----------|----------|----------|----------|-----------| | | HBW | HBS | НВО | NHBW | NHBO | TOTAL | | | (Peak) | (Midday) | (Midday) | (Midday) | (Midday) | | | WK-CR | 1,851 | 21 | 210 | 0 | 400 | 2,483 | | PNR-CR | 16,645 | 0 | 259 | 0 | 208 | 17,112 | | KNR-CR | 1,473 | 0 | 197 | 0 | 217 | 1,887 | | ALL CR | 19,970 | 21 | 666 | 0 | 825 | 21,482 | | WK-BUS | 171,836 | 18,432 | 87,043 | 23,685 | 16,226 | 317,222 | | PNR-BUS | 15,966 | 81 | 3,029 | 354 | 1,522 | 20,953 | | KNR-BUS | 4,554 | 199 | 2,004 | 1,425 | 880 | 9,063 | | ALL BUS | 192,356 | 18,712 | 92,077 | 25,465 | 18,628 | 347,238 | | WK-BUS/MR | 132,144 | 2,486 | 23,694 | 12,417 | 3,960 | 174,701 | | PNR-BUS/MR | 27,525 | 112 | 2,700 | 1,482 | 560 | 32,379 | | KNR-BUS/MR | 9,248 | 136 | 1,731 | 1,211 | 1,003 | 13,329 | | ALL BUS/MR | 168,916 | 2,733 | 28,125 | 15,110 | 5,524 | 220,408 | | WK-MR | 194,164 | 4,854 | 46,905 | 56,578 | 16,428 | 318,928 | | PNR-MR | 137,984 | 469 | 15,658 | 7,270 | 1,562 | 162,943 | | KNR-MR | 42,791 | 145 | 4,437 | 4,378 | 1,832 | 53,582 | | ALL MR | 374,939 | 5,468 | 66,999 | 68,226 | 19,822 | 535,454 | | GRAND TOTAL | 756,181 | 26,934 | 187,867 | 108,801 | 44,798 | 1,124,582 | Ref: O:\model dev\nest log\Mode choice targets.xlsx <sup>&</sup>lt;sup>58</sup> Martchouk to Moran, "Developing Transit Calibration Targets for 2007." <sup>&</sup>lt;sup>59</sup> Mary Martchouk to Mark Moran, "Developing Bus-only Calibration Targets for 2007," Memorandum, August 17, 2010. <sup>&</sup>lt;sup>60</sup> Martchouk to Moran, "Developing Transit Calibration Targets for 2007," 8-9. Whereas the transit person trip targets were developed from on-board transit surveys, the auto person targets were developed by undertaking a series of logical steps which made sense to TPB staff, but also required several weeks of effort. The steps were as follows: - 1) A 2007 observed (2007/08 HTS) auto driver trip table was combined with a set of "residual" trip tables (trucks, visitor auto trips, etc.) and this was assigned to the highway network. The observed auto trips were adjusted so that regional VMT targets were matched reasonably. - 2) The resulting auto person trip table resulting from the step 1 trip table was converted to auto person trips by occupant group and compressed to the 20 geographic market segments. - 3) The NL MC model was calibrated to the auto person targets (from step 2) and the transit target figures. - 4) The calibrated Version 2.3 four-step model was fully executed using the NL MC model developed in step 3. Trip generation and distribution adjustments were made to achieve a close match with the 2007/08 HTS and to match regional VMT targets. - 5) Auto person trips by occupant group (resulting from step 4) were compressed to the 20 geographic markets segments and combined with the transit targets. - 6) The NL MC model was re-calibrated to the auto person targets (from step 5) and the transit target figures. - 7) The calibrated Version 2.3 four-step model was executed using the NL MC model developed in step 6. The simulation resulting from step 7 resulted in the "final" Version 2.3 model simulation, which satisfied three desired conditions sought by TPB staff: - 1) Simulated person trips reasonably matched observed 2007/08 HTS patterns by purpose; - 2) Simulated transit trips matched the observed targets by purpose and market segment that were developed from available transit on-board surveys; and - 3) Simulated VMT reasonably matched HPMS-based target figures for the region, and by jurisdiction using: 1) equilibrated highway speeds, 2) a reasonably well converged highway assignment process, and 3) a well calibrated mode choice model. Aggregated control totals representing the auto person trip targets can be found in Table 52. Table 52 Average weekday auto person trip control totals ("targets") for 2007 used for the calibration to a simulated trip table | | HBW | HBS | НВО | NHBW | NHBO | TOTAL | |-------------|-----------|-----------|-----------|-----------|-----------|------------| | | (Peak) | (Midday) | (Midday) | (Midday) | (Midday) | | | DRIVE ALONE | 2,455,237 | 1,298,957 | 2,122,361 | 1,134,981 | 1,209,670 | 8,221,206 | | SR2 | 274,831 | 932,811 | 2,339,142 | 285,771 | 979,819 | 4,812,374 | | SR3+ | 14,822 | 594,619 | 1,767,426 | 10,785 | 639,960 | 3,027,612 | | TOTAL AUTO | 2,744,890 | 2,826,387 | 6,228,929 | 1,431,537 | 2,829,449 | 16,061,192 | Ref: O:\model\_dev\nest\_log\Mode\_choice\_targets.xlsx One key point to remember is that the NL MC model in the Version 2.3 travel model was calibrated using different data sources from those used to calibrate the multinomial-logit (MNL) mode choice model in the Version 2.2 travel model. Thus the travel patterns in the calibration data are different. The Version 2.2 mode choice model was calibrated using the 1994 COG/TPB Household Travel Survey and validated using the 2000 Census Transportation Planning Package (CTPP). By contrast, the Version 2.3 mode choice model was calibrated to year-2007 conditions, with the primary data set being the 2008 Metrorail Survey. As for the Version 2.3 mode choice model, there was some debate over whether to us the 2007/2008 HTS or the most recent on-board transit surveys. It was decided to use the on-board transit surveys since they contained more observations. For example, the 2007/2008 HTS contained about 5,500 transit trip records<sup>61</sup> (and this survey was twice the size of the 1994 HTS – 11,000 households vs. 4,800 households). By contrast, the transit on-board surveys provided about 51,000 transit trip records, of which about 35,000 were from the Metrorail Survey (see Table 53). Table 53 Transit surveys used to calculate transit trip targets | Transit Survey | Submode Targets | Number of Records | |--------------------------------|--------------------------|-------------------| | 2008 Metrorail Survey | Metrorail, Metrorail/Bus | 34,852 | | 2007 Bus Survey | Bus-only | 10,959 | | 2007 MARC Survey | Commuter Rail | 1,594 | | (MTA Baltimore Transit Survey) | | | | 2005 VRE Survey | Commuter Rail | 3,646 | | Total | All | 51,051 | ### 6.4.2 Calibration results The calibration result shown in this section of the report come from the calibration to a simulated trip table, which was derived from the earlier calibration to an observed trip table. The automated calibration process, which involves running AEMS and CALIBMS 105 times (21 times for each trip purpose), takes about 22 hours on a standard workstation or the travel model server (TMS3). The output of the calibration process is the set of nesting constants, which are shown on Table 54, Table 55, Table 56, Table 57, and Table 58 on pages 83 through 85. A positive nesting constant has the effect of increasing trips in the given category and a negative nesting constant has the effect of decreasing trips in the given category. The values shown on these five tables are "top-level equivalent" nesting constants. However, the output from the CALIBMS procedure is represented in terms of lower-level equivalent constants, so one has to convert the lower-level values to top-level values. This conversion is currently done in an Excel spreadsheet (such as newSegSumm5purps2007.xlsx) and will also be explained in the next section of this chapter. <sup>&</sup>lt;sup>61</sup> Mary Martchouk to Mark Moran, "Comparison of Transit Trips from 2007/2008 HTS to Transit Surveys," Memorandum, August 17, 2010. Table 54 Top-level equivalent nesting constants for HBW | | | | | | | | | | | HBW - Top le | vel equivale | nts of nest c | onstants | | | | | | | | | |----|-----------|------------------------------|-------------------------------|------------------------------|------------------------------|----------------------|----------------------|--------------------|--------------------|-------------------------------|------------------------------|-----------------------------|-----------------------------|----------------------|----------------------|--------------------|--------------------|----------------------|----------------------|---------|---------| | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | DC CORE/<br>URBAN-DC<br>CORE | DC CORE /<br>URBAN-VA<br>CORE | DC CORE /<br>URBAN-<br>URBAN | DC CORE /<br>URBAN-<br>OTHER | MD URBAN-<br>DC CORE | MD URBAN-<br>VA CORE | MD URBAN-<br>URBAN | MD URBAN-<br>OTHER | VA CORE /<br>URBAN-DC<br>CORE | VA CORE/<br>URBAN-VA<br>CORE | VA CORE/<br>URBAN-<br>URBAN | VA CORE/<br>URBAN-<br>OTHER | MD OTHER-<br>DC CORE | MD OTHER-<br>VA CORE | MD OTHER-<br>URBAN | MD OTHER-<br>OTHER | VA OTHER-<br>DC CORE | VA OTHER-<br>VA CORE | | | | 1 | LOV | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 2 | HOV2 | -1.2373 | -1.2088 | -1.1738 | -1.2505 | -1.2347 | -1.2925 | -1.1655 | -1.1756 | -1.2489 | -1.1927 | -1.1843 | -1.2112 | -1.3221 | -1.2845 | -1.2426 | -1.1745 | -1.7976 | -1.6696 | -1.5474 | -1.2191 | | 3 | HOV3+ | -2.0514 | -2.0602 | -2.0406 | -2.3341 | -2.0547 | -2.1505 | -1.9699 | -2.0481 | -2.1845 | -2.0701 | -2.0478 | -2.1102 | -2.1920 | -2.1502 | -2.1257 | -1.9813 | -3.7615 | -3.7866 | -3.6839 | -2.4717 | | 4 | WLK CR | 2.9161 | 3.9407 | 5.2177 | 0.7885 | 2.2962 | 1.8323 | 1.0848 | -0.1373 | 0.8460 | 1.0296 | 3.8190 | 0.0412 | 0.1720 | -0.9838 | -0.4783 | -1.1998 | -1.3501 | -1.1090 | -1.3716 | -2.4771 | | 5 | WLK BUS | 2.6136 | 0.7366 | 3.9601 | 0.7266 | 0.4728 | -0.6575 | 0.5293 | -0.2223 | 1.3644 | 0.2036 | 0.7092 | -1.3193 | -0.2119 | -0.3034 | 0.1314 | -0.5983 | -0.9143 | -0.3156 | -0.6768 | -1.1177 | | 6 | WLK BU/MR | 2.9284 | 3.0859 | 4.7860 | 0.8695 | 0.9706 | 0.6244 | 0.9650 | -0.0254 | 3.5768 | -0.0732 | 1.2265 | -0.7446 | -0.1758 | -0.4065 | 0.0711 | -0.5486 | -0.0867 | -0.3013 | -0.3305 | -1.2937 | | 7 | WLK METRO | 3.2213 | 4.6853 | 6.9883 | 7.4975 | 3.3073 | 2.5647 | 2.1696 | 1.9533 | 7.5074 | 1.9697 | 5.5196 | 4.4812 | 2.1589 | 1.0342 | 2.0255 | 0.2422 | 3.4797 | 1.9378 | 2.5695 | 1.9226 | | 8 | PNR CR | 1.0410 | 1.0972 | 1.6191 | 1.3121 | -0.5183 | -0.2641 | -1.6925 | -1.8233 | 0.9296 | -1.6728 | -1.2825 | -3.0025 | -1.1025 | -1.7373 | -2.1295 | -3.1022 | -2.6264 | -1.6956 | -2.2189 | -6.1063 | | 9 | KNR CR | 0.3513 | -0.4627 | 0.5046 | 0.8276 | -1.2335 | -0.8393 | -3.0152 | -2.3639 | -0.2687 | -2.8912 | -2.0860 | -2.5228 | -2.7122 | -3.6714 | -3.3801 | -3.9116 | -3.9573 | -3.1684 | -3.5541 | -7.2176 | | 10 | PNR BUS | 0.5789 | 1.0972 | -0.2562 | -0.8357 | -1.6626 | -0.2641 | -2.5166 | -1.6950 | 0.9903 | -1.4544 | -1.5842 | -2.5163 | -2.0470 | 0.0152 | -1.2256 | -2.2908 | -1.4994 | -0.8756 | -1.4918 | -4.7947 | | 11 | KNR BUS | -0.2600 | -0.4627 | -0.3818 | -0.0966 | -1.0442 | -0.8393 | -2.0351 | -1.5809 | -0.2687 | -2.8912 | -2.0860 | -1.9280 | -2.9044 | -1.4405 | -1.9399 | -2.5935 | -2.6978 | -2.2161 | -2.5437 | -4.6573 | | 12 | PNR BU/MR | 2.2924 | 1.7813 | 0.6305 | -0.3977 | 1.1016 | 0.3409 | -1.7479 | -2.1359 | 1.7364 | -1.6728 | -0.9134 | -3.0025 | 3.1906 | 1.3555 | -1.1873 | -2.7633 | 1.1888 | -0.1222 | -1.3622 | -4.2974 | | 13 | KNR BU/MR | 1.3605 | 1.8886 | 0.7249 | -0.6837 | 1.3303 | -0.8393 | -1.3587 | -2.2678 | 1.6927 | -2.8912 | -2.1671 | -3.1947 | -1.4744 | -0.9531 | -1.7471 | -2.7091 | -2.0806 | -2.0111 | -2.3193 | -3.8485 | | 14 | PNR METRO | 1.0039 | 1.1509 | 2.1708 | 1.3386 | -0.4257 | -0.1095 | -1.3916 | -1.3401 | 0.7509 | -1.4077 | -1.2872 | -0.6704 | -1.3044 | -0.6828 | -1.5301 | -2.6314 | -2.0833 | -1.9962 | -2.3114 | -3.6625 | | 15 | KNR METRO | -0.7011 | -0.5708 | 0.5232 | 0.4974 | -1.4211 | -0.7341 | -2.0301 | -2.5726 | -0.3601 | -2.8466 | -1.9877 | -1.9469 | -1.6985 | -1.3977 | -1.5446 | -2.2885 | -1.8803 | -1.7461 | -1.7867 | -2.0555 | Ref: O:\model\_dev\nest\_log\calibms\_2011-02sim\newSegSumm5purps2007.xlsx, sheet= NSTC2 Table 55 Top-level equivalent nesting constants for HBS | | | | | | | | | | | HBS - Top le | vel equivalen | s of nest co | nstants | | | | | | | | | |----|-----------|----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|--------------|---------------|--------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | DC CORE/ | DC CORE / | DC CORE / | DC CORE/ | | | | | VA CORE/ | VA CORE/ | VA CORE/ | VA CORE/ | | | | | | | | | | | | URBAN-DC | URBAN-VA | URBAN- | URBAN- | MD URBAN- | MD URBAN- | MD URBAN- | MD URBAN- | URBAN-DC | URBAN-VA | URBAN- | URBAN- | MD OTHER- | MD OTHER- | MD OTHER- | MD OTHER- | VA OTHER- | VA OTHER- | VA OTHER- | VA OTHER- | | | | CORE | CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | CORE | CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | | 1 | LOV | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 2 | HOV2 | -0.1067 | -0.1106 | -0.0842 | -0.1099 | -0.1179 | 0.0045 | -0.0768 | -0.0875 | -0.1010 | -0.0977 | -0.0832 | -0.0914 | -0.1573 | -0.1727 | -0.1108 | -0.0828 | -0.1403 | -0.1190 | -0.1048 | -0.0807 | | 3 | HOV3+ | -0.2454 | -0.2514 | -0.2145 | -0.2527 | -0.2602 | 0.0206 | -0.2038 | -0.2187 | -0.2393 | -0.2332 | -0.2131 | -0.2255 | -0.3254 | -0.3420 | -0.2551 | -0.2125 | -0.3014 | -0.2630 | -0.2479 | -0.2097 | | 4 | WLK CR | -1.6547 | -3.2143 | -1.1110 | -1.2957 | 0.2994 | -0.0699 | -1.6848 | -3.3007 | -1.0053 | -3.0254 | -1.7069 | -3.1656 | -1.8091 | -2.6543 | -1.2321 | -1.8151 | -0.2884 | -11.8165 | -1.9498 | -2.5040 | | 5 | WLK BUS | -1.6442 | -3.2143 | -1.3870 | -1.6824 | -0.4861 | -0.0699 | -1.7266 | -2.9404 | -1.0053 | -1.8409 | -2.0972 | -2.6095 | -0.8879 | -2.6543 | -1.2632 | -1.7862 | 0.2848 | -5.5947 | -2.2311 | -2.2056 | | 6 | WLK BU/MR | -1.2448 | -3.2143 | -0.8419 | -2.2850 | 0.5839 | -0.0699 | -0.8868 | -3.3007 | -1.0053 | -3.0254 | -1.8702 | -3.1656 | -0.8157 | -1.1884 | -1.5520 | -2.5346 | -0.2884 | -11.8165 | -1.8589 | -14.2070 | | 7 | WLK METRO | -1.8116 | -2.1558 | -0.7601 | -1.6639 | 0.3294 | 1.8663 | -2.0870 | -3.2845 | 0.2983 | -3.0254 | -0.8805 | -3.1656 | -1.8091 | -2.6543 | -0.7464 | -2.5702 | 2.3383 | -11.8165 | -0.5857 | -1.9623 | | 8 | PNR CR | -3.6023 | -3.4763 | -4.0023 | -3.0532 | -3.0255 | -1.4560 | -4.5490 | -4.2247 | -2.5222 | -5.2540 | -6.0554 | -4.5693 | -2.1625 | -4.9739 | -4.8733 | -9.7387 | -2.6338 | -19.3122 | -8.2282 | -50.3497 | | 9 | KNR CR | -4.9010 | -3.4763 | -3.7618 | -3.0532 | -3.0255 | -1.4560 | -4.5490 | -4.5083 | -4.2238 | -5.2540 | -3.9828 | -4.5693 | -2.2278 | -4.9739 | -5.1257 | -7.0447 | -3.5877 | -17.4614 | -5.8996 | -50.6211 | | 10 | PNR BUS | -3.6023 | -3.4763 | -4.0023 | -3.0532 | -3.0255 | -1.4560 | -4.5490 | -4.2247 | -2.5222 | -5.2540 | -6.0554 | -4.5693 | -0.0389 | -4.9739 | -4.8733 | -6.7008 | -2.6338 | -15.1301 | -8.2282 | -45.3088 | | 11 | KNR BUS | -4.9010 | -3.4763 | -3.4497 | -3.0532 | -3.0255 | -1.4560 | -4.5490 | -2.2594 | -4.2238 | -5.2540 | -3.9828 | -4.5693 | -2.2278 | -4.9739 | -5.1257 | -5.0313 | -3.5877 | -17.4614 | -5.8996 | -46.5106 | | 12 | PNR BU/MR | -3.6023 | -3.4763 | -2.5131 | -3.0532 | -3.0255 | -1.4560 | -4.5490 | -4.2247 | -2.5222 | -5.2540 | -6.0554 | -4.5693 | -0.8089 | -4.9739 | -4.8733 | -9.7387 | -0.1049 | -19.3122 | -8.2282 | -50.3497 | | 13 | KNR BU/MR | -4.9010 | -3.4763 | -3.0824 | -3.0532 | -3.0255 | -1.4560 | -4.5490 | -4.5083 | 0.4039 | -5.2540 | -3.9828 | -4.5693 | -0.8550 | -4.9739 | -3.7636 | -7.0447 | -3.5877 | -17.4614 | -5.8996 | -50.6211 | | 14 | PNR METRO | -2.9834 | -3.4763 | -2.9666 | -3.0532 | -3.0255 | -1.4560 | -4.5490 | -4.2247 | -2.5222 | -5.2540 | -4.0544 | -4.5693 | -2.5470 | -4.9739 | -4.0843 | -9.7387 | -3.3382 | -19.3122 | -7.0097 | -50.3497 | | 15 | KNR METRO | -4.7463 | -3.4763 | -4.4463 | -3.0532 | -3.0255 | -1.4560 | -4.5490 | -4.5083 | -4.2238 | -5.2540 | -3.9828 | -4.5693 | -2.5262 | -4.9739 | -5.0795 | -7.0447 | -3.5877 | -17.4614 | -5.8996 | -50.6211 | Ref: O:\model\_dev\nest\_log\calibms\_2011-02sim\newSegSumm5purps2007.xlsx, sheet= NSTC2 Table 56 Top-level equivalent nesting constants for HBO | | | | | | | | | | HBO - Top le | vel equivalen | ts of nest co | onstants | | | | | | | | | |--------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|---------------|---------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | DC CORE/ | DC CORE/ | DC CORE / | DC CORE / | | | | | VA CORE / | VA CORE/ | VA CORE/ | VA CORE/ | | | | | | | | | | | URBAN-DC | URBAN-VA | URBAN- | URBAN- | MD URBAN- | MD URBAN- | MD URBAN- | MD URBAN- | URBAN-DC | URBAN-VA | URBAN- | URBAN- | MD OTHER- | MD OTHER- | MD OTHER- | MD OTHER- | VA OTHER- | VA OTHER- | VA OTHER- | VA OTHER- | | | CORE | CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | CORE | CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | | 1 LOV | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 2 HOV2 | 0.0855 | 0.1206 | 0.1229 | 0.1148 | 0.0897 | 0.1224 | 0.1360 | 0.1419 | 0.0803 | 0.0971 | 0.1318 | 0.1264 | 0.0330 | 0.0601 | 0.0843 | 0.1458 | 0.0523 | 0.0652 | 0.0877 | 0.1516 | | 3 HOV3+ | -0.0291 | 0.0204 | 0.0240 | 0.0119 | -0.0226 | 0.0226 | 0.0430 | 0.0506 | -0.0362 | -0.0123 | 0.0371 | 0.0290 | -0.1074 | -0.0645 | -0.0323 | 0.0559 | -0.0775 | -0.0582 | -0.0280 | 0.0642 | | 4 WLK CR | 0.1596 | 1.1418 | -0.0319 | 0.5322 | 2.4595 | 1.2521 | -0.2271 | -1.2110 | 4.1938 | -1.4094 | -0.6159 | -0.8356 | 4.3874 | 0.2679 | -0.1332 | -1.4465 | 2.8013 | -0.0971 | 0.0857 | -1.3372 | | 5 WLK BUS | -0.0360 | -1.1230 | -0.1081 | -0.7845 | 1.1105 | 1.4236 | -0.5953 | -1.2825 | 1.7413 | -3.7868 | -1.3901 | -1.7924 | 1.1457 | 0.2679 | -0.1086 | -0.7166 | 2.2496 | -1.1926 | -0.8202 | -1.1901 | | 6 WLK BU/MR | 0.4649 | 0.4564 | 0.0498 | -0.5549 | 1.8945 | 1.4132 | -0.1741 | -1.1789 | 2.2964 | -2.6757 | 0.1768 | -1.2135 | 0.7793 | -0.2582 | -0.1652 | -0.5420 | 2.1011 | -1.0781 | 0.7106 | -2.3282 | | 7 WLK METRO | 0.2879 | 1.4188 | 0.1656 | 0.5869 | 3.0647 | 1.1394 | 0.5422 | -0.5796 | 4.9285 | -0.8879 | 0.3963 | 0.9892 | 1.9885 | 1.1171 | -0.2372 | -0.9225 | 3.9224 | 1.1319 | 1.7912 | -0.1876 | | 8 PNR CR | -1.3083 | -0.1367 | -2.1108 | -2.4497 | -0.6348 | -1.8431 | -3.0701 | -2.6558 | 0.0706 | -4.5160 | -4.4946 | -5.1233 | 0.4292 | -0.0539 | -1.6136 | -5.9462 | -0.5202 | -2.1644 | -2.3699 | -31.4801 | | 9 KNR CR | -2.7325 | -1.2980 | -3.0359 | 1.2515 | -1.6027 | -1.8431 | -4.5030 | -4.2609 | -1.0555 | -4.5160 | -4.6802 | -3.8124 | -1.1849 | -0.2189 | -1.8178 | -6.5288 | -1.1061 | -3.2834 | -2.6341 | -32.1349 | | 10 PNR BUS | -1.8983 | -0.1367 | -3.0142 | -1.3441 | -0.6348 | -1.8431 | -2.7680 | -0.4543 | 0.0706 | -4.5160 | -4.4946 | -5.1233 | 1.1478 | -0.0539 | -1.8960 | -3.7307 | 0.9097 | -3.2851 | -2.5546 | -29.4331 | | 11 KNR BUS | -1.8206 | -0.2227 | -2.7028 | -2.0674 | -1.6027 | -1.8431 | -3.4090 | -2.3542 | -1.0555 | -4.5160 | -3.3694 | -4.0044 | -1.4528 | -0.2189 | -1.6556 | -3.4095 | -1.1061 | -3.2834 | -2.2198 | -29.4732 | | 12 PNR BU/MR | -1.0376 | -0.1367 | -1.6886 | -2.4497 | 2.8794 | -1.8431 | -3.4225 | -2.6558 | 0.6077 | -4.5160 | -2.2396 | -5.1233 | 2.0465 | 3.1413 | -1.9225 | -14.8691 | 1.1444 | -0.5306 | -2.5003 | -34.1520 | | 13 KNR BU/MR | -0.8263 | -1.2980 | -2.8971 | -2.2611 | 1.6873 | -1.8431 | -4.5030 | -3.7138 | 1.9209 | -4.5160 | -4.6802 | -3.8124 | 0.0766 | 0.8381 | -1.9984 | -5.0658 | -0.0073 | -0.9856 | -2.1178 | -31.1063 | | 14 PNR METRO | -1.2717 | -0.1367 | -1.9606 | -1.1225 | -0.6998 | -1.8431 | -3.2253 | -2.6558 | 0.0460 | -4.5160 | -3.1073 | -2.3122 | -0.6272 | -0.2821 | -2.2939 | -4.4789 | -0.7247 | -2.1723 | -2.1083 | -18.5429 | | 15 KNR METRO | -3.0721 | -1.3202 | -3.1839 | -1.6204 | -1.8165 | -1.8431 | -4.4968 | -4.2610 | -1.5135 | -4.5160 | -4.1193 | -2.3754 | -1.6812 | -0.1466 | -2.7620 | -4.2698 | -1.2386 | -3.4445 | -2.6056 | -14.3304 | $Ref: O:\\ model\_dev\\ nest\_log\\ calibms\_2011-02sim\\ newSegSumm5purps2007.xlsx, sheet= NSTC2$ Table 57 Top-level equivalent nesting constants for NHW | | | | | | | | | | | NHW - Top le | vel equivaler | its of nest co | onstants | | | | | | | | | |----|-----------|----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|--------------|---------------|----------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | DC CORE/ | DC CORE / | DC CORE/ | DC CORE / | | | | | VA CORE/ | VA CORE/ | VA CORE/ | VA CORE/ | | | | | | | | | | | | URBAN-DC | URBAN-VA | URBAN- | URBAN- | MD URBAN- | MD URBAN- | MD URBAN- | MD URBAN- | URBAN-DC | URBAN-VA | URBAN- | URBAN- | MD OTHER- | MD OTHER- | MD OTHER- | MD OTHER- | VA OTHER- | VA OTHER- | VA OTHER- | VA OTHER- | | | | CORE | CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | CORE | CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | | 1 | LOV | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 2 | HOV2 | -2.8055 | -2.2033 | -2.0401 | -2.0129 | -3.0684 | 0.0119 | -1.9931 | -2.0419 | -2.9508 | -2.4554 | -2.1919 | -2.0221 | -3.7109 | -4.3061 | -2.7127 | -1.5481 | -3.7921 | -3.4097 | -3.2857 | -1.7002 | | 3 | HOV3+ | -4.5215 | -3.8684 | -3.6275 | -3.8088 | -4.9456 | 0.0175 | -3.5401 | -3.7994 | -4.7824 | -4.1822 | -3.8245 | -3.7088 | -5.9734 | -6.8118 | -4.8028 | -3.2004 | -6.6211 | -6.1019 | -5.7424 | -3.4353 | | 4 | WLK CR | -1.7957 | -0.4347 | -0.4442 | 2.1231 | -1.4691 | 1.6368 | -1.8683 | -0.4506 | -1.9577 | -1.8980 | -1.7239 | -1.0216 | -1.4595 | -1.6793 | -1.6542 | -0.5520 | -0.9714 | -3.3594 | -1.9355 | -1.9957 | | 5 | WLK BUS | -2.4126 | -0.4347 | -0.7631 | -0.5921 | -1.5772 | 1.6368 | -1.8700 | -0.1277 | -1.9577 | -2.3080 | -2.0885 | -2.2106 | -2.0845 | -1.6793 | -1.5237 | -0.3899 | -2.0580 | -4.0366 | -3.0353 | -2.0753 | | 6 | WLK BU/MR | -0.1813 | 1.7416 | 0.3490 | 0.4703 | -0.3149 | 3.9114 | -0.1981 | -0.3630 | -0.4042 | -1.1647 | -0.6747 | -1.2760 | -1.3185 | -0.7761 | -0.9161 | -0.7676 | -1.3382 | -3.0730 | -1.8494 | -0.9064 | | 7 | WLK METRO | -1.7279 | -0.2545 | -0.2692 | 3.8796 | -1.6320 | 1.4358 | -2.1623 | -1.2152 | -1.7754 | -1.8607 | -1.6941 | 0.7174 | -1.2983 | -2.2104 | -2.3620 | -1.3233 | 0.0957 | -2.8329 | -0.1053 | 0.9697 | | 8 | PNR CR | -3.1428 | -1.0072 | -1.9671 | 1.6889 | -3.2120 | -1.6359 | -4.1035 | -3.4883 | -2.3539 | -3.1863 | -3.9959 | -0.8927 | -3.8711 | -4.0574 | -4.1955 | -6.0592 | -3.3288 | -4.7591 | -5.3387 | -9.4073 | | 9 | KNR CR | -3.9757 | -1.5029 | -2.6230 | -0.4280 | -4.5373 | -1.6359 | -4.2081 | -3.7433 | -3.9747 | -6.0188 | -5.9709 | -2.7603 | -4.4816 | -4.0337 | -3.7588 | -3.0405 | -3.8233 | -5.1605 | -5.3086 | -9.2328 | | 10 | PNR BUS | -3.2779 | -1.0072 | -3.2906 | 0.3483 | -3.2120 | -1.6359 | -4.9177 | -3.4883 | -2.3539 | -3.1863 | -3.9959 | -1.8336 | -3.8711 | -4.0574 | -3.1139 | -4.9935 | -3.4047 | -5.3303 | -5.3387 | -6.8945 | | 11 | KNR BUS | -3.3005 | -1.5029 | -1.8146 | -0.1703 | -4.5373 | -1.6359 | -2.8464 | -3.7433 | -3.9747 | -3.3338 | -3.3789 | -1.4071 | -2.8020 | -4.0337 | -2.3183 | -1.6666 | -3.8233 | -5.1605 | -5.3086 | -6.8062 | | 12 | PNR BU/MR | -2.0165 | -0.5330 | -1.9565 | -0.0344 | -0.6738 | -1.6359 | -2.2743 | -3.4883 | -0.1945 | 0.2412 | -1.4943 | -1.4850 | 0.8125 | -4.0574 | -1.4722 | -9.5163 | -0.5112 | -1.3482 | -2.7450 | -11.2773 | | 13 | KNR BU/MR | -1.3883 | -1.5029 | -1.1803 | -1.4008 | -4.5373 | -1.6359 | -1.8904 | -3.7433 | -2.1049 | -6.0188 | -5.9709 | -3.1883 | -1.7388 | -1.1878 | -1.9136 | -2.5232 | -2.1001 | -2.4245 | -3.4718 | -8.5794 | | 14 | PNR METRO | -3.2554 | -0.9725 | -1.7767 | 2.3558 | -3.4574 | -1.6359 | -4.8383 | -2.8657 | -2.8537 | -2.9367 | -4.0031 | -0.0644 | -4.2775 | -4.0120 | -4.6572 | -5.0156 | -3.5749 | -4.8436 | -5.5133 | -9.4073 | | 15 | KNR METRO | -4.3998 | -1.4884 | -3.1269 | -0.1489 | -4.5186 | -1.6359 | -5.9638 | -3.1006 | -4.0462 | -6.3179 | -6.2164 | -3.9547 | -4.6242 | -4.2154 | -4.7779 | -5.3360 | -3.7921 | -5.0942 | -5.1808 | -9.2328 | Ref: O:\model\_dev\nest\_log\calibms\_2011-02sim\newSegSumm5purps2007.xlsx, sheet= NSTC2 Table 58 Top-level equivalent nesting constants for NHO | | | | | | | | | | | NHO - Top le | vel equivalen | ts of nest co | nstants | | | | | | | | | |----|-----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|--------------|---------------|---------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------| | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | DC CORE/ | DC CORE/ | DC CORE/ | DC CORE / | | | | | VA CORE / | VA CORE/ | VA CORE/ | VA CORE/ | | | | | | | | | | | | | URBAN-VA | | URBAN- | MD URBAN- | MD URBAN- | MD URBAN- | MD URBAN- | URBAN-DC | URBAN-VA | URBAN- | URBAN- | MD OTHER- | MD OTHER- | MD OTHER- | MD OTHER- | VA OTHER- | VA OTHER- | VA OTHER- | | | | | CORE | CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | CORE | CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | OTHER | DC CORE | VA CORE | URBAN | | | 1 | LOV | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 2 | HOV2 | -2.0615 | 0.0000 | -1.0347 | -0.9830 | -2.3803 | -0.0753 | -1.0333 | -0.6473 | 0.0000 | -1.4447 | -1.2033 | -0.8165 | -2.9338 | 0.1486 | -1.2884 | -0.4338 | -3.2349 | -2.2033 | -1.4033 | -0.4257 | | 3 | HOV3+ | -3.0066 | 0.0000 | -1.6746 | -1.6584 | -3.4509 | -0.0767 | -1.6273 | -1.1477 | 0.0000 | -2.3282 | -1.9094 | -1.3548 | -4.2959 | 0.2306 | -2.0708 | -0.8272 | -5.0754 | -3.3319 | -2.2639 | -0.8111 | | 4 | WLK CR | -2.7482 | 6.4857 | -1.0776 | 4.1198 | -2.6954 | 1.1857 | -2.0755 | 0.1898 | 6.7961 | -2.4942 | -1.5944 | -3.0239 | 7.1771 | 1.8921 | 2.1134 | -2.8393 | -0.9797 | -3.5572 | -2.2724 | -14.5565 | | 5 | WLK BUS | -2.9990 | 0.6058 | -1.2815 | -0.2865 | -2.7396 | 1.1857 | -1.9864 | -0.5485 | 2.1162 | -3.7703 | -2.4462 | -3.1768 | -2.8660 | 1.8921 | -1.7052 | -1.0142 | -0.9797 | -3.4252 | -3.0603 | -14.0411 | | 6 | WLK BU/MR | -1.3259 | 6.2311 | -0.5082 | 0.6550 | -2.6957 | 1.1857 | -1.2150 | -0.2175 | 3.6908 | -2.4942 | -1.2285 | -3.2101 | -2.7241 | 1.8921 | -1.1560 | -2.4500 | -0.4998 | -2.1802 | -0.7076 | -22.0132 | | 7 | WLK METRO | -2.7994 | 6.6659 | -0.9000 | 1.8135 | -2.6796 | 1.7452 | -2.4922 | -2.1708 | 7.3810 | -2.1764 | -0.9068 | -0.9488 | -3.3906 | 3.0935 | -2.6542 | -2.6092 | 1.1024 | -3.5572 | -1.7970 | -2.5030 | | 8 | PNR CR | -3.5714 | 2.8625 | -2.5565 | 5.7776 | -4.2549 | -1.9767 | -4.6150 | -2.9793 | 2.8381 | -3.8710 | -3.1696 | -3.1623 | -1.7791 | 4.7469 | -2.4142 | -4.6814 | -2.3138 | -6.6297 | -5.2989 | -36.0059 | | 9 | KNR CR | -4.5134 | 3.5512 | -2.9190 | 6.8226 | -5.3206 | -1.9767 | -4.7988 | -3.9217 | 0.7171 | -4.1272 | -3.8270 | -5.6436 | -3.3978 | 5.1994 | -3.3017 | -5.9445 | -2.5988 | -7.0999 | -5.3659 | -30.2675 | | 10 | PNR BUS | -3.4589 | 2.8625 | -2.7969 | -1.7296 | -4.2549 | -1.9767 | -2.3809 | -2.9793 | 2.8381 | -3.8710 | -3.1696 | -3.1623 | -4.4634 | 4.2784 | -4.2209 | -2.2288 | -2.3138 | -6.6297 | -5.2989 | -30.8539 | | 11 | KNR BUS | -3.1985 | 3.5512 | -2.3453 | -0.4502 | -5.3206 | -1.9767 | -3.2786 | -1.2625 | 0.7171 | -4.1272 | -3.8270 | -2.8838 | -3.6650 | 1.9646 | -3.0444 | -3.1916 | -2.5988 | -7.0999 | -5.3659 | -27.3685 | | 12 | PNR BU/MR | -2.0688 | 2.8625 | -1.2953 | -1.7296 | -1.7862 | -1.9767 | -4.6150 | -2.9793 | 3.7919 | -3.8710 | -3.1696 | -3.1623 | -2.0940 | 12.3974 | -1.8001 | -4.6814 | -0.2822 | -6.6297 | -4.9682 | -36.0059 | | 13 | KNR BU/MR | -3.2463 | 3.5512 | -1.7528 | -0.8774 | -5.3206 | -1.9767 | -4.7988 | -3.9217 | 5.1774 | 0.6756 | -1.9140 | -5.6436 | -2.2166 | 1.9646 | -1.4539 | -5.9445 | -0.1006 | -7.0999 | -5.3659 | -30.2675 | | 14 | PNR METRO | -3.7236 | 3.1197 | -3.7881 | -1.5816 | -4.7537 | -1.9767 | -4.6150 | -2.9793 | 2.9585 | -3.8711 | -3.1696 | -3.1623 | -5.1861 | 0.7812 | -5.2718 | -4.6814 | -2.4799 | -6.4311 | -4.4796 | -36.0059 | | 15 | KNR METRO | -4.8851 | 3.6082 | -3.3972 | -1.5656 | -5.2814 | -1.9767 | -5.3055 | -3.9217 | -0.1312 | -4.8384 | -5.3475 | -5.6436 | -5.7318 | 0.5530 | -4.9563 | -5.9445 | -3.4626 | -7.0999 | -4.4577 | -24.8263 | $Ref: O:\\ model\_dev\\ nest\_log\\ calibms\_2011-02sim\\ newSegSumm5purps2007.xlsx, sheet= NSTC2$ Top-level nesting constants are computed as follows: ### Equation 6 Equation for calculating the top-level equivalent value of a nesting coefficient Higher-level constant = {(lower-level nest constant) × (higher-level nest coefficient) + (higher-level nest constant)} and so on, up to the top nest level To help illustrate this, we will perform a sample calculation. Figure 17 shows a nested-logit mode choice model with the same structure as the TPB NLMC model. Nest 4 is the PNR or drive-access to transit nest. The figure shows hypothetical values for nesting coefficients and nesting constants, with all values being in lower-level equivalents (the same as what might come out of an automated mode choice calibration process such as CALIBMS). According to Figure 17, the lower-level nesting constant for the PNR bus/Metrorail choice is -2.50368. To convert this value to its upper-level equivalent, we multiply it by the nesting *coefficient* of the next higher level (the PNR nest, whose nesting coefficient value is 0.5). Then we add the nesting constant value of the PNR nest (-3.25564). Next, we multiply the result by the nesting coefficient of the next level up (the transit nest, whose nesting coefficient value is also 0.5). And finally, we add the nesting coefficient for the transit nest (3.01841), giving a result of 0.7647. This calculation can be seen below and on Figure 17. Sample calculation: ``` PNR BU/MR (top level) = \{(-2.50368)*(0.5) + (-3.25564)\}*(0.5) + (3.01841) = 0.7647 ``` In addition, to calculate the implied minutes of impedance, we divide the top-level nesting constant value by the IVT coefficient, as shown in Equation 7. ## Equation 7 Equation for calculating the implied minutes of impedance of a top-level nesting constant Implied minutes of impedance = (top level const) / IVT coefficient Thus, continuing with the example, Implied minutes of impedance = 0.7647/-0.02128 = 35.9 minutes. Figure 17 Example of calculating a top-level nesting constant from the lower-level nesting constants that come out of CALIBMS ## 6.5 Model application The model was calibrated to year-2007 conditions, since the year 2007 is considered the base year for this model. The model was also applied for the year 2007. The NLMC model has the capability to perform transit assignments. In 2008, when TPB staff released the draft documentation for the Version 2.3 travel model on the 2,191-TAZ area system, TPB staff had performed transit assignments and had presented transit assignment results for the years 2002 and 2005. For this current effort on the 3,722-TAZ area system, however, TPB staff has not had the time to test the transit assignment, so no such results are reported in this chapter. Instead, we present some of the year-2007 estimated mode choice data from the year-2007 calibration to a simulated trip table. Three summary tabulations can be found in Table 59, Table 60, and Table 61. Person trips by travel mode and trip purpose, summed for all 20 geographic market segments, can be found in Table 59. The total number of estimated daily person trips is 17,218,143. The total number of estimated transit person trips is 1,102,380, which is close to the control total shown in Table 51 (1,124,582) and Table 59 (1,124,587). The primary difference between this current calibration effort (using a simulated year 2007 trip table) and the previous effort (using an observed year 2007 trip table), <sup>64</sup> is the fact that the 1.75 factor that had been applied to all non-work trips has been removed, since it is no longer needed to ensure that the travel model matches observed VMT. So, for example, the target or "observed" HBS total person trips has gone from 4.952 million to 2.853 million – a 42% drop, or the equivalent of a 1.74 scaling factor. Since no factor had been applied to it, HBW was largely unaffected: target total person trips went from 3.707 million to 3.501 million, a 6% drop, or the equivalent of a 1.05 scaling factor. In terms of total person trips across all five trip purposes, the "observed" value went from 27.515 million to 17.187 million, which corresponds to a 38% drop or the equivalent of a 1.60 scaling factor. The resultant effect on transit percents is similarly large. The "observed" HBS transit percent went from 0.5% to 0.9%, almost a doubling. The "observed" HBW transit percentage was only somewhat affected, going from 20.4% to 21.6%. As for the "observed" total (across five purposes) transit percent, this went from 4.1% to 6.5%. \_\_\_ <sup>&</sup>lt;sup>62</sup> Milone et al., TPB Travel Forecasting Model, Version 2.3: Specification, Validation, and User's Guide, 6-39. <sup>&</sup>lt;sup>63</sup> Moran to Milone, "Using CALIBMS and a simulated trip table to calibrate the nested-logit mode choice model that is part of the TPB Version 2.3 travel model on the 3,722-TAZ area system." <sup>&</sup>lt;sup>64</sup> Moran to Milone, "Using CALIBMS and an observed trip table to calibrate the nested-logit mode choice model that is part of the TPB Version 2.3 travel model on the 3,722-TAZ area system." Table 59 Person trips by travel mode and trip purpose, summed for all 20 geographic market segments | | | HB\ | N | HE | 3S | H | 30 | NH | W | NH | Ю | Al | L | |-----|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------| | | Mode | Target | Model | | | DR ALONE | 2,455,236 | 2,481,505 | 1,298,956 | 1,301,902 | 2,122,364 | 2,125,142 | 1,134,980 | 1,137,890 | 1,209,971 | 1,212,533 | 8,221,507 | 8,258,971 | | | SR2 | 274,830 | 277,693 | 932,811 | 934,947 | 2,339,141 | 2,342,197 | 285,773 | 286,541 | 980,080 | 982,013 | 4,812,635 | 4,823,391 | | | SR3+ | 14,822 | 14,964 | 594,621 | 595,988 | 1,767,427 | 1,769,730 | 10,783 | 10,811 | 640,180 | 641,907 | 3,027,833 | 3,033,400 | | | WK-CR | 1,849 | 1,794 | 21 | 60 | 210 | 419 | 0 | 593 | 400 | 387 | 2,480 | 3,254 | | t5 | WK-BUS | 171,834 | 177,809 | 18,433 | 16,750 | 87,044 | 85,570 | 23,685 | 23,988 | 16,224 | 15,404 | 317,220 | 319,520 | | en | WK-BU/MR | 132,142 | 138,182 | 2,487 | 2,635 | 23,696 | 23,800 | 12,417 | 12,233 | 3,960 | 4,097 | 174,702 | 180,948 | | E E | WK-MR | 194,165 | 155,343 | 4,853 | 4,683 | 46,904 | 45,481 | 56,579 | 55,455 | 16,428 | 14,954 | 318,929 | 275,917 | | Sei | PNR-CR | 16,647 | 17,357 | 0 | 93 | 260 | 788 | 0 | 84 | 208 | 288 | 17,115 | 18,610 | | 20 | KNR-CR | 1,472 | 1,531 | 0 | 126 | 197 | 293 | 0 | 162 | 216 | 373 | 1,885 | 2,485 | | Ĭ | PNR-BUS | 15,967 | 16,522 | 82 | 759 | 3,030 | 3,058 | 355 | 379 | 1,523 | 1,476 | 20,957 | 22,195 | | | KNR-BUS | 4,553 | 4,786 | 199 | 344 | 2,004 | 2,483 | 1,426 | 1,404 | 880 | 1,129 | 9,062 | 10,147 | | | PNR-BU/MR | 27,525 | 24,863 | 112 | 454 | 2,700 | 3,291 | 1,482 | 1,467 | 559 | 831 | 32,378 | 30,906 | | | KNR-BU/MR | 9,248 | 9,730 | 136 | 248 | 1,733 | 2,014 | 1,210 | 1,205 | 1,003 | 1,109 | 13,330 | 14,305 | | | PNR-MR | 137,984 | 143,144 | 469 | 486 | 15,657 | 15,796 | 7,271 | 7,306 | 1,563 | 1,793 | 162,944 | 168,524 | | | KNR-MR | 42,794 | 44,606 | 146 | 391 | 4,436 | 4,379 | 4,378 | 4,361 | 1,831 | 1,833 | 53,585 | 55,570 | | | Total Person | 3,501,068 | 3,509,828 | 2,853,326 | 2,859,865 | 6,416,803 | 6,424,442 | 1,540,339 | 1,543,880 | 2,875,026 | 2,880,128 | 17,186,562 | 17,218,143 | | | Total Transit | 756,180 | 735,666 | 26,938 | 27,029 | 187,871 | 187,372 | 108,803 | 108,638 | 44,795 | 43,674 | 1,124,587 | 1,102,380 | | | Transit Pct | 21.6% | 21.0% | 0.9% | 0.9% | 2.9% | 2.9% | 7.1% | 7.0% | 1.6% | 1.5% | 6.5% | 6.4% | O:\model\_dev\nest\_log\calibms\_2011-02sim\newSegSumm5purps2007.xlsx, sheet=targets Table 60 shows total person trips by market segment and Table 61 shows transit person trips by market segment. Table 60 Total person trips by market segment | Market | HB | W | HE | 3S | Н | ВО | NH | W | NH | Ю | Al | LL | |---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------| | Segment | Target | Model | | 1 | 139,654 | 139,689 | 24,724 | 24,767 | 113,439 | 113,464 | 78,049 | 78,088 | 47,102 | 47,144 | 402,968 | 403,153 | | 2 | 11,822 | 11,834 | 1,931 | 1,941 | 7,131 | 7,141 | 7,552 | 7,560 | 1,880 | 1,712 | 30,316 | 30,189 | | 3 | 80,458 | 80,803 | 82,548 | 82,641 | 272,886 | 273,128 | 83,811 | 84,190 | 105,321 | 105,533 | 625,024 | 626,296 | | 4 | 44,288 | 45,345 | 41,933 | 42,676 | 77,556 | 78,439 | 54,894 | 55,439 | 42,097 | 43,534 | 260,768 | 265,433 | | 5 | 26,799 | 26,812 | 1,008 | 1,025 | 7,151 | 7,163 | 3,672 | 3,689 | 1,969 | 1,991 | 40,599 | 40,681 | | 6 | 2,465 | 2,467 | 91 | 95 | 616 | 617 | 590 | 592 | 138 | 141 | 3,900 | 3,912 | | 7 | 35,623 | 35,764 | 32,107 | 32,157 | 89,989 | 89,997 | 29,131 | 29,166 | 37,350 | 37,379 | 224,200 | 224,462 | | 8 | 27,127 | 27,305 | 29,465 | 29,613 | 64,179 | 64,353 | 30,713 | 30,784 | 39,606 | 39,756 | 191,090 | 191,810 | | 9 | 50,485 | 50,493 | 2,219 | 2,247 | 14,018 | 14,020 | 10,488 | 10,512 | 2,540 | 1,980 | 79,750 | 79,252 | | 10 | 15,724 | 15,728 | 8,690 | 8,693 | 26,567 | 26,570 | 17,158 | 17,160 | 7,993 | 7,996 | 76,132 | 76,147 | | 11 | 41,644 | 41,818 | 50,174 | 50,283 | 114,025 | 114,114 | 41,896 | 41,930 | 43,681 | 43,788 | 291,420 | 291,933 | | 12 | 38,789 | 39,006 | 36,705 | 36,924 | 71,806 | 72,099 | 37,511 | 37,643 | 40,644 | 40,950 | 225,455 | 226,622 | | 13 | 256,818 | 256,997 | 5,607 | 5,802 | 44,858 | 44,955 | 15,756 | 15,979 | 7,336 | 7,677 | 330,375 | 331,410 | | 14 | 28,840 | 28,899 | 968 | 991 | 6,935 | 6,968 | 2,817 | 2,837 | 792 | 802 | 40,352 | 40,497 | | 15 | 245,187 | 246,833 | 66,206 | 66,687 | 263,743 | 264,654 | 55,805 | 56,209 | 73,493 | 74,250 | 704,434 | 708,632 | | 16 | 1,147,296 | 1,149,893 | 1,372,372 | 1,373,726 | 2,924,559 | 2,926,786 | 569,489 | 570,389 | 1,401,614 | 1,402,540 | 7,415,330 | 7,423,335 | | 17 | 166,295 | 166,370 | 5,683 | 5,810 | 35,280 | 35,494 | 8,602 | 8,694 | 1,446 | 1,599 | 217,306 | 217,968 | | 18 | 51,767 | 51,791 | 6,697 | 6,718 | 20,943 | 20,977 | 7,521 | 7,546 | 3,987 | 4,013 | 90,915 | 91,045 | | 19 | 163,260 | 164,015 | 51,839 | 52,819 | 136,159 | 137,011 | 31,644 | 31,713 | 32,527 | 33,035 | 415,429 | 418,594 | | 20 | 926,727 | 927,966 | 1,032,359 | 1,034,249 | 2,124,963 | 2,126,491 | 453,240 | 453,762 | 983,510 | 984,306 | 5,520,799 | 5,526,774 | | Total Person | 3,501,068 | 3,509,828 | 2,853,326 | 2,859,865 | 6,416,803 | 6,424,442 | 1,540,339 | 1,543,880 | 2,875,026 | 2,880,128 | 17,186,562 | 17,218,143 | | Total Transit | 756,180 | 735,666 | 26,938 | 27,029 | 187,871 | 187,372 | 108,803 | 108,638 | 44,795 | 43,674 | 1,124,587 | 1,102,380 | | Transit Pct | 21.6% | 21.0% | 0.9% | 0.9% | 2.9% | 2.9% | 7.1% | 7.0% | 1.6% | 1.5% | 6.5% | 6.4% | $O:\\ \mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mb$ Table 61 Transit person trips by market segment | Market | HBV | V | HBS | 6 | HE | 30 | NH | W | NHO | ) | Al | _L | |---------------|---------|---------|--------|--------|---------|---------|---------|---------|--------|--------|-----------|-----------| | Segment | Target | Model | | 1 | 121,156 | 121,158 | 2,516 | 2,520 | 32,693 | 32,700 | 29,816 | 29,854 | 9,430 | 9,442 | 195,611 | 195,674 | | 2 | 10,475 | 10,404 | 145 | 145 | 3,142 | 3,125 | 4,281 | 4,292 | 1,880 | 1,480 | 19,923 | 19,445 | | 3 | 71,016 | 70,310 | 6,941 | 6,946 | 41,914 | 41,942 | 24,992 | 25,105 | 11,535 | 11,557 | 156,398 | 155,860 | | 4 | 20,938 | 18,352 | 1,238 | 1,257 | 5,028 | 5,049 | 6,633 | 6,323 | 2,681 | 2,761 | 36,518 | 33,742 | | 5 | 20,376 | 20,131 | 202 | 204 | 3,493 | 3,466 | 2,089 | 2,100 | 467 | 472 | 26,627 | 26,374 | | 6 | 1,753 | 1,740 | 32 | 32 | 183 | 182 | 192 | 192 | 35 | 36 | 2,195 | 2,183 | | 7 | 15,410 | 15,280 | 900 | 899 | 6,656 | 6,628 | 2,084 | 2,088 | 1,014 | 1,015 | 26,064 | 25,909 | | 8 | 6,056 | 5,947 | 390 | 391 | 2,659 | 2,663 | 1,901 | 1,906 | 1,056 | 1,061 | 12,062 | 11,968 | | 9 | 46,277 | 45,426 | 197 | 198 | 7,689 | 7,521 | 5,427 | 5,440 | 2,540 | 1,585 | 62,130 | 60,168 | | 10 | 7,160 | 7,062 | 247 | 252 | 938 | 930 | 2,977 | 2,977 | 586 | 585 | 11,908 | 11,807 | | 11 | 20,454 | 18,764 | 1,397 | 1,386 | 5,681 | 5,647 | 4,626 | 4,632 | 2,260 | 2,250 | 34,418 | 32,679 | | 12 | 5,473 | 4,803 | 466 | 476 | 1,991 | 1,965 | 1,703 | 1,687 | 374 | 373 | 10,007 | 9,304 | | 13 | 122,128 | 118,564 | 377 | 399 | 11,153 | 11,045 | 4,701 | 4,750 | 966 | 1,014 | 139,325 | 135,771 | | 14 | 14,072 | 13,958 | 27 | 29 | 1,436 | 1,433 | 493 | 498 | 295 | 297 | 16,323 | 16,214 | | 15 | 68,062 | 66,482 | 1,779 | 1,791 | 16,478 | 16,534 | 3,984 | 4,018 | 2,077 | 2,099 | 92,380 | 90,924 | | 16 | 42,095 | 42,034 | 5,444 | 5,449 | 21,809 | 21,826 | 4,505 | 4,512 | 3,970 | 3,974 | 77,823 | 77,795 | | 17 | 76,030 | 71,562 | 218 | 216 | 7,192 | 7,079 | 3,220 | 3,177 | 753 | 808 | 87,413 | 82,841 | | 18 | 21,412 | 20,816 | 21 | 29 | 1,061 | 1,052 | 676 | 677 | 123 | 126 | 23,293 | 22,701 | | 19 | 41,081 | 39,128 | 597 | 600 | 6,262 | 6,189 | 1,838 | 1,791 | 871 | 885 | 50,649 | 48,591 | | 20 | 24,756 | 23,746 | 3,804 | 3,811 | 10,413 | 10,396 | 2,665 | 2,620 | 1,882 | 1,857 | 43,520 | 42,429 | | Total Transit | 756,180 | 735,666 | 26,938 | 27,029 | 187,871 | 187,372 | 108,803 | 108,638 | 44,795 | 43,674 | 1,124,587 | 1,102,380 | $O:\\ \mbox{\colored} Log\\ \mb$ ### 6.6 References - AECOM Consult, Inc. AECOM Consult Mode Choice Computation Programs, AEMS, Users Guide. Draft report. Fairfax, Virginia: AECOM Consult, Inc., April 5, 2005. - Federal Transit Administration. "12 Early Quality-of-Service Analysis of the Alternatives" presented at the Travel Forecasting for New Starts Proposals Workshop, Minneapolis, Minnesota, June 16, 2006. http://www.fta.dot.gov/planning/newstarts/planning\_environment\_5402.html. - Griffiths, Robert E. "2008 Regional Bus Survey: Preliminary Results" presented at the Travel Forecasting Subcommittee of the TPB Technical Committee of the National Capital Region Transportation Planning Board, held at the Metropolitan Washington Council of Governments, Washington, D.C., May 22, 2009. - Jain, Manish. Memorandum to Ronald Milone and Mark Moran. "MWCOG network coding guide for Nested Logit Model." Memorandum, February 2008. - Martchouk, Mary. Memorandum to Mark Moran. "Comparison of Transit Trips from 2007/2008 HTS to Transit Surveys." Memorandum, August 17, 2010. - ———. Memorandum to Mark Moran. "Developing Bus-only Calibration Targets for 2007." Memorandum, August 17, 2010. - ———. Memorandum to Mark S. Moran. "Developing Transit Calibration Targets for 2007." Memorandum, June 2, 2010. - Milone, Ronald, Hamid Humeida, Mark Moran, and Meseret Seifu. *TPB Travel Forecasting Model, Version 2.3: Specification, Validation, and User's Guide*. Draft report. Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, June 30, 2008. - Moran, Mark S. Memorandum to Ronald Milone. "Using CALIBMS and a simulated trip table to calibrate the nested-logit mode choice model that is part of the TPB Version 2.3 travel model on the 3,722-TAZ area system." Memorandum, February 19, 2011. - ——. Memorandum to Ronald Milone. "Using CALIBMS and an observed trip table to calibrate the nested-logit mode choice model that is part of the TPB Version 2.3 travel model on the 3,722-TAZ area system." Memorandum, January 19, 2011. - NuStats. 2008 Regional Bus Survey: Draft Report. Austin, Texas: Metropolitan Washington Council of Governments (COG), June 2009. - ———. *Baltimore 2007-2008 On-Board Study: Final Report*. Austin, Texas: Maryland Transit Administration, December 2008. - Reschovsky, Clara. *Analysis of 2008 Bus Survey Data, WMATA On-Board Survey*. Internal Report. Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, June 30, 2010. - Ryan, Jim. "Travel Forecasting for New Starts: The FTA Perspective," April 7, 2004. - Virginia Railway Express. 2005 Passenger Survey. Virginia Railway Express, n.d. http://www.vre.org/feedback/cs survey/survey results index.htm. - WB&A Market Research. 2007 Metrorail Passenger Survey Final Report. Washington Metropolitan Area Transit Authority, October 16, 2007. - ———. "2008 Metrorail Passenger Survey," 2008. - Williams, Bruce. "Revised Calibration Results with Additional Revisions to Transit Components of Washington Regional Demand Forecasting Model" presented at the Transit Modeling Meeting, held at the Metropolitan Washington Council of Governments, Washington, D.C., March 2, 2005. - Woodford, Bill. "Development of Revised Transit Components of Washington Regional Demand Forecasting Model" presented at the Transit Modeling Meeting, held at the Metropolitan Washington Council of Governments, Washington, D.C., December 1, 2004. # **Chapter 7 Time-of-Day Model** The time-of-day model for the Version 2.3 travel model apportions daily vehicle trips among four modeled time-of-day periods, prior to the traffic assignment step. This chapter presents the details of the model and the development of the peaking factors. ### 7.1 Model Structure The time-of-day model, which follows the mode choice model, addresses the temporal dimension of travel. The model distributes daily trips by purpose and mode to specific periods of the day, in preparation for the traffic assignment step. The four modeled time periods considered in the Version 2.3 model are defined as the AM peak period (6-9 AM), the midday period (9 AM - 3 PM), the PM peak period (3 PM - 7 PM) and the nighttime/early morning period (7 PM - 6 AM). Note that the AM peak period is defined as being three hour long (as it was in Version 2.2), but the PM peak period is now defined as being four hours long (compared to three hours in Version 2.2). The distribution of daily trips to specific time periods are made with time-in-motion factors developed from the 2007/2008 HTS. The factors, shown as Table 63, have been developed on the basis of purpose, mode, and directionality of the trip (with respect to the home-end and non-home ends of the trip). The truck and various non-modeled auto driver travel markets are also converted from daily trip tables to the three time periods using a system of temporal factors. The factors are summarized in Table 62. Table 62 Version 2.3 Temporal Factors (Percentages) For Truck and Non-Modeled Travel Markets | Time | | | | Travel | Market | | | | |--------|---------|--------|-------|----------|-----------|---------|---------|---------| | Period | Comm. | Medium | Heavy | X-X Auto | Taxi Auto | Tourist | School | Airport | | | Vehicle | Truck | Truck | Dr | Dr | Auto Dr | Auto Dr | Auto Dr | | | | | | | | | | | | AM | 18.70 | 25.00 | 20.00 | 18.70 | 18.70 | 18.70 | 18.70 | 23.10 | | MD | 32.63 | 45.00 | 50.00 | 32.63 | 32.63 | 32.63 | 32.63 | 36.57 | | | | | | | | | 0.2.00 | | | PM | 32.89 | 20.00 | 10.00 | 32.89 | 32.89 | 32.89 | 32.89 | 25.38 | | | | | | | | | | | | NT | 15.78 | 10.00 | 20.00 | 15.78 | 15.78 | 15.78 | 15.78 | 14.95 | | | | | | | | | | | Note: Medium & Heavy truck factors were updated as part of the truck modeling update \_ <sup>&</sup>lt;sup>65</sup> Mark S. Moran to Ronald Milone, "Choosing the breakpoints for and duration of time-of-day periods used in the Version 2.3 travel model," Memorandum, October 21, 2010. The temporal factors shown for medium and heavy trucks were recently updated as part of the revised truck modeling effort. The remaining temporal factors were based on professional judgment. The directional splits for the above auto trips are 50/50 (all time periods). The directional X/I and IX split for external commercial and truck trips 70/30, 30/70, and 50/50, for the AM, PM, and off-peak periods, respectively. In application, these factors are assumed to remain *constant* over time. Although it is reasonable to expect, that congestion will encourage traffic spreading from the AM and PM periods to the off-peak, the peak spreading phenomenon is complex and not well understood in the profession. Instead of addressing this issue in the regional model, TPB accounts for peak spreading issues in its travel model post-processor (also known as the mobile emissions post processor), where hourly volume and speed estimates are formulated.<sup>67</sup> <sup>&</sup>lt;sup>66</sup> William G. Allen, *Development of a Model for Truck Trips* (Windsor, South Carolina: Prepared for the Metropolitan Washington Council of Governments/National Capital Region Transportation Planning Board, January 14, 2008). <sup>&</sup>lt;sup>67</sup> Hamid Humeida, "Emissions post processor used for the Air Quality Conformity Determination of the 2008 CLRP and the FY2009-2014 TIP," Memorandum, April 27, 2009; Ronald Milone and Hamid Humeida to Files, "Mobile Emissions Post-Processor Description and Results," Memorandum, May 26, 2009. Table 63 Temporal travel distributions by purpose, mode, and direction | Purpose | Mode | Direction | АМ | MD | PM | NT | |---------|----------------|--------------|-------|-------|-------|-------| | | Auto Driver | Home-NonHome | 66.53 | 19.99 | 4.17 | 9.31 | | | | NonHome-Home | 1.41 | 8.16 | 70.77 | 19.66 | | | Drive Alone | Home-NonHome | 67.06 | 19.69 | 3.89 | 9.36 | | HBW | | NonHome-Home | 1.59 | 8.20 | 69.67 | 20.54 | | ПБ | Carpool Person | Home-NonHome | 58.06 | 25.85 | 7.90 | 8.19 | | | | NonHome-Home | 0.25 | 8.69 | 75.95 | 15.11 | | | Transit | Home-NonHome | 74.63 | 16.70 | 0.81 | 7.86 | | | | NonHome-Home | 0.19 | 2.78 | 79.88 | 17.15 | | | Auto Driver | Home-NonHome | 15.43 | 41.71 | 28.17 | 14.69 | | | | NonHome-Home | 1.49 | 32.12 | 38.24 | 28.15 | | | Drive Alone | Home-NonHome | 20.84 | 43.46 | 22.08 | 13.62 | | HBS | | NonHome-Home | 2.10 | 33.17 | 39.24 | 25.49 | | 1100 | Carpool Person | Home-NonHome | 6.38 | 37.49 | 40.09 | 16.04 | | | | NonHome-Home | 0.30 | 29.26 | 35.89 | 34.55 | | | Transit | Home-NonHome | 35.42 | 43.24 | 14.49 | 6.85 | | | | NonHome-Home | 0.36 | 25.76 | | 35.03 | | | Auto Driver | Home-NonHome | 24.26 | 38.71 | 25.24 | 11.79 | | | | NonHome-Home | 6.96 | 27.53 | 35.58 | 29.93 | | | Drive Alone | Home-NonHome | 22.43 | 42.19 | 23.05 | 12.33 | | НВО | | NonHome-Home | 9.34 | 29.41 | 31.68 | 29.57 | | 1100 | Carpool Person | Home-NonHome | 33.57 | 30.60 | 26.06 | 9.77 | | | | NonHome-Home | 2.37 | 22.94 | 45.92 | 28.77 | | | Transit | Home-NonHome | 41.28 | 41.23 | 13.20 | 4.29 | | | | NonHome-Home | 0.52 | 23.33 | 43.54 | 32.61 | | | Auto Driver | Home-NonHome | 12.33 | 43.14 | 38.80 | 5.73 | | | | NonHome-Home | 12.33 | 43.14 | 38.80 | 5.73 | | | Drive Alone | Home-NonHome | 12.93 | 42.82 | 38.36 | 5.89 | | NHW | | NonHome-Home | 12.93 | 42.82 | 38.36 | 5.89 | | | Carpool Person | Home-NonHome | 12.46 | 41.92 | 39.87 | 5.75 | | | | NonHome-Home | 12.46 | 41.92 | 39.87 | 5.75 | | | Transit | Home-NonHome | 17.35 | 24.71 | 51.08 | 6.86 | | | | NonHome-Home | 17.35 | 24.71 | 51.08 | 6.86 | | | Auto Driver | Home-NonHome | 4.07 | 55.33 | 29.87 | 10.73 | | | | NonHome-Home | 4.07 | 55.33 | 29.87 | 10.73 | | | Drive Alone | Home-NonHome | 4.92 | 57.58 | 28.17 | 9.33 | | NHO | | NonHome-Home | 4.92 | 57.58 | 28.17 | 9.33 | | | Carpool Person | Home-NonHome | 3.69 | 47.29 | 35.48 | 13.54 | | | | NonHome-Home | 3.69 | 47.29 | 35.48 | 13.54 | | | Transit | Home-NonHome | 5.92 | 39.82 | 45.49 | 8.77 | | | | NonHome-Home | 5.92 | 39.82 | 45.49 | 8.77 | # Chapter 8 Traffic Assignment/Feedback The traffic assignment step is used to load a trip table onto the highway network in order to produce network link flows and speeds. The traffic assignment process of the Version 2.3 model is detailed in this chapter. # 8.1 Updated features Table 64 compares how traffic assignment features have changed from Version 2.2 to Version 2.3. Following the table is 1) a brief discussion of some of these items, and 2) more detailed descriptions of some features. Table 64 A comparison of traffic assignment features in the Version 2.2 and 2.3 travel models | Feature | Version 2.2 | Version 2.3 | |--------------------------------|------------------------------------------|---------------------------------------------------| | Methodology | Static, user equilibrium traffic | Same | | | assignment | | | Algorithm | Frank-Wolfe | Bi-conjugate Frank-Wolfe | | Volume delay function | Conical | Same | | Queuing delay function | Yes, sigmoid curve | None | | User classes | 5 | 6 (added commercial vehicles) | | Time of day periods | AM, PM, off peak | AM, PM, midday, and off peak | | Convergence criterion | 60 user equilibrium iterations per time- | A relative gap of 10 <sup>-3</sup> (0.001) or 200 | | | of-day period | user equilibrium iterations, whichever | | | | is attained first | | Speed feedback iterations | 7 (pump prime, i1, i2, i3, i4, i5, i6) | 5 (pump prime, i1, i2, i3, i4) | | Two-step traffic assignment | Yes | Yes | | (see section 8.3 on page 99) | | | | Double run of the travel model | Yes | Yes | | to address Northern Virginia | | | | HOV/HOT lane policy (see | | | | section 8.4 on page 102) | | | | Number of zone-to-zone | $2,191^2 = 4,800,481$ | $3,722^2 = 13,853,284$ | | interchanges | | (increased by a factor of 2.86 or 186%) | | Free-flow capacity and speed | | Updated | | lookup tables | | | The Version 2.3 travel model traffic assignment process uses a static, user-equilibrium traffic assignment, implemented with a bi-conjugate Frank-Wolfe traffic assignment. The bi-conjugate FW assignment is a new link-based algorithm offered by Citilabs in their traffic assignment module (HIGHWAY). In tests that TPB staff conducted in November and December of 2010, the bi-conjugate FW offered a 20% decrease in run times compared to the classic Frank-Wolfe. The Version 2.3 traffic assignment uses a conical volume delay function, but foregoes the queuing delay function that had been added to the Version 2.2 travel model (see discussion later in the chapter). Whereas the Version 2.2 traffic assignment process used five user classes, the Version 2.3 model uses six user classes (commercial vehicles is now its own user class). For the Version 2.2 traffic assignment, the convergence/stopping criterion was simply to stop after 60 user equilibrium (UE) iterations. In Version 2.3, there is a dual convergence/stopping criterion: attain a relative gap of 10<sup>-3</sup> (0.001) or 200 user equilibrium iterations, whichever comes first. This means that the Version 2.3 traffic assignment reaches a more converged solution than was the case with Version 2.2 and it also means that the six user classes should be similarly converged. By contrast, in Version 2.2, since each user class went to 60 UE iterations, some of the five were more converged than others, as is shown later in this chapter. The Version 2.3 traffic assignment continues to use both the two-step traffic assignment and the double run of the travel model to address Northern Virginia HOV/HOT lane policy, both of which are discussed in greater detail later in this chapter. The maximum TAZ number has increased from 2,191 to 3,722, a 70% increase. However, traffic assignment run times scale with the matrix size, so there has been an increase of 186% or a factor of 2.86. In the past, half of the model run time was spent on traffic assignment. Although we have not computed what this percentage is for the new model, we do know that a typical run time for the entire Version 2.2 travel model (traffic assignment and other steps) on our travel model server was about 18 hours and the new model takes about 58 hours (a factor of 3.2). This is due primarily to the increased size of the matrices, the increased convergence in traffic assignment, the addition of a sixth user class in traffic assignment, and the fact that we now use four time-of-day periods (up from the previous three). For reference when model run times are discussed, the specifications or "specs" of the travel model server used by the models development staff (TMS3) are shown in Table 65. Table 65 Specs of travel model server tms3 | Item | Spec | |--------------------------------|--------------------------------------------------| | Processor name and speed | Intel Xeon W5580 CPU @ 3.20GHz | | Number of processors in system | 2 | | Active cores per processor | 4 | | Total number of cores | 8 | | L2 Cache | 4 x 256 KB | | System Bus Frequency | 133 MHz | | Memory | 4.0 GB | | Hard drive | Network attached storage (NAS, O drive), 1.99 TB | | Operating system | Windows Server Standard, SP2, 32-bit | Ref: O:\model\_dev\computer\_specs\_2011-01.xlsx ### 8.2 Model structure The traffic assignment step is executed five times during a given model run. The first assignment is called the "pump prime" traffic assignment. The last four traffic assignments, which occur as part of the speed feedback loop, are called iteration 1, 2, 3, and 4. For each of the five traffic assignments, there are actually four individual traffic assignments, one for each time-of-day period: AM peak period (3 hours: 6:00 AM to 9:00 AM) Midday period (6 hours: 9:00 AM to 3:00 PM) PM peak period (4 hours: 3:00 PM to 7:00 PM) • Night/early morning period (11 hours: 7:00 PM to 6:00 AM) The trips loaded in each time period are comprised of all purposes, as allocated by the time-of-day model. The trip tables that are loaded to the network are segmented into six user classes: - 1. Single-occupant vehicles (SOVs) - 2. Two-occupant HOVs - 3. Three-occupant HOVs - 4. Commercial vehicles - 5. Medium/heavy truck - 6. Airport auto driver In Version 2.2, there were only five user classes, since the commercial vehicles category was grouped with medium/heavy truck. The primary reason for distinguishing truck markets is to allow for the option of using passenger car equivalents (PCEs) in the traffic assignment process. The use of PCE's has not yet been implemented, but they will be considered in future developmental work. ### 8.3 Two-step traffic assignment To better understand the two-step assignment, it is necessary to discuss its development as part of the Version 2.2 travel model. The Version 2.2 traffic assignment process prior to the fall of 2008 consisted of three separate assignment executions: AM peak period, PM peak period, and the off-peak period (See Figure 18). The stopping criterion used was a fixed number UE iterations per time period (i.e., 60). To respect the various highway path options and prohibitions in the Washington region, five separate markets or "user classes" (trip tables) were loaded during each assignment execution: - 1. Single-occupant vehicles, including commercial vehicles (SOV), - 2. 2-occupant vehicles (HOV2), - 3. 3+occupant vehicles (HOV3+), - 4. Trucks (medium and heavy), and - 5. Airport passenger vehicles. | | # UE Iterations | Period | Trip Markets Assigned | |--------------|-----------------|----------|---------------------------------------------------------------------| | Assignment 1 | 60 | АМ | 1 SOV<br>2 HOV 2-Occ.<br>3 HOV 3+-Occ.<br>4 Trucks<br>5 Airport Pax | | Assignment 2 | 60 | PM | 1 SOV<br>2 HOV 2-Occ.<br>3 HOV 3+-Occ.<br>4 Trucks<br>5 Airport Pax | | Assignment 3 | 60 | Off-Peak | 1 SOV<br>2 HOV 2-Occ.<br>3 HOV 3+-Occ.<br>4 Trucks<br>5 Airport Pax | Figure 18 Traffic assignment in the Version 2.2 Travel Model prior to fall 2008: three assignments, each with five market segments (user classes), resulting in 180 user equilibrium iterations Source: Ronald Milone and Mark Moran, "TPB Models Development Status Report" (Presentation at the Travel Forecasting Subcommittee presented at the Travel Forecasting Subcommittee, Washington, D.C., November 21, 2008). This type of assignment is known as a multi-class assignment. Although separate link volumes are developed for each of the five markets, the final loaded links file ultimately contains total volumes, speeds, and volume-to-capacity (V/C) ratios for each time period. The Version 2.2 travel model includes a speed feedback loop. The AM and off-peak SOV restrained times resulting from the traffic assignment step are fed back into trip generation (via transit accessibility), trip distribution, and mode choice. In standard application of the travel model, the four-step process is executed a total of seven times, hence seven traffic assignments. The first of these traffic assignments is known as the "pump prime" assignment, since it primes the pump, or gets the process started. The pump prime assignment uses free-flow link speeds (based on a lookup table) and exogenous mode choice percentages (i.e., the mode choice model is not run). In the six subsequent applications of the four-step model, congested link speeds are used and the mode choice model is executed. A link-level "method of successive averaging" (MSA) process is applied after each successive highway assignment process to ensure that highway volumes (and hence speeds) will stabilize. The MSA averaging is performed on the basis of total (non-segmented) link volumes, and is performed individually for each time period. In the fall of 2008, as part of air quality conformity work, the traffic assignment process was modified to improve the assignment of HOV/HOT traffic on the Capital Beltway in Virginia and the I-395 Shirley $<sup>^{68}</sup>$ The total number of all-or-nothing traffic assignments is 1,260 (= 7 speed feedback loops x 3 time-of-day periods x 60 UE iterations). Traffic assignment accounts for over half of the model run time. Highway.<sup>69</sup> The previous process, describe above included three traffic assignments by time period with five user classes, resulting in 180 UE iterations per speed feedback iteration, or 1,260 UE iterations per model run. The revised process, shown in Figure 19, splits the AM traffic assignment into two parts: non-HOV 3+ (i.e., SOV, HOV2, trucks, and airport passengers) and HOV 3+. Similarly, the PM traffic assignment is also split into the same two parts: non-HOV 3+ and HOV3+. This new traffic assignment process is sometimes referred to as the "two-step assignment," since it splits the AM and PM assignment each into two parts.<sup>70</sup> The result is five (not three) traffic assignments, with either four, one, or five user classes, depending on which assignment is being conducted. The fifth traffic assignment, representing the off-peak period, includes all five trip markets – it is only the AM and PM peak assignments where the non-HOV 3+ and HOV 3+ are split out. This results in 300 UE iterations per speed feedback iteration, or 2,100 UE iterations per model run (a 67% increase). In the first step of the two-step assignment (assignments #1 and #3), non-HOV 3+ traffic (i.e., SOV, HOV 2, truck, and airport passenger trips) is assigned to all facilities (HOV and general purpose). In the second step, HOV 3+ traffic is assigned to HOT lanes and other facilities on the partially loaded network. The pre-assignment of non-HOV 3+ traffic results in congested link speeds for the general purpose lanes. This means that HOV 3+ traffic has a greater incentive to use HOV facilities, which results in improved HOV 3+ loadings on priority-use and general-use facilities. - <sup>&</sup>lt;sup>69</sup> Ronald Milone and Mark Moran, "TPB Models Development Status Report" (presented at the Travel Forecasting Subcommittee of the TPB Technical Committee of the National Capital Region Transportation Planning Board, held at the Metropolitan Washington Council of Governments, Washington, D.C., November 21, 2008). <sup>&</sup>lt;sup>70</sup> Jinchul Park to Files, "Two Step Traffic Assignment for HOT Lane Modeling in 2008 CLRP," Memorandum, December 2, 2008. | | # UE Iterations | Period | Trip Markets Assigned | |--------------|-----------------|----------|---------------------------------------------------------------------| | Assignment 1 | 60 | АМ | 1 SOV<br>2 HOV 2-Occ.<br>3 Trucks<br>4 Airport Pax | | Assignment 2 | 60 | AM | 1 HOV 3+-Occ. | | Assignment 3 | 60 | PM | 1 SOV<br>2 HOV 2-Occ.<br>3 Trucks<br>4 Airport Pax | | Assignment 4 | 60 | PM | 1 HOV 3+-Occ. | | Assignment 5 | 60 | Off-Peak | 1 SOV<br>2 HOV 2-Occ.<br>3 HOV 3+-Occ.<br>4 Trucks<br>5 Airport Pax | Figure 19 Traffic assignment in the Version 2.2 Travel Model after fall 2008: five assignments, with one, four, or five user classes, resulting in 300 user equilibrium iterations Source: Ronald Milone and Mark Moran, "TPB Models Development Status Report" (Presentation at the Travel Forecasting Subcommittee presented at the Travel Forecasting Subcommittee, Washington, D.C., November 21, 2008). <u>The Version 2.3 travel model continues to use the same two-step assignment shown in Figure 19, except that there are six user classes, not five, as discussed in section 8.2 (Model structure) on page 98.</u> # 8.4 Double run of the travel model to address Northern Virginia HOV/HOT lane policy The Version 2.2 travel model requires two model runs be performed for each scenario being modeled to address the stated policy of Virginia Department of Transportation (VDOT) that HOT facilities will not degrade the operations of HOV users. The "base run" captures the travel time for unimpeded flow of HOV traffic on HOT lanes, consistent with the stated operational policy. The "conformity run" or "final run" of the travel model substitutes the HOV skims obtained for the HOV skims that would otherwise be obtained by simply skimming the networks with HOT lanes in operation. Only the HOV skims are taken from the "base run." Skims for all other modes are taken from the "conformity run." Under this framework, the "base run" serves solely as a means for measuring times for HOV traffic on HOT facilities. This procedure, which is also called the "HOV 3+ skim substitution option," is described on page 1-10 of the Version 2.2 documentation. The procedure is a scenario of the version 2.2 documentation. Cambridge Systematics, Inc. (CS) has proposed eliminating the double run of the travel model to address Northern Virginia HOV/HOT lane policy by combining the two steps into one step. The consultant cites \_ <sup>&</sup>lt;sup>71</sup> Ronald Milone et al., *TPB Travel Forecasting Model, Version 2.2: Specification, Validation, and User's Guide* (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, March 1, 2008), 1-10. the following benefits: less time needed for model runs and greater consistency in mode choice modeling. 72 TPB staff is currently considering the pros and cons of eliminating the double run procedures, but has not chosen to eliminate it yet. Consequently, the double run of the travel model to address Northern Virginia HOV/HOT lane policy is still a part of the Version 2.3 travel model. ## 8.5 Convergence in traffic assignment The convergence of the traffic assignment step for the Version 2.2 travel model is shown in Figure 20. This comes from a recent air quality conformity analysis. 73 The y-axis shows the relative gap, using a logarithmic scale, and the x-axis shows the number of UE iterations. <sup>&</sup>lt;sup>73</sup> Ronald Milone and Meseret Seifu to Files, "Transmittal of Version 2.2 Travel Model files as per the October 21, 2009 Amendment to the 2009 CLRP/FY 2010-2015 TIP Air Quality Conformity Determination," Memorandum, October 29, 2009. Figure 20 Relative gap by user equilibrium traffic assignment iteration: Version 2.2 Travel Model (final speed feedback iteration, i6) Source: Transmittal of Version 2.2 Travel Model files as per the October 21, 2009 Amendment to the 2009 CLRP/FY 2010-2015 TIP Air Quality Conformity Determination (O:\model\_dev\Version2.2\_Jan08\_Conformity2010Amended\_Xmittal\2002\_Conf). Ref: I:\ateam\from consults\modelScanTaskOrder\2008 cs\2010\trafficAssignRelGapByIterVer2.2 2010 LogScale.pdf. The current Version 2.2 travel model is reaching the following traffic assignment relative gaps - about 10<sup>-2</sup> (ca. 0.01 to 0.02) for the AM and PM non-HOV 3+ assignments - about 10<sup>-3</sup> (ca. 0.002) for the off-peak assignment - about 10<sup>-4</sup> (ca. 0.0001 to 0.0002) for the AM and PM HOV 3+ assignments Figure 21 Relative gap by user equilibrium traffic assignment iteration: Version 2.3 Travel Model (final speed feedback iteration, i4) Ref: O:\model\_dev\trafficAssignRelGapByIterVer2.3\_200ue.xlsx By contrast, the Version 2.3 travel model is reaching the same level of convergence (a relative gap of $10^{-3}$ , or 0.001) for each of the six user classes. So, the Version 2.3 traffic assignment reaches a greater level of convergence than Version 2.2, and each of the six user classes is equally converged. In this case of the two HOV3+ assignments (AM and PM), it takes only about 20 UE iterations to reach a relative gap of $10^{-3}$ . In the case of the two peak-period non-HOV assignments, it takes about 150 to 170 UE iterations to reach a relative gap of $10^{-3}$ . ### 8.6 Removal of queuing delay function The TPB, like most MPOs in the U.S., uses a static traffic assignment (STA), which means that demand is assumed to be constant during the specific assignment period (in TPB's example: AM peak period, PM peak period, midday, and night). In a static traffic assignment model, link speeds are represented by volume-delay functions (VDFs), which capture the fact that as the link becomes more congested, the time to traverse the link goes up. STAs typically do not explicitly account for intersection (node) delay, however the link's VDF can be viewed as implicitly including the sum of the link delay and intersection delay. Another well known limitation of STA models is that some of the loaded links may have assigned volumes that are greater than the physical capacity of the given links, i.e., the volume-to-capacity ratio is greater than one.<sup>74</sup> One of the model enhancements done by TPB staff to minimize the number of overloaded links, particularly freeways and freeway ramps, was the introduction of a queuing delay function (QDF), such as that shown in Equation 8, which would act in conjunction with the VDF, but would be focused on intersection delay. #### Equation 8 Queuing delay function (QDF): Sigmoid $$t_D = a \frac{1}{1 + e^{-b(x-c)}}$$ where $t_D$ = delay time (minutes) $x = \text{link demand to capacity ratio } \left(\frac{V}{C}\right)$ a = amplitude b = slope c = offset The idea was to represent a phenomena that is not natively part of traditional STA models, namely that of queuing and traffic blockages, which result in reduced link speeds. TPB staff found that the addition of a QDF did, in fact, reduce the number of overloaded links. It also, however, may have resulted in some unintended consequences, such as unrealistically slow modeled speeds on freeways and an unrealistic shifting of volume from freeways to arterials, due to the way that QDFs were applied only to freeways and freeway ramps, but not to arterials and other types of roads. As noted by Cambridge Systematics, Inc. in a recent report, the queuing delay is not related to the length of the link, so it is possible for a very short link to have a very high level of queuing delay.<sup>75</sup> Here is a summary of some of the findings/conclusions from CS's recent report: - The TPB model is the only one that CS encountered which applies queuing delay only to freeway links. - The No-QDF scenario achieves approximately the same results without the need for a QDF while using a VDF that has been validated for the Washington region. - The Akçelik function also shows some promise in achieving TPB's goals. - The QDF may not be the most accurate way to capture the desired network constraints. - CS recommended TPB staff consider using a newly calibrated set of link-based VDFs that reflect the breakdown in traffic at higher volumes. Using this approach, TPB could - o Continue use of an expanded and/or re-calibrated conical function - Switch to an Akçelik curve <sup>&</sup>lt;sup>74</sup> Yi-Chang Chiu et al., *A Primer for Dynamic Traffic Assignment* (Transportation Research Board, 2010), http://www.nextrans.org/ADB30/UPLOAD/ssharma/dta\_primer.pdf. <sup>&</sup>lt;sup>75</sup> Cambridge Systematics, Inc., Fiscal Year 2010 Task Reports, 3-7. Possibly employ different functional forms of VDFs on different facility types (e.g., conical functions for freeway versus Akçelik functions for surface streets). From November 2010 to January 2011, TPB staff ran a series of test traffic assignments, some of which used Akçelik functions, such as that shown in Equation 9 and Equation 10. Staff tried implementing these curves as both function and lookup tables in the Cube Voyager scripts. However, it did not seem that the assigned volumes using the Akçelik function were any better at matching the observed volumes and the run times for the Akçelik function were considerably longer. Consequently, TPB staff decided to continue using the conical volume delay function, implemented as a lookup table, and to drop the use of the QDF. Tests conducted by TPB staff indicated that the elimination of the QDF was beneficial for improving the traffic assignment results. Hence, based on these findings and the consultant recommendations, the QDFs were removed. #### Equation 9 Akçelik curve $$t = t_0 + 0.25T \left[ (x - 1) + \sqrt{(x - 1)^2 + \frac{8J_A x}{CT}} \right]$$ where t = average travel time per unit distance (hours/mile) $t_0$ = free-flow travel time per unit distance (hours/mile) $T={ m flow}$ period, i. e. , the time interval in hours, during which an average arrival flow rate V persists C = capacity x = the degree of saturation, i. e., V/C, or volume to capacity ratio J = the delay parameter, a calibration parameter ### Equation 10 Akçelik Delay Function (HCM 2000) $$R = R_0 + D_0 + D_M + 0.25NT \left[ (x - 1) + \sqrt{(x - 1)^2 + \frac{16J * x * L^2}{N^2 T^2}} \right]$$ where R = link traversal time (hours) $R_0 = \text{link traversal time under free flow conditions (hours)}$ $D_0 = \text{zero-flow control delay at signalized intersection (hours)}$ $D_M$ = segment delay between signals- equals zero if no signals (hours) N = number of signals (=1 if no signals) T = expected duration of demand-Typically 1 hour (hours) $x = \text{link demand to capacity ratio } \left(\frac{V}{C}\right)$ J = calibration parameter L = link length (miles) ### 8.7 Volume Delay Functions Volume delay functions (VDFs) are used to develop link speeds at the end of each loading pass. These functions represent the ratio of congested travel time to the free-flow time as a function of the volume-to-capacity (V/C) ratio. The function typically varies by facility type. Like the Version 2.2 travel model, the Version 2.3 travel model uses conical volume delay functions (see Equation 11).<sup>76</sup> #### Equation 11 Conical VDF function (Spiess 1990) $$\frac{t}{t_0} = f(x) = 2 + \sqrt{\alpha^2 (1 - x)^2 + \beta^2} - \alpha (1 - x) - \beta$$ where t =Congested link travel time $t_0$ = Link free-flow travel time $x = \frac{V}{C} = \text{link volume to capacity ratio}$ $\alpha$ = slope of the function at $\frac{V}{C}$ =1 (slope must be>1.0) $$\beta = \frac{2\alpha - 1}{2\alpha - 2}$$ Table 66 shows, in tabular form, the conical VDFs used in the Version 2.3 travel model. There is a separate curve for each facility type, although ramps and freeways are assumed to have the same VDF. <sup>&</sup>lt;sup>76</sup> Heinz Spiess, "Conical Volume-Delay Functions," *Transportation Science* 24, no. 2 (May 1, 1990): 153-158, http://transci.journal.informs.org/cgi/content/abstract/24/2/153. The conical VDFs are shown in graphical form in Figure 22 (for V/C >1) and Figure 23 (for V/C $\leq$ 1). In reality, no link would ever have a V/C ratio above one. However, in a typical regional travel model, V/C ratios above 1 do occur, so the VDF needs to account for this domain. Figure 23 shows the behavior of the Version 2.3 conical VDFs for large V/C ratios (V/C >1). The curve for freeways is the steepest, followed by expressways, then major arterials, minor arterials, and collectors. A steeper curve means more sensitivity to high V/C ratios, forcing excess traffic off of these facilities. Figure 22 shows the behavior of the Version 2.3 conical VDFs for V/Cs less than or equal to one. In this area of V/C ratio, the freeways show the least sensitivity to V/C ratio, but, as the V/C ratio approaches 1, the freeway VDFs have the steepest slope (a slope of 15). In Figure 24, the vertical axis now shows congested speed (not ratio of congested to free-flow travel time). One can see that, for freeways, the congested speed drops to about 2 mph at a V/C ratio of 2.00. Table 66 Conical volume-delay functions used in the Version 2.3 travel model: Tabular format | | Centroid<br>(FT=0) | Freeway<br>(FT=1) | Maj Art<br>(FT=2) | Min Art<br>(FT=3) | Collector<br>(FT=4) | Exprw<br>(FT=5) | Ramps<br>(FT=6) | |-------|--------------------|-------------------|-------------------|-------------------|---------------------|-----------------|-----------------| | а | | 15 | 7 | 5.5 | 3 | 8 | 15 | | b | | 1.035714 | 1.083333 | 1.111111 | 1.25 | 1.071429 | 1.035714 | | | | | | | | | | | v/c | t/t0 | 0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | 0.1 | 1.000 | 1.004 | 1.009 | 1.012 | 1.025 | 1.008 | 1.004 | | 0.2 | 1.000 | 1.009 | 1.020 | 1.027 | 1.056 | 1.018 | 1.009 | | 0.3 | 1.000 | 1.015 | 1.035 | 1.046 | 1.094 | 1.030 | 1.015 | | 0.4 | 1.000 | 1.024 | 1.054 | 1.071 | 1.141 | 1.047 | 1.024 | | 0.5 | 1.000 | 1.035 | 1.080 | 1.105 | 1.203 | 1.070 | 1.035 | | 0.6 | 1.000 | 1.053 | 1.119 | 1.154 | 1.283 | 1.103 | 1.053 | | 0.7 | 1.000 | 1.082 | 1.180 | 1.228 | 1.390 | 1.157 | 1.082 | | 0.8 | 1.000 | 1.138 | 1.287 | 1.352 | 1.537 | 1.254 | 1.138 | | 0.9 | 1.000 | 1.287 | 1.506 | 1.579 | 1.735 | 1.466 | 1.287 | | 1 | 1.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | | 1.1 | 1.000 | 4.287 | 2.906 | 2.679 | 2.335 | 3.066 | 4.287 | | 1.2 | 1.000 | 7.138 | 4.087 | 3.552 | 2.737 | 4.454 | 7.138 | | 1.3 | 1.000 | 10.082 | 5.380 | 4.528 | 3.190 | 5.957 | 10.082 | | 1.4 | 1.000 | 13.053 | 6.719 | 5.554 | 3.683 | 7.503 | 13.053 | | 1.5 | 1.000 | 16.035 | 8.080 | 6.605 | 4.203 | 9.070 | 16.035 | | 1.6 | 1.000 | 19.024 | 9.454 | 7.671 | 4.741 | 10.647 | 19.024 | | 1.7 | 1.000 | 22.015 | 10.835 | 8.746 | 5.294 | 12.230 | 22.015 | | 1.8 | 1.000 | 25.009 | 12.220 | 9.827 | 5.856 | 13.818 | 25.009 | | 1.9 | 1.000 | 28.004 | 13.609 | 10.912 | 6.425 | 15.408 | 28.004 | | 2 | 1.000 | 31.000 | 15.000 | 12.000 | 7.000 | 17.000 | 31.000 | | 2.1 | 1.000 | 33.997 | 16.393 | 13.090 | 7.579 | 18.594 | 33.997 | | 2.2 | 1.000 | 36.994 | 17.786 | 14.182 | 8.161 | 20.188 | 36.994 | | 2.3 | 1.000 | 39.992 | 19.181 | 15.275 | 8.745 | 21.784 | 39.992 | | 2.4 | 1.000 | 42.990 | 20.576 | 16.369 | 9.332 | 23.380 | 42.990 | | 2.5 | 1.000 | 45.988 | 21.972 | 17.463 | 9.920 | 24.976 | 45.988 | | 2.6 | 1.000 | 48.987 | 23.369 | 18.559 | 10.510 | 26.573 | 48.987 | | 2.7 | 1.000 | 51.985 | 24.766 | 19.655 | 11.101 | 28.171 | 51.985 | | 2.8 | 1.000 | 54.984 | 26.163 | 20.751 | 11.693 | 29.768 | 54.984 | | 2.9 | 1.000 | 57.983 | 27.561 | 21.848 | 12.285 | 31.366 | 57.983 | | 3 | 1.000 | 60.982 | 28.959 | 22.945 | 12.879 | 32.964 | 60.982 | | 999.9 | 1.000 | 60.982 | 28.959 | 22.945 | 12.879 | 32.964 | 60.982 | Figure 22 Conical volume-delay functions used in the Version 2.3 travel model: V/C > 1 Figure 23 Conical volume-delay functions used in the Version 2.3 travel model: V/C < 1 Figure 24 Freeway Speed # 8.8 Speed and Capacity Tables Two of the parameters that are necessary as inputs to the VDF are free-flow capacities and speeds. Free-flow capacity is defined as level-of-service (LOS) E capacity. The assumed free-flow speeds and capacities vary by facility type and area type. The Version 2.3 capacities and free flow capacities and speeds are defined in Table 67 and Table 68. **Table 67 Free Flow Capacities** | | | Area type | | | | | | | |-----------------|------|-----------|------|------|------|------|--|--| | | 1 | 2 | 3 | 4 | 5 | 6 | | | | Freeways | 2100 | 2100 | 2100 | 2100 | 2100 | 2200 | | | | Major Arterials | 800 | 800 | 960 | 960 | 1260 | 1260 | | | | Minor Arterials | 500 | 600 | 700 | 840 | 1000 | 1000 | | | | Collectors | 500 | 500 | 600 | 700 | 700 | 800 | | | | Expressways | 1100 | 1200 | 1200 | 1400 | 1600 | 1600 | | | **Table 68 Free Flow Speeds** | | | Area type | | | | | | | |-----------------|----|-----------|----|----|----|----|--|--| | | 1 | 2 | 3 | 4 | 5 | 6 | | | | Freeways | 55 | 55 | 60 | 60 | 67 | 67 | | | | Major Arterials | 25 | 25 | 35 | 35 | 40 | 45 | | | | Minor Arterials | 20 | 20 | 30 | 30 | 35 | 40 | | | | Collectors | 20 | 20 | 25 | 25 | 25 | 30 | | | | Expressways | 45 | 45 | 50 | 50 | 50 | 55 | | | # 8.9 Peaking Factor Assumptions Another important temporal parameter in the traffic assignment process is the peaking factor, which is the proportion of traffic in a given time period which occurs in the peak hour of the period. Link speeds are a function of the volume-to-capacity (V/C) ratio. The peaking factor is necessary for converting hourly lane capacities into "period lane capacities," from which V/C ratios are computed. The Version 2.3 model requires peaking factors for the AM, midday, PM, and off-peak time periods. To arrive at regionally appropriate peaking factors, an analysis of total auto driver trips from the 2007/2008 HTS was summarized to the modeled time periods. The maximum hourly volume occurring within each time period was then determined. The resulting peaking factors are show in Table 69. Table 69 Peak Hour Percentage by Time Period based on Total Auto Driver Trips in Motion Distribution | Period | Pct. of Travel | Hours in Period | Peak Hour in Period | Peak Hour Pct | |-----------------|----------------|-----------------|---------------------|---------------| | AM Peak | | | | | | (6:00-9:00) | 18.7% | 3 | 8:00-9:00 AM | 41.7% | | Midday | | | | | | (9:00-15:00) | 32.63% | 6 | 12:00 PM -1:00 PM | 29.4% | | PM Peak | | | | | | (15:00-19:00) | 32.89% | 4 | 5:00-6:00 PM | 17.7% | | All other hours | 15.78% | 11 | 8:00-9:00 PM | 35.0% | | Daily | 100.00% | 24 | 5:00-6:00 PM | 9.7% | # **Chapter 9 Validation** This chapter presents highway and transit performance results of the Version 2.3 model for 2007. The model includes five speed-feedback iterations of the four-step model (pump prime, plus iterations 1 through 4). As mentioned in Chapter 8, there is a dual convergence/stopping criterion for traffic assignment: attain a relative gap of 10<sup>-3</sup> (0.001) or 200 user equilibrium iterations, whichever comes first. A comparison of global demographic and travel-related statistics between the Version 2.3 model and the existing Version 2.2 model is also presented. Another important validation test of any model is the assessment of results produced for a future year. This assessment has not yet been undertaken as of the writing of this report, but will need to be done before Version 2.3 is used in production. While the model is comprised of the numerous calibrated parameters described earlier in this report, it also includes adjustments that were subsequently deemed necessary during initial validation tests of the model. These include trip generation adjustments and K-factors used in trip distribution. Prior experience has shown that these types of adjustments are sometimes necessary to address some observed travel patterns that are not explained well by the travel model. A detailed accounting of the adjustments is documented in Appendix A. ### 9.1 Validation summaries Vehicle miles of travel (VMT) is a standard metric used to assess travel model performance. Simulated VMT is also essential for the estimation of mobile emissions. TPB consulted Highway Performance Monitoring System (HPMS) summaries reported by the local state DOTs to obtain "observed" VMT figures at the jurisdiction level. Care was taken to obtain VMT figures that excluded local facilities, which are not included in the regional highway network. A summary of estimated and observed VMT for the Washington, D.C. Metropolitan Statistical Area (MSA) is shown in Table 70. The MSA area is comprised of 12 of the central jurisdictions within the larger 22-jurisdiction modeled study area. The table indicates that the model presently overestimates VMT in the MSA by 2 percent. Both the Maryland and Virginia portions of the MSA are overestimated by 1% and 2%, respectively. The District of Columbia is underestimated by 6%. Interestingly, this is the first time in recent memory that a TPB travel model has underestimated VMT in the District. It is not clear whether this result is attributed to the new model or to the development of the HPMS data itself. Estimated and observed VMT for all jurisdictions within the modeled study area is shown in Table 71. The observed VMT figure of 156 million is well aligned with the VMT currently simulated by the Version 2.2 model. The simulated VMT for the region is about 1% higher than the observed figure, an excellent match overall. The table indicates that 9 of the 12 jurisdictions in the MSA match observed VMT figures within 10 percent of observed figures. Loudoun County, Prince William County, and Frederick County are overestimated by 10% or more. An explanation for the overestimation will require more investigation. Table 70 2007 Estimated/Observed (HPMS) VMT for the Washington, DC MSA (in thousands) | State | Observed VMT | Estimated VMT | Difference | Pct. Difference | |-------|--------------|---------------|------------|-----------------| | DC | 8,272 | 7,739 | -533 | 0.94 | | MD | 56,366 | 56,677 | 310 | 1.01 | | VA | 50,238 | 51,331 | 1,093 | 1.02 | | Total | 114,876 | 115,746 | 870 | 1.02 | Ref: O:\model\_dev\Ver2.3.Hotel\_22\_1.0nw\_200ue\_adjpa\_kFac2Br\Assignment\_Summary\Jurisdictional\_VMT.xlsx Note: VMT shown excludes local traffic Jurisdictions in the MSA are: District of Columbia, Montgomery County, Prince George's County, Arlington County, City of Alexandria, Fairfax County, Loudoun County, Prince William County, Frederick County, Charles County, Calvert County, Stafford County. Table 71 Year 2007 Estimated and Observed VMT Summary by Jurisdiction (in thousands) | Jurisdiction | Observed VMT | Estimated VMT | Difference (E-O) | Ratio (E/O) | |------------------------|--------------|---------------|------------------|-------------| | District of Columbia | 8,272 | 7,739 | -533 | 0.94 | | Montgomery County | 19,890 | 20,307 | 418 | 1.02 | | Prince George's County | 23,316 | 22,335 | -981 | 0.96 | | Arlington County | 4,392 | 4,215 | -176 | 0.96 | | City of Alexandria | 1,958 | 1,980 | 23 | 1.01 | | Fairfax County | 26,799 | 25,888 | -911 | 0.97 | | Loudoun County | 5,260 | 6,407 | 1,147 | 1.22 | | Prince William County | 8,000 | 8,769 | 769 | 1.10 | | Frederick County | 7,842 | 9,172 | 1,330 | 1.17 | | Howard County | 10,094 | 10,600 | 506 | 1.05 | | Anne Arundel County | 15,330 | 15,369 | 39 | 1.00 | | Charles County | 3,348 | 3,038 | -311 | 0.91 | | Carroll County | 3,395 | 4,397 | 1,002 | 1.30 | | Calvert County | 1,971 | 1,824 | -146 | 0.93 | | St. Mary's County | 2,195 | 2,129 | -66 | 0.97 | | King George County | 789 | 711 | -78 | 0.90 | | City of Fredericksburg | 948 | 822 | -126 | 0.87 | | Stafford County | 3,829 | 4,071 | 242 | 1.06 | | Spotsylvania County | 3,300 | 2,122 | -1,177 | 0.64 | | Fauquier County | 3,149 | 3,137 | -12 | 1.00 | | Clarke County | 770 | 1,009 | 240 | 1.31 | | Jefferson County | 1,082 | 1,445 | 363 | 1.34 | | Total | 155,927 | 157,488 | 1,561 | 1.01 | Ref: O:\model\_dev\Ver2.3.Hotel\_22\_1.0nw\_200ue\_adjpa\_kFac2Br\Assignment\_Summary\Jurisdictional\_VMT.xlsx Estimated and observed daily link volumes on pre-defined "screenlines" in the regional network are also important performance indicators of the regional model. Screenline locations currently analyzed by TPB staff are shown on Figure 25 and Figure 26. The screenline performance of the Version 2.3 model is shown in Table 72. The table also indicates the total number of highway links crossing each screenline and the percentage of links with a coded daily ground count. Unfortunately, the table indicates that only 23% of all links crossing regional screenlines are coded with a ground count. The ground count coverage at the screenline level ranges from 8% to 59%. The minimal level of ground count coverage on screenline links indicates that the performance information is of limited value. Staff will look into collecting ground counts to improve coverage on screenlines. In the Version 2.2 model, the percentage was 37%.<sup>77</sup> A comparison of year-2007 estimated and observed trips by purpose and mode is shown in Table 73. The table includes two columns with observed transit data, one for the 2007/08 HTS and one for the numerous on-board transit surveys collected in or around 2007. The highway trips shown in both "observed" columns are based consistently on the HTS. Although the table is quite busy, a few key points can be made regarding transit performance. First, the total number of transit trips reported by the HTS and by the on-board surveys are within 6% of each other (1.126 million versus 1.063 million). The simulated transit trip total falls in between the two observed figures (1.082 million). However, the proportion of observed transit trips by purpose is different between the two observed sources. The work and non-work shares from the on-board surveys are about 0.67 and 0.33, respectively. By contrast, the corresponding shares from the HTS are 0.53 and 0.46. It is not clear why this difference in proportions exists, but the same share pattern was encountered in earlier Version 2.3 work on the 2,191-TAZ system, working with 2002 data. The Version 2.3 mode choice model was calibrated to targets established by the on-board surveys. Overall estimated regional transit percentage is about 4% less than the observed target percentage (6.30% versus 6.55%). A global comparison of control totals (land use, demographic, and travel) from the Version 2.2 model and Version 2.3 model results is displayed in Table 74. A direct comparison of 2007 results was not possible as the Version 2.2 model has not been executed for that particular year. Instead, the nearest available Version 2.2 simulation years were used for the comparison (2005 and 2011). Staff offers the following observations from the comparison table: - The 2007 land use used in the Version 2.3 simulation reflects a lower average household size than that reflected in the Version 2.2 land use (about 2.5 versus 2.6). This is because the 2007 "Pseudo Round 8.0" land use was informed by recent ACS data. The Round 8.0 Cooperative land use used in the Version 2.2 model is based on 2000 Census data. - The 2007external travel data used in the Version 2.3 model reflects actual 2007 traffic counts. The Version 2.2 external travel is based on earlier traffic count data. - The proportion of transit trips between the travel models, by purpose, is different as noted above. - The HBW car occupancies are notably lower in the Version 2.3 model, in comparison with that of Version 2.2. However, the *reverse* is true for the non-work purposes -- The 2007/08 HTS reports notably larger auto occupancies, for non-work purposes, particularly for the HBO purpose. Overall, \_ <sup>&</sup>lt;sup>77</sup> Ronald Milone et al., *TPB Travel Forecasting Model, Version 2.2: Specification, Validation, and User's Guide* (Washington, D.C.: Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board, March 1, 2008), 9-5. - the Version 2.3 average auto occupancy is higher than that of the Version 2.2 model simulation (1.39 versus 1.26). - The Version 2.3 motorized trip rate is about 7.35/HH, in contrast to the Version 2.2 model rate of about 10.2. This is a substantial difference and may be due, in part, to the lower average household size assumed in the Version 2.3 land activity inputs. - Version 2.3 vehicle trip lengths are longer than that those in the Version 2.2 model (67.3 miles/HH versus 64.8 shown for the 2005 Version 2.2 model). - The VMT appears to track well in the comparison Figure 25 Highway Network Screen lines Map 1 of 2 $Ref: I:\ locum\ FY11\ Ver2.3\ model Doc\ Screen line\ V23\ WO\_Bltway.emf$ Figure 26 Highway Network Screen lines (Inside the Capital Beltway) Map 2 of 2 $Ref: I: \label{lem:condition} I: \label{lem:condition} Ref: I: \label{lem:condition} I: \label{lem:condition} I: \label{lem:condition} I: \label{lem:condition} I: \label{lem:condition} Ref: I: \label{lem:condition} I: \label{lem:condition} I: \label{lem:condition} Ref: I: \label{lem:condition} I: \label{lem:condition} Ref: \label{lem:c$ Table 72 Year 2007 Estimated and Observed Daily Screenline Crossings | | | | | Screenline | Screenline links | Pct. links with | |------------|-----------|-----------|-----------|------------|------------------|-----------------| | Screenline | Estimated | Observed | Est./Obs. | links | with counts | counts | | 1 | 185,470 | 250,195 | 0.74 | 61 | 20 | 32.8% | | 2 | 283,722 | 308,354 | 0.92 | 80 | 19 | 23.8% | | 3 | 203,053 | 259,724 | 0.78 | 78 | 17 | 21.8% | | 4 | 347,367 | 362,914 | 0.96 | 108 | 24 | 22.2% | | 5 | 477,239 | 482,452 | 0.99 | 117 | 23 | 19.7% | | 6 | 565,309 | 651,694 | 0.87 | 189 | 34 | 18.0% | | 7 | 597,568 | 690,454 | 0.87 | 108 | 40 | 37.0% | | 8 | 1,014,071 | 922,408 | 1.10 | 166 | 26 | 15.7% | | 9 | 354,612 | 384,600 | 0.92 | 90 | 23 | 25.6% | | 10 | 69,571 | 93,094 | 0.75 | 37 | 4 | 10.8% | | 12 | 359,021 | 406,676 | 0.88 | 44 | 12 | 27.3% | | 13 | 301,638 | 257,888 | 1.17 | 24 | 6 | 25.0% | | 14 | 250,830 | 280,396 | 0.89 | 40 | 4 | 10.0% | | 15 | 203,780 | 213,416 | 0.95 | 16 | 2 | 12.5% | | 16 | 156,795 | 142,540 | 1.10 | 24 | 2 | 8.3% | | 17 | 113,708 | 169,674 | 0.67 | 84 | 20 | 23.8% | | 18 | 410,107 | 526,638 | 0.78 | 76 | 25 | 32.9% | | 19 | 261,540 | 360,572 | 0.73 | 82 | 29 | 35.4% | | 20 | 690,529 | 627,424 | 1.10 | 17 | 10 | 58.8% | | 22 | 516,746 | 553,576 | 0.93 | 224 | 29 | 12.9% | | 23 | 69,570 | 45,300 | 1.54 | 40 | 8 | 20.0% | | 24 | 322,624 | 313,268 | 1.03 | 66 | 6 | 9.1% | | 25 | 150,023 | 118,250 | 1.27 | 22 | 8 | 36.4% | | 26 | 94,601 | 41,688 | 2.27 | 28 | 10 | 35.7% | | 27 | 293,214 | 238,732 | 1.23 | 20 | 10 | 50.0% | | 28 | 34,182 | 28,824 | 1.19 | 24 | 4 | 16.7% | | 31 | 151,635 | 69,366 | 2.19 | 42 | 18 | 42.9% | | 32 | 66,666 | 41,628 | 1.60 | 20 | 4 | 20.0% | | 33 | 107,878 | 94,534 | 1.14 | 32 | 8 | 25.0% | | 34 | 120,449 | 103,624 | 1.16 | 56 | 12 | 21.4% | | 35 | 513,777 | 554,498 | 0.93 | 62 | 28 | 45.2% | | 36 | 20,267 | 7,002 | 2.89 | 12 | 4 | 33.3% | | 37 | 44,576 | 27,920 | 1.60 | 22 | 8 | 36.4% | | 38 | 118,446 | 154,332 | 0.77 | 50 | 12 | 24.0% | | Total | 9,470,586 | 9,783,655 | 0.97 | 2,199 | 509 | 23.1% | $Ref: O:\\ \mbox{$\mbox{Model\_dev}\end{\mbox{$\mbox{$\mbox{$V$er2.3.$}}.$} Hotel\_22\_1.0nw\_200ue\_adjpa\_kFac2Br\\ \mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mb$ Table 73 Comparison of 2007 Estimated and Observed Trips Purpose and Mode | | | Simulated | Observed - | On-Board S | Surveys | Observed - 2007/08 HTS | | HTS | |--------|------------------|------------|------------|------------|---------|------------------------|----------|-------| | | | | | Diff. | Ratio | | Diff. | Ratio | | | | Trips | Trips | (E- O) | (E/O) | Trips | (E-O) | (E/O) | | | Transit | 723,490 | 756,439 | -32,949 | 0.96 | 571,886 | 151,604 | 1.27 | | | Auto Person | 2,778,101 | 2,744,890 | 33,211 | 1.01 | 2,949,583 | -171,482 | 0.94 | | HBW | Auto Driver | 2,641,021 | 2,596,887 | 44,134 | 1.02 | 2,786,976 | -145,955 | 0.95 | | TIDVV | Motorized Person | 3,501,590 | 3,501,330 | 260 | 1.00 | 3,521,469 | -19,879 | 0.99 | | | Car Occupancy | 1.05 | 1.06 | -0.01 | 0.99 | 1.06 | -0.01 | 0.99 | | | Pct. Transit | 20.70% | 21.60% | -0.90% | 0.96 | 16.20% | 4.50% | 1.28 | | | Transit | 25,567 | 26,906 | -1,339 | 0.95 | 70,250 | -44,683 | 0.36 | | | Auto Person | 2,827,991 | 2,826,387 | 1,604 | 1.00 | 2,811,845 | 16,146 | 1.01 | | HBS | Auto Driver | 1,939,547 | 1,935,254 | 4,293 | 1.00 | 1,934,278 | 5,269 | 1.00 | | 1103 | Motorized Person | 2,853,558 | 2,853,293 | 265 | 1.00 | 2,882,095 | -28,537 | 0.99 | | | Car Occupancy | 1.46 | 1.46 | 0.00 | 1.00 | 1.45 | 0.01 | 1.01 | | | Pct. Transit | 0.90% | 0.94% | -0.04% | 0.95 | 2.40% | -1.50% | 0.38 | | | Transit | 184,390 | 188,675 | -4,285 | 0.98 | 215,477 | -31,087 | 0.86 | | | Auto Person | 6,232,959 | 6,228,929 | 4,030 | 1.00 | 6,205,428 | 27,531 | 1.00 | | НВО | Auto Driver | 3,802,760 | 3,796,911 | 5,849 | 1.00 | 3,808,912 | -6,152 | 1.00 | | ПВО | Motorized Person | 6,417,348 | 6,417,605 | -257 | 1.00 | 6,420,904 | -3,556 | 1.00 | | | Car Occupancy | 1.64 | 1.64 | 0.00 | 1.00 | 1.63 | 0.01 | 1.01 | | | Pct. Transit | 2.90% | 2.94% | -0.04% | 0.99 | 3.40% | -0.50% | 0.85 | | | Transit | 106,783 | 108,896 | -2,113 | 0.98 | 139,584 | -32,801 | 0.77 | | | Auto Person | 1,433,349 | 1,431,537 | 1,812 | 1.00 | 1,471,529 | -38,180 | 0.97 | | NHW | Auto Driver | 1,286,017 | 1,280,948 | 5,069 | 1.00 | 1,326,060 | -40,043 | 0.97 | | INITOV | Motorized Person | 1,540,132 | 1,540,433 | -301 | 1.00 | 1,611,114 | -70,982 | 0.96 | | | Car Occupancy | 1.11 | 1.12 | -0.01 | 0.99 | 1.11 | 0.00 | 1.00 | | | Pct. Transit | 6.90% | 7.07% | -0.17% | 0.98 | 8.70% | -1.80% | 0.79 | | | Transit | 42,073 | 44,854 | -2,781 | 0.94 | 65,365 | -23,292 | 0.64 | | | Auto Person | 2,832,162 | 2,829,448 | 2,714 | 1.00 | 2,851,667 | -19,505 | 0.99 | | NHO | Auto Driver | 1,883,574 | 1,882,425 | 1,149 | 1.00 | 1,904,312 | -20,738 | 0.99 | | INITIO | Motorized Person | 2,874,235 | 2,874,303 | -68 | 1.00 | 2,917,033 | -42,798 | 0.99 | | | Car Occupancy | 1.50 | 1.50 | 0.00 | 1.00 | 1.50 | 0.00 | 1.00 | | | Pct. Transit | 1.50% | 1.56% | -0.06% | 0.96 | 2.20% | -0.70% | 0.68 | | | Transit | 1,082,302 | 1,125,770 | -43,468 | 0.96 | 1,062,563 | 19,739 | 1.02 | | | Auto Person | 16,104,562 | 16,061,191 | 43,371 | 1.00 | 16,290,052 | -185,490 | 0.99 | | TOTAL | Auto Driver | 11,552,919 | 11,492,425 | 60,494 | 1.01 | 11,760,538 | -207,619 | 0.98 | | TOTAL | Motorized Person | 17,186,863 | 17,186,964 | -101 | 1.00 | 17,352,615 | -165,752 | 0.99 | | | Car Occupancy | 1.40 | 1.40 | 0.00 | 1.00 | 1.39 | 0.01 | 1.01 | | | Pct. Transit | 6.30% | 6.55% | -0.25% | 0.96 | 6.10% | 0.20% | 1.03 | Ref: O:\model\_dev\Ver2.3.Hotel\_22\_1.0nw\_200ue\_adjpa\_kFac2Br\summary\Compare\_Mode\_Choice\_v2.xlsx Table 74 Summary of Version 2.2 and Version 2.3 travel model output: Years 2005, 2007 and 2011 | | | Version 2.2 - | | Version 2.2 - | V2.3- V2.2- | |----|-----------------------------------------|---------------|-------------|---------------|-------------| | | | 2011 CLRP | Version 2.3 | 2011 CLRP | 2005 | | | | 2005 | 2007 | 2011 | | | 1 | Households | 2,344,561 | 2,339,832 | 2,524,150 | -4,729 | | 2 | Employment | 3,700,075 | 3,801,935 | 3,982,448 | 101,860 | | 3 | HH Population | 6,124,771 | 5,860,693 | 6,562,726 | -264,078 | | 4 | HH & GQ Population | 6,262,508 | 5,980,362 | 6,706,665 | -282,146 | | 5 | Extl. Productions/ HBW Auto Person | 296,405 | 294,506 | 328,893 | -1,899 | | 6 | Extl. Productions/ HBS Auto Person | 75,000 | 70,670 | 82,309 | -4,330 | | 7 | Extl. Productions/ HBO Auto Person | 206,939 | 226,003 | 230,075 | 19,064 | | 8 | Extl. Productions/ NHB Auto Person | 78,096 | 87,025 | 85,912 | 8,929 | | | Extl. Productions/ Auto Person | | | | | | 9 | Subtotal | 656,440 | 678,204 | 727,189 | 21,764 | | 10 | Extl. Productions/ Medium Truck | 3,965 | 5,986 | 4,405 | 2,021 | | 11 | Extl. Productions/ Heavy Truck | 25,647 | 7,239 | 28,489 | -18,408 | | 12 | Extl. Productions/ Truck Subtotal | 29,612 | 13,225 | 32,894 | -16,387 | | 13 | Extl. Attractions/ HBW Auto Person | 182,548 | 183,126 | 201,047 | 578 | | 14 | Extl. Attractions/ HBS Auto Person | 74,016 | 68,260 | 81,571 | -5,756 | | 15 | Extl. Attractions/ HBO Auto Person | 288,889 | 320,036 | 320,442 | 31,147 | | 16 | Extl. Attractions/ NHB Auto Person | 78,087 | 87,006 | 85,902 | 8,919 | | 17 | Extl. Attractions/ Auto Person Subtotal | 623,540 | 658,428 | 688,962 | 34,888 | | 18 | Extl. Attractions/ Medium Truck | 3,965 | 5,986 | 4,405 | 2,021 | | 19 | Extl. Attractions/ Heavy Truck | 25,647 | 7,239 | 28,489 | -18,408 | | 20 | Extl. Attractions/ Truck Subtotal | 29,612 | 13,225 | 32,894 | -16,387 | | 21 | Inc. Grp 1 HHs | 546,725 | 635,803 | 590,646 | 89,078 | | 22 | Inc. Grp 2 HHs | 534,824 | 726,626 | 576,826 | 191,802 | | 23 | Inc. Grp 3 HHs | 651,606 | 483,261 | 702,106 | -168,345 | | 24 | Inc. Grp 4 HHs | 611,405 | 494,175 | 654,570 | -117,230 | | 25 | HHs Subtotal | 2,344,560 | 2,339,865 | 2,524,149 | -4,695 | | 26 | 1- person HHs | 594,601 | 664,559 | 645,373 | 69,958 | | 27 | 2- person HHs | 721,723 | 723,464 | 780,010 | 1,741 | | 28 | 3- person HHs | 411,997 | 392,846 | 442,560 | -19,151 | | 29 | 4+ person HHs | 616,239 | 558,997 | 656,205 | -57,242 | | 30 | HHs Subtotal | 2,344,560 | 2,339,866 | 2,524,149 | -4,694 | | 31 | 0 Vehicle HHs | 220,862 | 229,850 | 242,413 | 8,988 | | 32 | 1 Vehicle HHs | 772,416 | 779,487 | 837,490 | 7,071 | | 33 | 2 Vehicle HHs | 911,858 | 841,389 | 977,824 | -70,469 | | 34 | 3+ Vehicle HHs | 439,423 | 489,139 | 466,423 | 49,716 | | 35 | HHs Subtotal | 2,344,560 | 2,339,865 | 2,524,149 | -4,695 | | | | Version 2.2 - | | Version 2.2 - | V2.3- V2.2- | |----|-----------------------------------|---------------|-------------|---------------|-------------| | | | 2011 CLRP | Version 2.3 | 2011 CLRP | 2005 | | | | 2005 | 2007 | 2011 | | | 36 | HBW Motorized Person Trips | 4,425,947 | 3,501,590 | 4,756,097 | -924,357 | | 37 | HBS Motorized Person Trips | 3,404,738 | 2,853,558 | 3,650,705 | -551,180 | | 38 | HBO Motorized Person Trips | 10,480,364 | 6,417,348 | 11,215,274 | -4,063,016 | | 39 | NHB Motorized Person Trips | 5,795,249 | 4,414,367 | 6,216,076 | -1,380,882 | | 40 | Total Motorized Person Trips | 24,106,298 | 17,186,863 | 25,838,152 | -6,919,435 | | 41 | Motorized Person Trips per HH | 10.28 | 7.35 | 10.24 | -2.93 | | 42 | Motorized Person Trips per capita | 3.85 | 2.87 | 3.85 | -0.98 | | 43 | Non-Motorized HBW Trips | 186,955 | 117,196 | 207,633 | -69,759 | | 44 | HBW Auto Driver Trips | 3,417,806 | 2,641,021 | 3,684,230 | -776,785 | | 45 | HBS Auto Driver Trips | 2,695,175 | 1,939,547 | 2,904,137 | -755,628 | | 46 | HBO Auto Driver Trips | 7,684,037 | 3,802,760 | 8,239,272 | -3,881,277 | | 47 | NHB Auto Driver Trips | 4,419,748 | 3,169,591 | 4,763,290 | -1,250,157 | | 48 | Total Auto Driver Trips | 18,216,766 | 11,552,919 | 19,590,929 | -6,663,847 | | 49 | HBW Auto Passenger Trips | 419,737 | 137,080 | 461,494 | -282,657 | | 50 | HBS Auto Passenger Trips | 653,783 | 888,444 | 685,536 | 234,661 | | 51 | HBO Auto Passenger Trips | 2,557,797 | 2,430,199 | 2,713,741 | -127,598 | | 52 | NHB Auto Passenger Trips | 1,218,207 | 1,095,920 | 1,289,772 | -122,287 | | 53 | Total Auto Passenger Trips | 4,849,524 | 4,551,643 | 5,150,543 | -297,881 | | 54 | HBW Auto Occupancies | 1.12 | 1.05 | 1.13 | -0.07 | | 55 | HBS Auto Occupancies | 1.24 | 1.46 | 1.24 | 0.22 | | 56 | HBO Auto Occupancies | 1.33 | 1.64 | 1.33 | 0.31 | | 57 | NHB Auto Occupancies | 1.28 | 1.35 | 1.27 | 0.07 | | 58 | Total Auto Occupancies | 1.27 | 1.39 | 1.26 | 0.12 | | 59 | HBW Transit Trips | 588,404 | 723,490 | 610,373 | 135,086 | | 60 | HBS Transit Trips | 55,780 | 25,567 | 61,032 | -30,213 | | 61 | HBO Transit Trips | 238,530 | 184,390 | 262,261 | -54,140 | | 62 | NHB Transit Trips | 157,294 | 148,856 | 163,014 | -8,438 | | 63 | Total Transit Trips | 1,040,008 | 1,082,303 | 1,096,680 | 42,295 | | 64 | HBW Transit Percentage | 13.29 | 20.66 | 12.83 | 7.37 | | 65 | HBS Transit Percentage | 1.64 | 0.90 | 1.67 | -0.74 | | 66 | HBO Transit Percentage | 2.28 | 2.87 | 2.34 | 0.59 | | 67 | NHB Transit Percentage | 2.71 | 3.37 | 2.62 | 0.66 | | 68 | Total Transit Percentage | 4.31 | 6.30 | 4.24 | 1.99 | TPB Version 2.3 Travel Forecasting Model for the 3,722-Zone Area System: Calibration Report | | | Version 2.2 - | | Version 2.2 - | V2.3- V2.2- | |----|---------------------------------|---------------|-------------|---------------|-------------| | | | 2011 CLRP | Version 2.3 | 2011 CLRP | 2005 | | | | 2005 | 2007 | 2011 | | | 69 | Medium Truck | 328,595 | 508,142 | 356,288 | 179,547 | | 70 | Heavy Truck | 168,507 | 156,458 | 182,503 | -12,049 | | 71 | Misc. Auto Driver | 636,646 | 652,181 | 685,415 | 15,535 | | 72 | Through (X-X) Auto&Comm.Veh | 40,761 | 42,456 | 45,365 | 1,695 | | 73 | Through (X-X) Trucks | 32,621 | 33,637 | 36,346 | 1,016 | | 74 | Airport Passenger Auto Drivers | 49,386 | 60,678 | 56,814 | 11,292 | | 75 | Commercial Vehicles (Int/&Extl) | 1,197,239 | 1,063,716 | 1,282,625 | -133,523 | | 76 | Total Vehicle Trips | 20,670,521 | 14,070,187 | 22,236,285 | -6,600,334 | | 77 | Freeway VMT | 58,798,950 | 68,426,769 | 61,635,302 | 9,627,819 | | 78 | Major Art VMT | 57,217,037 | 52,415,706 | 59,734,047 | -4,801,331 | | 79 | Minor Art VMT | 19,990,859 | 18,037,239 | 21,750,767 | -1,953,620 | | 80 | Collector VMT | 8,417,414 | 10,020,437 | 8,966,940 | 1,603,023 | | 81 | Express. VMT | 6,411,319 | 6,720,033 | 6,963,125 | 308,714 | | 82 | Ramp VMT | 1,228,003 | 1,867,867 | 1,276,848 | 639,864 | | | | | 157,488,05 | | | | 83 | Total VMT | 152,063,583 | 1 | 160,327,029 | 5,424,468 | | 84 | VMT per Capita | 24.28 | 26.33 | 23.91 | 2.05 | | 85 | VMT per HH | 64.86 | 67.31 | 63.52 | 2.45 | | 86 | VMT per Vehicle Trip | 7.36 | 11.19 | 7.21 | 3.83 | $Ref: O: \label{lem:compare_Mode_Choice_v2.xlsx} Ref: \label{lem:compare_Choice_v2.xlsx} \label{lem:$ # Appendix A Model adjustment factors The Version 2.3 travel model incorporates three sets of adjustment factors: one is applied following trip generation and two are applied to the trip distribution process. # 1.1 Trip Generation The first set of factors is applied to productions and attractions as shown in Table 1 and Table 2. Factors that are applied to productions and attractions are often called "p-mods" and "a-mods" since they modify the productions and attractions. In this case, we are using jurisdiction-level p-mods and a-mods. **Table 1 Jurisdictional Production Adjustment Factors** | Jurisdiction | HBW | HBS | НВО | NNW | NHO | |----------------------|------|------|------|------|------| | District of Columbia | 1.00 | 0.85 | 1.20 | 1.00 | 1.00 | | Montgomery | 0.95 | 1.00 | 1.05 | 1.00 | 1.00 | | Prince George's | 1.00 | 0.88 | 0.97 | 1.00 | 1.00 | | Arlington | 1.00 | 1.11 | 1.08 | 1.00 | 1.00 | | Alexandria | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fairfax | 1.02 | 1.02 | 1.02 | 1.00 | 1.00 | | Loudoun | 1.00 | 0.95 | 0.92 | 1.00 | 1.00 | | Prince William | 1.04 | 1.15 | 0.94 | 1.00 | 1.00 | | Frederick | 1.13 | 1.00 | 1.04 | 1.00 | 1.00 | | Howard | 1.00 | 1.00 | 0.94 | 1.00 | 1.00 | | Anne Arundel | 1.00 | 1.12 | 1.03 | 1.00 | 1.00 | | Charles | 1.00 | 1.00 | 0.93 | 1.00 | 1.00 | | Carroll | 1.00 | 1.00 | 0.92 | 1.00 | 1.00 | | Calvert | 1.00 | 1.00 | 1.12 | 1.00 | 1.00 | | St. Mary's | 1.36 | 1.00 | 1.00 | 1.00 | 1.00 | | King George's | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fredericksburg | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Stafford | 1.00 | 1.14 | 0.86 | 1.00 | 1.00 | | Spotsylvania | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fauquier | 1.00 | 1.00 | 0.88 | 1.00 | 1.00 | | Clarke | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Jefferson | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | **Table 2 Jurisdictional Attraction Adjustment Factors** | Jurisdiction | HBW | HBS | НВО | NNW | NHO | |----------------------|------|------|------|------|------| | District of Columbia | 1.10 | 0.60 | 0.90 | 1.10 | 0.80 | | Montgomery | 1.02 | 1.07 | 1.10 | 0.90 | 1.13 | | Prince George's | 1.08 | 0.78 | 0.77 | 1.00 | 0.77 | | Arlington | 1.22 | 0.87 | 0.95 | 1.00 | 0.60 | | Alexandria | 0.77 | 0.85 | 1.00 | 1.00 | 1.14 | | Fairfax | 1.07 | 1.05 | 1.00 | 0.95 | 0.95 | | Loudoun | 0.89 | 1.07 | 0.87 | 0.85 | 1.00 | | Prince William | 1.11 | 1.05 | 0.96 | 1.00 | 1.00 | | Frederick | 1.00 | 1.00 | 0.83 | 0.88 | 1.14 | | Howard | 0.82 | 1.18 | 0.87 | 0.78 | 1.00 | | Anne Arundel | 0.86 | 1.00 | 0.85 | 0.89 | 0.94 | | Charles | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Carroll | 1.00 | 1.51 | 0.94 | 1.00 | 1.24 | | Calvert | 1.00 | 0.78 | 1.29 | 1.00 | 1.00 | | St. Mary's | 1.40 | 1.00 | 0.80 | 1.49 | 1.00 | | King George's | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fredericksburg | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Stafford | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Spotsylvania | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Fauquier | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Clarke | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Jefferson | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | # 1.2 Trip Distribution Trip distribution has two sets of adjustment factors. The first set is used to address physical barrier effects on trip patterns, such as the Potomac River as shown in Table 3. The second set of adjustment factors addresses jurisdictional effects (e.g., school trips and shopping trips tend to remain in a given traveler's residence jurisdiction). HBW k-factors are shown in Table 4, while all other purpose k-factors are presented in Table 5. These adjustment factors were developed by comparing estimated trip distribution results with the observed results from 2007/2008 HTS. **Table 3 K-Factors used in Trip Distribution to Calibrate Potomac River Crossings** | HBW | DC/SubMD | SubVA | OuterMD | OuterVA | |----------|----------|-------|---------|---------| | DC/SubMD | 1.00 | 0.80 | 1.00 | 1.00 | | SubVA | 0.90 | 1.00 | 0.50 | 1.00 | | OuterMD | 1.00 | 0.70 | 1.00 | 0.50 | | OuterVA | 0.70 | 1.00 | 0.30 | 1.00 | | HBS | DC/SubMD | SubVA | OuterMD | OuterVA | |----------|----------|-------|---------|---------| | DC/SubMD | 1.00 | 0.25 | 1.00 | 1.00 | | SubVA | 0.25 | 1.00 | 0.50 | 1.00 | | OuterMD | 1.00 | 1.00 | 1.00 | 1.00 | | OuterVA | 1.00 | 1.00 | 1.00 | 1.00 | | НВО | DC/SubMD | SubVA | OuterMD | OuterVA | |----------|----------|-------|---------|---------| | DC/SubMD | 1.00 | 0.30 | 1.00 | 1.00 | | SubVA | 0.70 | 1.00 | 0.30 | 1.00 | | OuterMD | 1.00 | 1.00 | 1.00 | 1.00 | | OuterVA | 1.00 | 1.00 | 1.00 | 1.00 | | NHW | DC/SubMD | SubVA | OuterMD | OuterVA | |----------|----------|-------|---------|---------| | DC/SubMD | 1.00 | 0.60 | 1.00 | 1.00 | | SubVA | 0.60 | 1.00 | 0.50 | 1.00 | | OuterMD | 1.00 | 1.00 | 1.00 | 1.00 | | NHO | DC/SubMD | SubVA | OuterMD | OuterVA | |----------|----------|-------|---------|---------| | DC/SubMD | 1.00 | 0.30 | 1.00 | 1.00 | | SubVA | 0.30 | 1.00 | 0.50 | 1.00 | | OuterMD | 1.00 | 0.40 | 1.00 | 0.50 | | OuterVA | 1.00 | 1.00 | 1.00 | 1.00 | Table 4 HBW K-Factors (Overrides to Potomac River Crossing K-Factors) | | HBW | |-------------------------|--------| | Interchange | Factor | | DC non-core to DC core | 2 | | Mtg to DC core | 2 | | Mtg to Mtg | 1.8 | | PG to PG | 1.5 | | Arl core to DC core | 2.5 | | Arl non-core to DC core | 1.7 | | Alx to DC core | 1.6 | | Ffx to DC core | 1.2 | | Ffx to Ffx | 1.2 | **Table 5 Non-HBW Intra-Jurisdictional K-Factors** | | HBS | НВО | NHW | NHO | |----------------|--------|--------|--------|--------| | Interchange | Factor | Factor | Factor | Factor | | DC to DC | 2 | 2 | 1.5 | 2 | | Mtg to Mtg | 2 | 2 | 2 | 1.5 | | PG to PG | 2 | 2 | 1.5 | 1.5 | | Arl to Arl | 1.5 | 2 | 1.5 | 1.5 | | Alx to Alx | 1.5 | 2 | 1.5 | 1.5 | | Ffx to Ffx | 2 | 2 | 2 | 2 | | Ldn to Ldn | 1.5 | 2 | 1.5 | 1.5 | | PW to PW | 1.5 | 2 | 1.5 | 1.5 | | Frd to Frd | 1.5 | 2 | 1.5 | 1.5 | | Car to Car | 1.5 | 2 | 1.5 | 1.5 | | How to How | 1.5 | 2 | 1.5 | 1.5 | | Ann to Ann | 1.5 | 2 | 1.5 | 1.5 | | Calv to Calv | 1.5 | 1.5 | 1.5 | 1.5 | | StM to StM | 1.5 | 1.5 | 1.5 | 1.5 | | Chs to Chs | 1.5 | 1.5 | 1.5 | 1.5 | | Fau to Fau | 1.5 | 1.5 | 1.5 | 1.5 | | Staf to Staf | 2 | 1.5 | 1.5 | 1.5 | | Clrk to Clrk | 1.5 | 1.5 | 1.5 | 1.5 | | Jef to Jef | 1.5 | 1.5 | 1.5 | 1.5 | | Frbrg to Frbrg | 1.5 | 1.5 | 1.5 | 1.5 | | Spots to Spots | 1.5 | 1.5 | 1.5 | 1.5 | | KingG to KingG | 1.5 | 1.5 | 1.5 | 1.5 | # Appendix B Year 2007 mode choice summary (final, i4, iteration) | HBW | Transit (Estimated, Observed, EstObs., Est./Obs.) | B-1 | | |-------|------------------------------------------------------------|------|--| | HBW | Auto Person (Estimated, Observed, EstObs., Est./Obs.) | | | | HBW | Auto Driver (Estimated, Observed, EstObs., Est./Obs.) | | | | HBW | Motorized Person (Estimated, Observed, EstObs., Est./Obs.) | B-7 | | | HBW | Auto Occupancy (Estimated, Observed) | | | | HBW | Percent Transit (Estimated, Observed) | B-10 | | | HBS | Transit | B-11 | | | HBS | Auto Person | B-13 | | | HBS | Auto Driver | B-15 | | | HBS | Motorized Person | B-17 | | | HBS | Auto Occupancy | B-19 | | | HBS | Percent Transit | B-20 | | | НВО | Transit | B-21 | | | НВО | Auto Person | B-23 | | | НВО | Auto Driver | B-25 | | | НВО | Motorized Person | B-27 | | | НВО | Auto Occupancy | B-29 | | | НВО | Percent Transit | B-30 | | | NHW | Transit | B-31 | | | NHW | Auto Person | B-33 | | | NHW | Auto Driver | B-35 | | | NHW | Motorized Person | B-37 | | | NHW | Auto Occupancy | B-39 | | | NHW | Percent Transit | B-40 | | | NHO | Transit | B-41 | | | NHO | Auto Person | B-43 | | | NHO | Auto Driver | B-45 | | | NHO | Motorized Person | B-47 | | | NHO | Auto Occupancy | B-49 | | | NHO | Percent Transit | B-50 | | | Total | Transit | B-51 | | | Total | Auto Person | B-53 | | | Total | Auto Driver | B-55 | | | Total | Motorized Person | B-57 | | | Total | Auto Occupancy | B-59 | | | Total | Percent Transit | B-60 | | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Est Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|-------|-------|-------|-------|-------|---------|-----|-------|------|----|-----|--------|----|--------|-----|----|----|----|----|----|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 10606 | 5420 | 1554 | 535 | 1566 | 2307 | 581 | 1059 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23631 | | 2 DC NC | 109761 | 38204 | 17374 | 7559 | 5788 | 9765 | 2603 | 4582 | 2 | 3 | 0 | 0 | 15 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 195668 | | 3 MTG | 65369 | 13296 | 40893 | 2542 | 3399 | 4108 | 670 | 1508 | 0 | 1 | 0 | 0 | 18 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 131808 | | 4 PG | 43512 | 18071 | 8653 | 14377 | 4653 | 5861 | 1157 | 1411 | 0 | 0 | 0 | 0 | 70 | 48 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 97814 | | 5 ARLCR | 2990 | 279 | 108 | 16 | 183 | 579 | 110 | 132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4397 | | 6 ARNCR | 36500 | 3765 | 1379 | 207 | 4056 | 8699 | 2132 | 2525 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59263 | | 7 ALX | 15949 | 1908 | 666 | 118 | 1896 | 4255 | 2728 | 1961 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29485 | | 8 FFX | 40629 | 6088 | 2735 | 347 | 6891 | 12545 | 4491 | 13276 | 51 | 38 | 0 | 0 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 87101 | | 9 LDN | 3758 | 626 | 282 | 24 | 725 | 1076 | 112 | 400 | 399 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7402 | | 10 PW | 13988 | 3279 | 1414 | 281 | 3314 | 5393 | 1911 | 1631 | 28 | 960 | 0 | 0 | 11 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 32215 | | 11 FRD | 2348 | 337 | 752 | 24 | 152 | 148 | 20 | 206 | 0 | 0 | 1006 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4992 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 8291 | 2255 | 1785 | 481 | 698 | 798 | 125 | 138 | 0 | 0 | 0 | 0 | 474 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15062 | | 14 AAR | 9621 | 2570 | 1130 | 517 | 912 | 1037 | 164 | 208 | 0 | 0 | 0 | 0 | 32 | 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16261 | | 15 CAL | 954 | 354 | 100 | 42 | 172 | 164 | 27 | 37 | 0 | 0 | 0 | 0 | 0 | 1 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1873 | | 16 STM | 412 | 131 | 43 | 14 | 75 | 67 | 11 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 84 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 885 | | 17 CHS | 4883 | 1476 | 408 | 135 | 552 | 617 | 110 | 101 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 340 | 0 | 0 | 0 | 0 | 0 | 0 | 8624 | | 18 FAU | 136 | 51 | 18 | 2 | 49 | 65 | 28 | 59 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 412 | | 19 STA | 1214 | 298 | 96 | 12 | 367 | 458 | 129 | 395 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2989 | | 20 CL/JF | 148 | 76 | 66 | 6 | 45 | 55 | 10 | 201 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 607 | | 21 SP/FB | 867 | 216 | 27 | 1 | 307 | 441 | 186 | 767 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 2889 | | 22 KGEO | 29 | 12 | 1 | 1 | 9 | 13 | 7 | 35 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 111 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 371964 | | 79485 | | 35810 | | 17310 | ======= | 482 | ===== | 1006 | | 626 | ====== | 22 | ====== | 356 | | 2 | | 2 | | 0 l | ====== | | TOTAL | 3/1304 | 98709 | 12400 | 27242 | 22010 | 58450 | 1/310 | 30666 | 702 | 1108 | 1000 | 0 | 020 | 163 | 22 | 87 | 220 | 0 | 2 | 0 | 3 | 0 | 0 | 723490 | | | | 20/09 | | 21242 | | 20420 | | 20000 | | TT08 | | U | | T03 | | 0/ | | U | | U | | U | | 123490 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Obs Transit | ORIGIN | DESTIN | ATION 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | |----------|--------|---------|-------|-------|-------|-------|--------|-------|-----|-----|-----|----|-----|-----|----|----|----|----|-----|-----|-----|-----|----|--------| | ======= | | | | | | | ====== | | | | | | | | | | | | | | | | | | | 1 DC CR | 8971 | 1819 | 2384 | 676 | 1241 | 1748 | 534 | 392 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17766 | | 2 DC NC | 73329 | 10080 | 5743 | 3118 | 2048 | 2886 | 2203 | 2347 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 101753 | | 3 MTG | 68163 | 7171 | 20600 | 1854 | 2227 | 3935 | 1775 | 264 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 105987 | | 4 PG | 51978 | 7704 | 7154 | 9232 | 1509 | 2407 | 960 | 1252 | 0 | 219 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 82415 | | 5 ARLCR | 3459 | 0 | 0 | 0 | 0 | 613 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4071 | | 6 ARNCR | 26943 | 729 | 1524 | 880 | 3465 | 5298 | 827 | 971 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 105 | 0 | 0 | 0 | 0 | 40946 | | 7 ALX | 16729 | 2747 | 210 | 0 | 1669 | 3515 | 1515 | 814 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27200 | | 8 FFX | 54491 | 5729 | 1768 | 1446 | 8830 | 14842 | 3199 | 2529 | 238 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 93072 | | 9 LDN | 3915 | 586 | 200 | | 256 | 259 | 518 | 0 | 259 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5993 | | 10 PW | 11808 | 3647 | 0 | 417 | 1352 | 3754 | 380 | 1236 | 0 | 385 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22980 | | 11 FRD | 3499 | 957 | 2804 | 447 | 0 | 360 | 0 | 0 | 0 | 0 | 846 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8914 | | 12 CAR | 551 | 417 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 968 | | 13 HOW | 8141 | 1067 | 276 | 260 | 0 | 1358 | 537 | 0 | 0 | 0 | 0 | 0 | 285 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11922 | | 14 AAR | 15658 | 1395 | 2005 | 0 | 1924 | 479 | 72 | 1145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22679 | | 15 CAL | 2382 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2382 | | 16 STM | 459 | 0 | 0 | 1039 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1498 | | 17 CHS | 3814 | 0 | 297 | 348 | 264 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4723 | | 18 FAU | 1900 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1900 | | 19 STA | 1649 | 231 | 0 | 0 | 262 | 3168 | 0 | 506 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5816 | | 20 CL/JF | 1764 | 0 | 1106 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2870 | | 21 SP/FB | 2415 | 0 | 0 | 0 | 418 | 0 | 1092 | 969 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 489 | 0 | 0 | 5383 | | 22 KGEO | 402 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 244 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 646 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 362420 | = | 46070 | = | 25466 | | 13612 | === | 701 | | 846 | = | 285 | === | 0 | | 0 | | 105 | === | 489 | === | 0 | == | | | | 44279 | | 19717 | | 44623 | | 12425 | | 849 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 571886 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Difference (Est-Obs) Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------------------|---------------|------------|-------------|---------------|------------|-------------|-------------|-------------|------|------|--------|----|---------|--------------|-------------|-------------|-----------|--------------|------|----|---------|--------------|----------|----------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | | | | ====== | | | | | | | ====== | | | | | | | | ====== | | ====== | ====== | | 1 DC CR | 1636 | 3601 | -830 | -141 | 324 | 559 | 47 | 666 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5865 | | 2 DC NC | 36432 | 28124 | 11631 | 4441 | 3740 | 6880 | 400 | 2236 | 2 | 3 | 0 | 0 | 15 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 93915 | | 3 MTG | -2794 | 6125 | 20293 | 688 | 1172 | 173 | -1105 | 1245 | 0 | 1 | 0 | 0 | 18 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25820 | | 4 PG | -8466 | 10366 | 1499 | 5145 | 3144 | 3454 | 197 | 159 | 0 | -219 | 0 | 0 | 70 | 48 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 15399 | | 5 ARLCR | -469 | 279 | 108 | 16 | 183 | -33 | 110 | 132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 326 | | 6 ARNCR | 9556 | 3036 | -145 | -674 | 590 | 3401 | 1304 | 1554 | -203 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -105 | 0 | 0 | 0 | 0 | 18317 | | 7 ALX | -780 | -839 | 457 | 118 | 227 | 740 | 1213 | 1148 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2285 | | 8 FFX | -13862 | 358 | 967 | -1099 | -1939 | -2298 | 1293 | 10747 | -187 | 38 | 0 | 0 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -5971 | | 9 LDN | -157 | 41 | 82 | 24 | 469 | 817 | -407 | 400 | 140 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1409 | | 10 PW | 2180 | -368 | 1414 | -136 | 1962 | 1638 | 1531 | 394 | 28 | 575 | 0 | 0 | 11 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 9235 | | 11 FRD | -1151 | -620 | -2053 | -423 | 152 | -213 | 20 | 206 | 0 | 0 | 160 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3922 | | 12 CAR | -551 | -417 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -968 | | 13 HOW | 150 | 1188 | 1509 | 222 | 698 | -561 | -412 | 138 | 0 | 0 | 0 | 0 | 189 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3140 | | 14 AAR | -6037 | 1175 | -875 | 517 | -1013 | 558 | 92 | -937 | 0 | 0 | 0 | 0 | 32 | 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -6418 | | 15 CAL | -1429 | 354<br>131 | 100 | 42 | 172 | 164 | 27<br>11 | 37 | 0 | 0 | 0 | 0 | 0 | 1 | 21 | 84 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | -509 | | 16 STM | -47<br>1068 | 1476 | 43<br>111 | -1026<br>-212 | 75<br>288 | 67<br>617 | | 32<br>101 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 84 | 15<br>340 | 0 | 0 | 0 | 0 | 0 | 0 <br>0 | -613<br>3901 | | 17 CHS | | | | | | | 110 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 340 | 0 | 0 | 0 | 0 | 0 | | | | 18 FAU | -1764 | 51 | 18 | 2 | 49 | 65 | 28 | 59 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1488 | | 19 STA <br>20 CL/JF | -434<br>-1616 | 66<br>76 | 96<br>-1040 | 12 | 105 | -2710<br>55 | 129 | -111<br>201 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ţ | 0 | 0 | 0 | 0 <br>0 | -2827<br>-2263 | | | -1548 | 216 | 27 | 1 | 45<br>-110 | 441 | 10<br>-906 | -201 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | -486 | 0 | 0 1 | -2494 | | 21 SP/FB | -1548 | 12 | 2 / | 1 | -110 | 13 | -906 | 35 | 0 | -241 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | T | 0 | -486 | 0 | 0 1 | -535 | | 22 KGEO <br>23 EXTL | -3/2 | 12 | U | 1 | 9 | 13 | 0 | 35 | 0 | -241 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | -535 | | 23 EAIL | U<br>:====== | ====== | ====== | ====== | ====== | U<br>====== | U<br>====== | | <br> | u | .===== | | .====== | U<br>======= | U<br>====== | U<br>====== | | U<br>======= | | | .====== | U<br>======= | U | .===== | | TOTAL | 9544 | | 33414 | | 10344 | | 3698 | | -219 | | 160 | | 341 | | 0 | | 0 | | -102 | | -485 | | 0 | | | | | 54430 | | 7524 | | 13827 | | 18241 | | 259 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 151603 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Ratio (Est/Obs) Transit | | DESTI | NOITAN | | | | | | | | | | | | | | | | | | | | | | | |----------|-------|---------|--------|--------|--------|--------|--------|--------|--------|-------|------|--------|--------|--------|-------|-------|---------|----|------|----|------|----|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======== | | | | | | | | | ====== | | | ====== | ====== | ====== | | | | | | | | | | | | 1 DC CR | 1.18 | 2.98 | 0.65 | 0.79 | 1.26 | 1.32 | 1.09 | 2.70 | 0.76 | 0.76 | 0 | 0 | 0.98 | 0.78 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.33 | | 2 DC NC | 1.50 | 3.79 | 3.03 | 2.42 | 2.83 | 3.38 | 1.18 | 1.95 | 2.33 | 2.86 | 0 | 0 | 14.53 | 10.87 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.92 | | 3 MTG | 0.96 | 1.85 | 1.99 | 1.37 | 1.53 | 1.04 | 0.38 | 5.72 | 0.22 | 0.87 | 0.05 | 0 | 18.40 | 2.89 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.24 | | 4 PG | 0.84 | 2.35 | 1.21 | 1.56 | | 2.43 | 1.21 | 1.13 | 0 | 0.00 | 0 | 0 | 70.01 | 47.93 | 0 | 0 | 1.13 | 0 | 0 | 0 | 0 | 0 | 0 | 1.19 | | 5 ARLCR | | | 107.85 | 16.40 | 183.48 | | 109.72 | | 0.04 | 0.07 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.08 | | 6 ARNCR | 1.35 | 5.16 | 0.90 | 0.23 | 1.17 | 1.64 | 2.58 | 2.60 | 0.00 | 1.51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.45 | | 7 ALX | 0.95 | 0.69 | | 117.68 | 1.14 | 1.21 | 1.80 | 2.41 | 0.02 | 3.18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.08 | | 8 FFX | 0.75 | 1.06 | 1.55 | | 0.78 | | 1.40 | 5.25 | 0.22 | 37.68 | 0 | 0 | 5.04 | 6.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0.24 | 0 | 0 | 0.94 | | 9 LDN | 0.96 | 1.07 | 1.41 | 24.37 | 2.83 | 4.15 | | 400.19 | 1.54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.24 | | 10 PW | 1.18 | | 414.46 | 0.67 | 2.45 | 1.44 | 5.03 | 1.32 | 27.62 | 2.49 | 0.02 | 0 | 11.06 | 5.77 | 0 | 0 | 0 | 0 | 0 | 0 | 0.57 | 0 | 0 | 1.40 | | 11 FRD | 0.67 | 0.35 | 0.27 | 0.05 | 152.01 | 0.41 | 19.55 | 205.76 | 0 | 0 | 1.19 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.56 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 1.02 | 2.11 | 6.48 | 1.85 | | 0.59 | | 138.30 | 0 | 0.09 | 0 | 0 | 1.66 | 17.28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.26 | | 14 AAR | 0.61 | 1.84 | | 517.19 | 0.47 | 2.16 | 2.28 | 0.18 | 0 | 0.14 | 0 | 0 | 32.25 | 69.94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.72 | | 15 CAL | | 354.09 | 99.93 | | 171.96 | | 26.99 | | 0 | 0 | 0 | 0 | 0 | 1.49 | 21.26 | 0.34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.79 | | 16 STM | | 130.69 | 43.38 | 0.01 | 75.20 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0.87 | 84.19 | 14.94 | 0 | 0 | 0 | 0 | 0 | 0 | 0.59 | | 17 CHS | | 1475.60 | 1.38 | 0.39 | | | 109.71 | | 0 | 0 | 0 | 0 | 0.02 | 0.03 | 0 | 2.34 | 339.81 | 0 | 0 | 0 | 0 | 0 | 0 | 1.83 | | 18 FAU | 0.07 | | 18.44 | 2.03 | 48.68 | | | 58.73 | 0 | 4.83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.22 | | 19 STA | 0.74 | 1.29 | 95.60 | | 1.40 | | 128.71 | 0.78 | 0 | 19.76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.10 | 0 | 0 | 0 | 0 | 0.51 | | 20 CL/JF | 0.08 | | 0.06 | 6.18 | 45.27 | | | 200.55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.21 | | 21 SP/FB | | 216.22 | 27.07 | 0.93 | | | 0.17 | 0.79 | 0 | 71.95 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.33 | 0 | 0.01 | 0 | 0 | 0.54 | | 22 KGEO | 0.07 | 12.05 | 1.38 | 0.59 | 9.26 | 13.38 | 6.59 | 34.93 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.17 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.03 | | 1.73 | | 1.41 | ====== | 1.27 | | 0.69 | | 1.19 | ====== | 2.20 | ====== | 0 | | .====== | | 0.02 | | 0.01 | | 0 l | | | IOIAL | 1.03 | 2.23 | 1./3 | 1.38 | | 1.31 | 1.2/ | 2.47 | 0.69 | 1.31 | 1.19 | 0 | 2.20 | 0 | U | 0 | U | 0 | 0.02 | 0 | 0.01 | 0 | 0 | 1.27 | | | | 2.23 | | 1.38 | | 1.31 | | 2.4/ | | 1.31 | | U | | U | | U | | U | | U | | U | | 1.2/ | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Est Auto Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|------------|------------|------------|--------------|------------|------------|------------|--------------|-------------|-------------|---------|--------|------------|----------|----------|------------|------------|-------------|------------|--------|---------------|-------------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | ====== | ====== | | | ====== | ====== | ====== | ====== | | | ====== | ====== | | | ====== | ====== | ====== | ====== | ====== | ====== | | | ====== | | 1 DC CR | 5264 | 695 | 442 | 582 | 115 | 123 | 119 | 1103 | 53 | 11 | 2 | 0 | 29 | 70 | 1 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 8623 | | 2 DC NC | 13451 | 7770 | 6733 | 9793 | 936 | 921 | 638 | 6083 | 296 | 71 | 59 | 1 | 525 | 1153 | 35 | 23 | 205 | 4 | . 1 | 1 | 1 | 0 | 0 | 48698 | | 3 MTG | 62463 | | 213775 | 30375 | 3293 | 7288 | 2599 | 23031 | 1087 | 309 | 4162 | 325 | 7287 | 5719 | 103 | 169 | 338 | 33 | 11 | 134 | 18 | 2 | 0 | 392179 | | 4 PG | 45619 | 41928 | 31743 | 161833 | 4197 | 8831 | 4475 | 14402 | 342 | 204 | 194 | 25 | 6384 | 14314 | 794 | 710 | 4937 | 11 | 7 | 4 | 12 | 15 | 0 | 340982 | | 5 ARLCR | 209 | 134 | 115 | 57 | 512 | 386 | 108 | 538 | 17 | 6 | 0 | 0 | 1 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2085 | | 6 ARNCR | 8232 | 3900 | 3119 | 1387 | 4575 | 14506 | 4094 | 20105 | 525 | 264 | 15 | 0 | 32 | 79 | 2 | 7 | 21 | 10 | 5 | 1 | 4 | 0 | 0 | 60883 | | 7 ALX | 6684 | 3227 | 2142 | 1478 | 2342 | 6442 | 11279 | 19723 | 342 | 465 | 10 | 0 | 27 | 78 | 4 | 12 | 43 | 10 | 14 | 1 | 11 | 0 | 0 | 54332 | | 8 FFX | 63264 | 24382 | 25522 | 10952 | 12387 | 33949 | | 322803 | 20970 | 13845 | 266 | 11 | 327 | 791 | 52 | 175 | 344 | 685 | 331 | 158 | 302 | 12 | 0 | 558239 | | 9 LDN | 7626 | 4251 | 7597 | 2012 | 1702 | 4394 | 1954 | 53047 | 57065 | 3612 | 1611 | 84 | 346 | 397 | 11 | 40 | 63 | 717 | 81 | 1747 | 98 | 5 | 0 | 148459 | | 10 PW | 13629 | 6899 | 6867 | 3392 | 3210 | 8563 | 7480 | 57225 | 7022 | 84171 | 178 | 10 | 111 | 285 | 17 | 69 | 110 | 3451 | 1942 | 223 | 1003 | 41 | 0 | 205898 | | 11 FRD | 2865 | 2841 | 20965 | 2783 | 410 | 953 | 329 | 4055 | 1652 | 146 | 82026 | 5980 | 8313 | 3868 | 21 | 9 | 68 | 33 | 2 | 1065 | 3 | 0 | 0 | 138387 | | 12 CAR | 2351 | 1617 | 8396 | 1909 | 220 | 427 | 136 | 1353 | 236 | 24 | 8902 | 44961 | 5547 | 2746 | 16 | 4 | 43 | 6 | 0 | 139 | 0 | 0 | 0 | 79034 | | 13 HOW | 5952 | 5669 | 15387 | 10531 | 428 | 1055 | 457 | 2244 | 117 | 40 | 3930 | 1186 | 57082 | 17792 | 69 | 115 | 162 | 4 | 1 | 78 | 2 | 1 | 0 | 122302 | | 14 AAR | 11432 | 9933 | 11550 | 19979 | 854 | 2025 | 982 | 3440 | 126 | 85 | 848 | 232 | 16624 | 145902 | 1315 | 567 | 850 | 3 | 2 | 24 | 3 | 3 | 0 | 226780 | | 15 CAL | 3855 | 2653 | 1711 | 4864 | 267 | 629 | 359 | 1178 | 36 | 40 | 32 | 5 | 336<br>177 | 2900 | 19237 | 6096 | 2385 | 2 | 1.3 | 0 | 8 | 12 | 0 | 46608 | | 16 STM | 2883 | 1966 | 1054 | 3543 | 242 | 506 | 310 | 997 | 26 | 48 | 14 | 1 | | 863 | 3999 | 52802 | 6264 | 4 | 13 | 0 | 28 | 64 | 0 | 75803 | | 17 CHS | 8058 | 5699 | 2576 | 10539 | 627 | 1406 | 875 | 2586 | 59 | 73 | 30 | 3 | 328 | 1488 | 1691 | 3123 | 31853 | 10620 | 8 | 100 | 24 | 68 | 0 | 71117 | | 18 FAU | 1029 | 514 | 787 | 264 | 265 | 698 | 443 | 8991 | 2232 | 5902 | 48 | 2 | 15 | 23 | | 16 | 17 | 10639 | 928 | 183 | 631 | 28 | 0 | 33658 | | 19 STA | 1491 | 916 | 905 | 647 | 361 | 1209 | 1137 | 9687 | 920 | 9363 | 22 | | 11 | 51 | 17 | 107 | 113 | 1885 | 21886 | 61 | 10665 | 362 | 0 | 61817 | | 20 CL/JF | 487 | 295 | 2064 | 280 | 106 | 283 | 133 | 4388 | 4059<br>674 | 685 | 1468 | 78 | 309 | 160 | 22 | 110 | 150 | 357 | 15<br>8237 | 17058 | 17 | 412 | 0 | 32245 | | 21 SP/FB | 570<br>643 | 322<br>388 | 187<br>153 | 306<br>532 | 148<br>125 | 615<br>243 | 620<br>151 | 6424<br>1070 | | 5432<br>876 | 16 | 0 | 11 | 10<br>47 | 22<br>39 | 118<br>139 | 152<br>334 | 1514<br>199 | 1033 | 51 | 32475<br>1352 | 413<br>4225 | 0 | 58309 | | 22 KGEO | 643 | 388 | 153 | 532 | 125 | 243 | 121 | 10/0 | 95 | 8/6 | 0 | 0 | 11 | 4 / | 39 | 139 | 334 | 199 | 1033 | 0 | 1352 | 4225 | 0 | 11661 | | 23 EXTL | | ====== | .====== | U<br>======= | 0 | .===== | .====== | | | .===== | .====== | | .====== | u | | | ====== | | | | | U<br>====== | U | .===== | | TOTAL | 268058 | | 363790 | | 37322 | | 65391 | | 97952 | | 103834 | | 103822 | | 27447 | | 48314 | | 34520 | | 46659 | | 0 | | | | | 155658 | | 278038 | | 95453 | | 564472 | | 125673 | | 52905 | | 198736 | | 64301 | | 19570 | | 20935 | | 5252 | | 2778101 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Obs Auto Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|-------|--------|-------|--------|-------|-------|-------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | ====== | | | | ====== | | | | | ====== | ====== | | ====== | | ====== | | ====== | | | | | | | 1 DC CR | 5805 | 3593 | 1007 | 208 | 0 | 1244 | 0 | 994 | 406 | 0 | 0 | 0 | 0 | 713 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13969 | | 2 DC NC | 50843 | 34430 | 17466 | 15820 | 1301 | 5419 | 1893 | 10595 | 1493 | 534 | 0 | 0 | 539 | 3388 | 185 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 143906 | | 3 MTG | 39530 | | 248397 | 28269 | 3564 | 10921 | 1923 | 27200 | 2158 | 729 | 3411 | 0 | 9008 | 7305 | 0 | 0 | 0 | 0 | 459 | 838 | 0 | 0 | 0 | 423280 | | 4 PG | 46521 | 43929 | | 162926 | 1901 | 10596 | 3735 | 22256 | 1666 | 193 | 116 | 1123 | 6527 | 13585 | 0 | 0 | 4940 | 0 | 0 | 0 | 0 | 0 | 0 | 365963 | | 5 ARLCR | 102 | 613 | 613 | 0 | 204 | 451 | 0 | 1661 | 0 | 409 | 0 | 0 | 210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4263 | | 6 ARNCR | 18772 | 8124 | 4806 | 824 | 4333 | 17787 | 4325 | 21749 | 1793 | 533 | 0 | 0 | 0 | 329 | 108 | 0 | 0 | 0 | 337 | 0 | 0 | 0 | 0 | 83820 | | 7 ALX | 14403 | 4460 | 1934 | 1911 | 2084 | 7665 | 13007 | 13757 | 263 | 1397 | 0 | 0 | 0 | 367 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 61248 | | 8 FFX | 59747 | 22482 | 17652 | 5879 | 16868 | 38714 | | 316697 | 20559 | 19711 | 0 | 0 | 2562 | 238 | 424 | 0 | 336 | 815 | 1052 | 471 | 0 | 132 | 0 | 553637 | | 9 LDN | 5366 | 2556 | 4271 | 0 | 1174 | 2661 | 1066 | 63745 | 56929 | 2520 | 0 | 0 | 0 | 382 | 0 | 0 | 0 | 662 | 0 | 480 | 0 | 0 | 0 | 141814 | | 10 PW | 6173 | 8898 | 3699 | 3070 | 4264 | 7502 | 8581 | 80931 | 5416 | 82265 | 0 | 0 | 0 | 0 | 0 | 492 | 295 | 2907 | 2914 | 0 | 636 | 0 | 0 | 218043 | | 11 FRD | 1002 | 2564 | 26705 | 2634 | 168 | 260 | 229 | 1997 | 2587 | 298 | 87133 | 4749 | 3917 | 1211 | 0 | 0 | 0 | 0 | 0 | 468 | 0 | 0 | 0 | 135922 | | 12 CAR | 748 | 99 | 8582 | 2706 | 0 | 0 | 165 | 165 | 0 | 0 | 2233 | 41665 | 10974 | 6564 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 73901 | | 13 HOW | 5118 | 2753 | 15928 | 21838 | 260 | 325 | 601 | 2315 | 276 | 0 | 423 | 967 | 53184 | 21599 | 0 | 0 | 138 | 0 | 0 | 325 | 0 | 0 | 0 | 126048 | | 14 AAR | 9699 | 8250 | 7698 | 27723 | 1491 | 2309 | 1900 | 4521 | 0 | 203 | 0 | 801 | | 140775 | 610 | 81 | 0 | 0 | 0 | 144 | 0 | 0 | 0 | 225740 | | 15 CAL | 3155 | 1726 | 726 | 5342 | 239 | 1447 | 0 | 3039 | 0 | 362 | 0 | 0 | 1078 | 6363 | 14152 | 7449 | 487 | 0 | 0 | 0 | 0 | 0 | 0 | 45566 | | 16 STM | 1768 | 2753 | 459 | 3404 | 0 | 0 | 0 | 390 | 0 | 0 | 0 | 0 | 0 | 572 | 5100 | 56179 | 5356 | 0 | 0 | 0 | 0 | 0 | 0 | 75981 | | 17 CHS | 5188 | 4462 | 1508 | 14734 | 1057 | 2586 | 1769 | 5902 | 0 | 0 | 0 | 0 | 0 | 2044 | 1685 | 1257 | 30022 | 0 | 0 | 0 | 0 | 289 | 0 | 72503 | | 18 FAU | 549 | 0 | 566 | 0 | 0 | 883 | 431 | 9103 | 2092 | 6302 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9722 | 0 | 0 | 214 | 0 | 0 | 29863 | | 19 STA | 1637 | 2124 | 857 | 131 | 0 | 774 | 1285 | 8791 | 0 | 11962 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18199 | 536 | 10136 | 893 | 0 | 57326 | | 20 CL/JF | 534 | 0 | 562 | 0 | 0 | 0 | 0 | 3551 | 6898 | 0 | 3617 | 0 | 157 | 0 | 0 | 0 | 0 | 314 | 0 | 12528 | 0 | 297 | 0 | 28457 | | 21 SP/FB | 1955 | 916 | 787 | 1011 | 567 | 594 | 0 | 617 | 0 | 3194 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 258 | 6298 | 1622 | 32233 | 4828 | 0 | 54881 | | 22 KGEO | 286 | 0 | 0 | 0 | 0 | 0 | 0 | 328 | 0 | 804 | 0 | 0 | 0 | 366 | 0 | 244 | 1000 | 244 | 838 | 0 | 889 | 8452 | 0 | 13453 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 278902 | | 410171 | | 39475 | | 70209 | | 102535 | | 96933 | | 107692 | | 22263 | | 42573 | | 30097 | | 44109 | | | | | TOTAL | | 194303 | | 298427 | | 112138 | | 600307 | | 131416 | 20233 | 49305 | 10/092 | 205801 | 22203 | 65703 | 123/3 | 14924 | 30097 | 17412 | 44103 | 14891 | U | 2949583 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Difference (Est-Obs) Auto Person | | DESTIN | IATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|--------|-------|--------|-------|-------|-------|-------|-------|--------|-------|-------|------|------|------|-------|------|-------|--------|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | ====== | | | ====== | | | | ====== | | | | | | ====== | | | | | | | | | ====== | | | 1 DC CR | -541 | -2897 | -564 | 374 | 115 | -1121 | 119 | 109 | -353 | 11 | 2 | 0 | 29 | -643 | 1 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | -5347 | | 2 DC NC | | | -10733 | -6027 | -365 | -4498 | -1255 | -4512 | -1198 | -463 | 59 | 1 | -14 | -2236 | -150 | 23 | 205 | 4 | 1 | _ 1 | 1 | 0 | 0 | -95208 | | 3 MTG | 22934 | | -34621 | 2105 | -271 | -3633 | 676 | -4169 | -1071 | -420 | 752 | 325 | -1721 | -1586 | 103 | 169 | 338 | 33 | -448 | -704 | 18 | 2 | 0 | -31101 | | 4 PG | -903 | | -14206 | -1093 | 2297 | -1765 | 741 | -7854 | -1324 | 11 | 78 | -1098 | -143 | 729 | 794 | 710 | -3 | 11 | 7 | 4 | 12 | 15 | 0 | -24981 | | 5 ARLCR | 107 | -479 | -498 | 57 | 307 | -66 | 108 | -1123 | 17 | -403 | 0 | 0 | -209 | 3 | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -2178 | | 6 ARNCR | -10540 | -4225 | -1687 | 563 | 242 | -3281 | -230 | -1644 | -1268 | -269 | 15 | 0 | 32 | -250 | -106 | 7 | 21 | 10 | -332 | 1 | 4 | 0 | 0 | -22937 | | 7 ALX | -7720 | -1233 | 208 | -433 | 258 | -1223 | -1729 | 5966 | 79 | -932 | 10 | 0 | 27 | -289 | 4 | 12 | 43 | 10 | 14 | 1 | 11 | 0 | 0 | -6915 | | 8 FFX | 3517 | 1900 | 7869 | 5073 | -4481 | -4765 | -2586 | 6106 | 411 | -5866 | 266 | 11 | -2235 | 553 | -372 | 175 | 9 | -130 | -721 | -314 | 302 | -120 | 0 | 4603 | | 9 LDN | 2259 | 1694 | 3326 | 2012 | 528 | 1733 | | -10698 | 136 | 1092 | 1611 | 84 | 346 | 15 | 11 | 40 | 63 | 55 | 81 | 1267 | 98 | . 5 | 0 | 6646 | | 10 PW | 7456 | -1999 | 3168 | 322 | -1054 | 1061 | | -23706 | 1607 | 1906 | 178 | 10 | 111 | 285 | 17 | -423 | -184 | 543 | -972 | 223 | 367 | 41 | 0 | -12145 | | 11 FRD | 1863 | 278 | -5740 | 150 | 241 | 694 | 99 | 2058 | -935 | -152 | -5107 | 1231 | 4396 | 2657 | 21 | 9 | 68 | 33 | 2 | 598 | 3 | 0 | 0 | 2466 | | 12 CAR | 1603 | 1517 | -186 | -797 | 220 | 427 | -29 | 1188 | 236 | 24 | 6669 | 3296 | -5427 | -3818 | 16 | 4 | 43 | 6 | 0 | 139 | 0 | 0 | 0 | 5132 | | 13 HOW | 835 | 2916 | | -11307 | 169 | 730 | -143 | -71 | -158 | 40 | 3507 | 220 | 3898 | -3807 | 69 | 115 | 24 | 4 | 1 | -247 | 2 | 1 | 0 | -3745 | | 14 AAR | 1733 | 1682 | 3852 | -7744 | -637 | -283 | -917 | -1081 | 126 | -118 | 848 | -569 | -2912 | 5127 | 704 | 487 | 850 | 3 | 2 | -120 | 3 | 3 | 0 | 1040 | | 15 CAL | 700 | 927 | 985 | -478 | 28 | -819 | 359 | -1861 | 36 | -322 | 32 | 5 | -741 | -3463 | 5086 | -1354 | 1897 | 2 | 3 | 0 | 8 | 12 | 0 | 1042 | | 16 STM | 1115 | -787 | 595 | 139 | 242 | 506 | 310 | 606 | 26 | 48 | 14 | 1 | 177 | 291 | -1101 | -3377 | 908 | 4 | 13 | 0 | 28 | 64 | 0 | -178 | | 17 CHS | 2870 | 1236 | 1068 | -4195 | -430 | -1180 | -894 | -3316 | 59 | 73 | 30 | 3 | 328 | -556 | 7 | 1866 | 1830 | 3 | 8 | 0 | 24 | -222 | 0 | -1386 | | 18 FAU | 480 | 514 | 220 | 264 | 265 | -185 | 12 | -112 | 140 | -400 | 48 | 2 | 15 | 23 | 2 | 16 | 17 | 917 | 928 | 183 | 417 | 28 | 0 | 3795 | | 19 STA | -146 | -1208 | 48 | 516 | 361 | 435 | -148 | 895 | 920 | -2599 | 22 | 0 | 11 | 51 | 17 | 107 | 113 | 1885 | 3687 | -475 | 529 | -530 | 0 | 4491 | | 20 CL/JF | -46 | 295 | 1503 | 280 | 106 | 283 | 133 | 837 | -2839 | 685 | -2149 | 78 | 151 | 160 | 0 | 0 | 1 | 43 | 15 | 4530 | 17 | -296 | 0 | 3788 | | 21 SP/FB | -1385 | -594 | -600 | -704 | -420 | 22 | 620 | 5807 | 674 | 2237 | 16 | 0 | 0 | 10 | 22 | 118 | 152 | 1256 | 1939 | -1571 | 242 | -4415 | 0 | 3428 | | 22 KGEO | 357 | 388 | 153 | 532 | 125 | 243 | 151 | 741 | 95 | 72 | 0 | 0 | 11 | -320 | 39 | -105 | -666 | -46 | 195 | 6 | 463 | -4227 | 0 | -1792 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | -10845 | | -46381 | | -2153 | | -4818 | | -4582 | | 6901 | | -3870 | | 5184 | | 5741 | | 4423 | | 2550 | | 0 | | | | | -38645 | | -20390 | | -16686 | | -35835 | | -5743 | | 3600 | | -7064 | | -1402 | | 4647 | | 3524 | | -9638 | | -171482 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Ratio (Est/Obs) Auto Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|-------|--------|--------|--------|-------------|--------|-------------|-------|-------------|--------|---------|-------------|--------|--------|--------|--------|--------|-------|--------------|-------------|--------------|-------|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 0.91 | 0.19 | 0.44 | 2.80 | 115.06 | 0.10 | 118.75 | 1.11 | 0.13 | 10.83 | 2.16 | ======<br>0 | 29.42 | 0.10 | 0.86 | 1.28 | 12.64 | 0.40 | ·======<br>0 | ======<br>0 | ·======<br>0 | 0 | 0 l | 0.62 | | 2 DC NC | 0.26 | 0.23 | 0.39 | 0.62 | 0.72 | 0.17 | 0.34 | 0.57 | 0.20 | 0.13 | 58.92 | 0.96 | | 0.34 | 0.19 | 22.60 | 204.75 | 3.51 | 0.71 | 0.71 | 1.04 | 0.07 | 0 | 0.34 | | 3 MTG | 1.58 | 0.75 | 0.86 | 1.07 | 0.92 | 0.67 | 1.35 | 0.85 | 0.50 | 0.42 | 1.22 | 325.13 | 0.81 | 0.78 | 102.56 | 169.25 | 337.90 | 33.03 | 0.02 | 0.16 | 17.50 | 2.07 | o i | 0.93 | | 4 PG | 0.98 | 0.95 | 0.69 | 0.99 | 2.21 | 0.83 | 1.20 | 0.65 | 0.21 | 1.06 | 1.67 | 0.02 | 0.98 | 1.05 | 794.36 | 710.15 | 1.00 | 10.99 | 6.70 | 4.02 | 11.65 | 15.19 | 0 j | 0.93 | | 5 ARLCR | 2.05 | 0.22 | 0.19 | 56.71 | 2.50 | 0.85 | 107.60 | 0.32 | 16.71 | 0.02 | 0.27 | 0 | 0.00 | 2.65 | 0 | 0.10 | 0.59 | 0.17 | 0.03 | 0 | 0.01 | 0 | 0 | 0.49 | | 6 ARNCR | 0.44 | 0.48 | 0.65 | 1.68 | 1.06 | 0.82 | 0.95 | 0.92 | 0.29 | 0.50 | 14.76 | 0.05 | 32.02 | 0.24 | 0.02 | 6.77 | 20.85 | 9.77 | 0.02 | 1.35 | 4.36 | 0.05 | 0 | 0.73 | | 7 ALX | 0.46 | 0.72 | 1.11 | 0.77 | 1.12 | 0.84 | 0.87 | 1.43 | 1.30 | 0.33 | 10.32 | 0.06 | 26.71 | 0.21 | 4.43 | 11.62 | 43.30 | 9.83 | 14.22 | 1.23 | 10.69 | 0.40 | 0 | 0.89 | | 8 FFX | 1.06 | 1.08 | 1.45 | 1.86 | 0.73 | 0.88 | 0.91 | 1.02 | 1.02 | 0.70 | 265.90 | 10.79 | 0.13 | 3.32 | 0.12 | 174.70 | 1.03 | 0.84 | 0.31 | 0.33 | 302.47 | 0.09 | 0 | 1.01 | | 9 LDN | 1.42 | 1.66 | 1.782 | 011.60 | 1.45 | 1.65 | 1.83 | 0.83 | 1.00 | 1.433 | L610.95 | 84.34 | 346.43 | 1.04 | 10.59 | 39.53 | 62.99 | 1.08 | 80.51 | 3.64 | 98.46 | 5.00 | 0 | 1.05 | | 10 PW | 2.21 | 0.78 | 1.86 | 1.11 | 0.75 | 1.14 | 0.87 | 0.71 | 1.30 | 1.02 | 177.98 | 9.70 | 110.73 | 284.91 | 17.09 | 0.14 | 0.37 | 1.19 | 0.67 | 222.89 | 1.58 | 40.73 | 0 | 0.94 | | 11 FRD | 2.86 | 1.11 | 0.79 | 1.06 | 2.43 | 3.67 | 1.43 | 2.03 | 0.64 | 0.49 | 0.94 | 1.26 | | 3.19 | 20.93 | 9.47 | 67.84 | 32.79 | 1.85 | 2.28 | 2.74 | 0.12 | 0 | 1.02 | | 12 CAR | 3.14 | 16.27 | 0.98 | 0.71 | 220.16 | 427.47 | 0.82 | 8.18 | | 23.80 | 3.99 | 1.08 | 0.51 | 0.42 | 16.25 | 3.68 | 43.47 | 6.27 | 0.25 | 138.80 | 0.23 | 0.10 | 0 | 1.07 | | 13 HOW | 1.16 | 2.06 | 0.97 | 0.48 | 1.65 | 3.24 | 0.76 | 0.97 | 0.43 | 40.39 | 9.30 | 1.23 | 1.07 | 0.82 | 68.66 | 114.92 | 1.18 | 3.84 | 0.94 | 0.24 | 1.63 | 0.61 | 0 | 0.97 | | 14 AAR | 1.18 | 1.20 | 1.50 | 0.72 | 0.57 | 0.88 | 0.52 | | | | 847.96 | 0.29 | 0.85 | 1.04 | 2.15 | | 849.62 | 3.29 | 2.06 | 0.17 | 3.42 | 2.91 | 0 | 1.00 | | 15 CAL | 1.22 | 1.54 | 2.36 | 0.91 | 1.12 | 0.43 | | 0.39 | 36.48 | 0.11 | 31.63 | 5.02 | | 0.46 | 1.36 | 0.82 | 4.89 | 1.78 | 3.14 | 0.27 | 8.16 | 11.72 | 0 | 1.02 | | 16 STM | 1.63 | 0.71 | 2.30 | | | 506.06 | | 2.55 | | 47.79 | 14.00 | | 176.88 | 1.51 | 0.78 | 0.94 | 1.17 | 4.17 | 12.57 | 0.07 | 28.47 | 63.94 | 0 | 1.00 | | 17 CHS | 1.55 | 1.28 | 1.71 | 0.72 | 0.59 | 0.54 | 0.49 | 0.44 | 59.47 | 72.64 | 29.85 | 3.21 | | 0.73 | 1.00 | 2.48 | 1.06 | 3.05 | 8.40 | 0.20 | 24.05 | 0.23 | 0 | 0.98 | | 18 FAU | 1.87 | 513.75 | | 263.92 | | 0.79 | 1.03 | 0.99 | 1.07 | 0.94 | 48.18 | 2.11 | | 22.95 | 2.37 | 15.84 | 16.50 | | | 183.38 | 2.95 | 28.25 | 0 | 1.13 | | 19 STA | 0.91 | 0.43 | 1.06 | | 361.19 | 1.56 | 0.88 | 1.10 | 920.38 | 0.78 | 22.33 | 0.10 | | 50.58 | | 106.55 | | | 1.20 | 0.11 | 1.05 | 0.41 | 0 | 1.08 | | 20 CL/JF | 0.91 | 295.25 | | | | 283.11 | | 1.24 | | 685.40 | 0.41 | 78.20 | 1.96 | 159.71 | 0.05 | 0 | 1.01 | 1.14 | 14.84 | 1.36 | 16.69 | 0.00 | 0 | 1.13 | | 21 SP/FB | 0.29 | 0.35 | 0.24 | 0.30 | 0.26 | 1.04 | 020.11 | 10.41 | 674.32 | 1.70 | 16.01 | 0 | 0 | 10.20 | 22.39 | | 152.17 | 5.87 | 1.31 | 0.03 | 1.01 | 0.09 | 0 | 1.06 | | 22 KGEO | 2.25 | 388.12 | 153.09 | 532.00 | 125.24 | 243.17 | | 3.26 | 94.90 | 1.09 | 0.27 | 0 | 10.93 | 0.13 | 38.52 | 0.57 | 0.33 | 0.81 | 1.23 | 6.40 | 1.52 | 0.50 | 0 | 0.87 | | 23 EXTL | 0 | <br> | .===== | 0 | U<br>====== | 0 | 0<br>====== | 0 | U<br>====== | 0 | U | 0 | 0 | | 0 | 0 | <br> | 0 | 0 | U | 0 | 0 | 0 | | | TOTAL | 0.96 | | 0.89 | | 0.95 | | 0.93 | | 0.96 | | 1.07 | | 0.96 | | 1.23 | | 1.13 | | 1.15 | | 1.06 | | 0 | | | | | 0.80 | | 0.93 | | 0.85 | | 0.94 | | 0.96 | | 1.07 | | 0.97 | | 0.98 | | 1.31 | | 1.20 | | 0.35 | | 0.94 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Est Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|---------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|-------|-------|-------|-------|-------|-------|------|-------|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 4950 | 664 | 434 | 573 | 110 | 121 | 116 | 1077 | 52 | 11 | 2 | 0 | 29 | 69 | 1 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 8222 | | 2 DC NC | 12783 | 7438 | 6525 | 9523 | 889 | 900 | 622 | 5919 | 290 | 71 | 59 | 1 | 513 | 1117 | 35 | 22 | 203 | 4 | 1 | 1 | 1 | 0 | 0 | 46916 | | 3 MTG | 59381 | | 202789 | 29046 | 3131 | 6958 | 2491 | 21824 | 1051 | 304 | 3975 | 319 | 6933 | 5447 | 102 | 164 | 332 | 33 | 11 | 132 | 18 | 2 | 0 | 372825 | | 4 PG | 43303 | 40153 | 30198 | 154294 | 3975 | 8457 | 4288 | 13794 | 335 | 201 | 191 | 25 | 6079 | 13616 | 775 | 687 | 4734 | 11 | 7 | 4 | 12 | 15 | 0 | 325154 | | 5 ARLCR | 199 | 130 | 111 | 56 | 482 | 367 | 103 | 513 | 16 | 6 | 0 | 0 | 1 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1987 | | 6 ARNCR | 7974 | 3764 | 3001 | 1358 | 4345 | 13840 | 3906 | 19163 | 506 | 260 | 15 | 0 | 32 | 78 | 2 | 7 | 21 | 10 | 5 | 1 | 4 | 0 | 0 | 58291 | | 7 ALX | 6495 | 3127 | 2054 | 1442 | 2242 | 6210 | 10783 | 18770 | 328 | 451 | 10 | 0 | 27 | 77 | 4 | 11 | 43 | 10 | 14 | 1 | 11 | 0 | 0 | 52112 | | 8 FFX | 60808 | 23409 | 24404 | 10556 | 11842 | 32459 | 25800 | 307500 | 20075 | 13335 | 262 | 11 | 321 | 766 | 52 | 170 | 340 | 662 | 326 | 155 | 298 | 12 | 0 | 533564 | | 9 LDN | 7076 | 3969 | 7265 | 1918 | 1557 | 4032 | 1848 | 50145 | 54610 | 3488 | 1552 | 84 | 336 | 380 | 11 | 38 | 62 | 692 | 80 | 1676 | 97 | 5 | 0 | 140920 | | 10 PW | 12782 | 6510 | 6055 | 3012 | 2998 | 7987 | 7106 | 53596 | 6717 | 80604 | 171 | 10 | 99 | 249 | 17 | 66 | 107 | 3306 | 1873 | 217 | 969 | 40 | 0 | 194492 | | 11 FRD | 2716 | 2722 | 19641 | 2663 | 385 | 904 | 315 | 3797 | 1572 | 142 | 77762 | 5661 | 7744 | 3615 | 21 | 9 | 67 | 32 | 2 | 1010 | 3 | 0 | 0 | 130781 | | 12 CAR | 2219 | 1548 | 7854 | 1826 | 207 | 406 | 131 | 1273 | 227 | 24 | 8375 | 42805 | 5205 | 2577 | 16 | 4 | 43 | 6 | 0 | 132 | 0 | 0 | 0 | 74877 | | 13 HOW | 5647 | 5411 | 14545 | 10029 | 406 | 1009 | 438 | 2133 | 115 | 39 | 3713 | 1133 | 54248 | 16870 | 68 | 110 | 157 | 4 | 1 | 76 | 2 | 1 | 0 | 116153 | | 14 AAR | 10797 | 9433 | 10877 | 18957 | 805 | 1926 | 933 | 3261 | 122 | 83 | 802 | 225 | 15684 | 138473 | 1253 | 539 | 812 | 3 | 2 | 24 | 3 | 3 | 0 | 215016 | | 15 CAL | 3627 | 2523 | 1617 | 4619 | 250 | 598 | 341 | 1120 | 36 | 39 | 31 | 5 | 318 | 2725 | 18305 | 5774 | 2247 | 2 | 3 | 0 | 8 | 11 | 0 | 44200 | | 16 STM | 2693 | 1868 | 995 | 3356 | 225 | 480 | 294 | 947 | 25 | 45 | 14 | 1 | 168 | 808 | 3774 | 50179 | 5894 | 4 | 12 | 0 | 28 | 61 | 0 | 71874 | | 17 CHS | 7598 | 5428 | 2439 | 10033 | 590 | 1338 | 834 | 2459 | 58 | 71 | 30 | 3 | 312 | 1405 | 1608 | 2968 | 30299 | 3 | 8 | 0 | 24 | 65 | 0 | 67572 | | 18 FAU | 911 | 462 | 718 | 239 | 230 | 614 | 413 | 8305 | 2117 | 5627 | 47 | 2 | 14 | 21 | 2 | 15 | 16 | 10159 | 888 | 176 | 603 | 27 | 0 | 31608 | | 19 STA | 1370 | 854 | 675 | 514 | 334 | 1120 | 1041 | 8705 | 866 | 8914 | 20 | 0 | 8 | 38 | 17 | 103 | 109 | 1785 | 20966 | 59 | 10187 | 348 | 0 | 58033 | | 20 CL/JF | 458 | 283 | 1920 | 269 | 96 | 257 | 123 | 4012 | 3789 | 643 | 1384 | 75 | 286 | 150 | 0 | 0 | 1 | 335 | 14 | 16315 | 16 | 1 | 0 | 30428 | | 21 SP/FB | 518 | 299 | 131 | 246 | 135 | 564 | 556 | 5667 | 626 | 5134 | 15 | 0 | 0 | 8 | 22 | 114 | 147 | 1420 | 7865 | 49 | 31053 | 396 | 0 | 54964 | | 22 KGEO | 622 | 378 | 139 | 507 | 119 | 230 | 138 | 939 | 89 | 825 | 0 | 0 | 11 | 45 | 37 | 133 | 318 | 185 | 983 | 6 | 1283 | 4046 | 0 | 11036 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 0 | | ======= | | ====== | 244204 | | 25252 | ====== | | | 02601 | | | ====== | | ====== | | | 45066 | | 22060 | | 44600 | | -==== | :===== | | TOTAL | 254928 | | 344384 | 0.55000 | 35353 | | 62623 | | 93621 | | 98432 | | 98366 | | 26120 | | 45966 | | 33062 | | 44620 | | 0 | | | | | 148753 | | 265033 | | 90780 | | 534920 | | 120317 | | 50359 | | 188537 | | 61115 | | 18663 | | 20035 | | 5035 | | 2641021 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Obs Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|--------|-------|--------|-------|--------|-------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | | | | | | | | | | | | | | | | | | | | | | ====== | | 1 DC CR | 4503 | 3125 | 1007 | 208 | 0 | 1244 | 0 | 994 | 406 | 0 | 0 | 0 | 0 | 713 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12199 | | 2 DC NC | 44933 | 30820 | 17282 | 15512 | 1111 | 5419 | 1893 | 10595 | 1493 | 534 | 0 | 0 | 185 | 3388 | 185 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 133350 | | 3 MTG | 36895 | | 234258 | 26938 | 3261 | 10921 | 1923 | 26316 | 2158 | 729 | 3205 | 0 | 9008 | 7305 | 0 | 0 | 0 | 0 | 459 | 838 | 0 | 0 | 0 | 400148 | | 4 PG | 42614 | 40389 | | 146699 | 1901 | 9520 | 3735 | 21188 | 1666 | 193 | 116 | 1123 | 6527 | 11943 | 0 | 0 | 4940 | 0 | 0 | 0 | 0 | 0 | 0 | 336603 | | 5 ARLCR | 0 | 613 | 613 | 0 | 204 | 226 | 0 | 1661 | 0 | 409 | 0 | 0 | 210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3935 | | 6 ARNCR | 17066 | 7611 | 4806 | 824 | 4231 | 16742 | 4117 | 21749 | 1674 | 533 | 0 | 0 | 0 | 329 | 108 | 0 | 0 | 0 | 337 | 0 | 0 | 0 | 0 | 80127 | | 7 ALX | 13055 | 4460 | 1934 | 1911 | 1876 | 6246 | 11793 | 13644 | 263 | 1397 | 0 | 0 | 0 | 367 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56945 | | 8 FFX | 54721 | 20650 | 17652 | 5879 | 16368 | 36649 | | 304653 | 18464 | 19158 | 0 | 0 | 2562 | 238 | 424 | 0 | 336 | 815 | 1052 | 471 | 0 | 132 | 0 | 528823 | | 9 LDN | 4525 | 2556 | 4271 | 0 | 662 | 2661 | 1066 | 61475 | 54536 | 2227 | 0 | 0 | 0 | 382 | 0 | 0 | 0 | 662 | 0 | 480 | 0 | 0 | 0 | 135504 | | 10 PW | 5455 | 8065 | 2645 | 2016 | 3628 | 6307 | 6690 | 80184 | 5416 | 77978 | 0 | 0 | 0 | 0 | 0 | 492 | 295 | 2907 | 2914 | 0 | 636 | 0 | 0 | 205628 | | 11 FRD | 1002 | 2564 | 25580 | 2634 | 168 | 260 | 229 | 1997 | 2587 | 298 | 81840 | 3913 | 3917 | 1211 | 0 | 0 | 0 | 0 | 0 | 468 | 0 | 0 | 0 | 128668 | | 12 CAR | 583 | 99 | 8406 | 2706 | 0 | 0 | 165 | 165 | 0 | 0 | 2134 | 38696 | 10593 | 5601 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 69149 | | 13 HOW | 4781 | 2753 | 15720 | 21598 | 260 | 325 | 601 | 2315 | 276 | 0 | 423 | 967 | 51539 | 21599 | 0 | 0 | 138 | 0 | 0 | 325 | 0 | 0 | 0 | 123618 | | 14 AAR | 9137 | 7689 | 6698 | 26774 | 1491 | 2309 | 1900 | 4521 | 0 | 203 | 0 | 801 | 19536 | 133973 | 610 | 81 | 0 | 0 | 0 | 144 | 0 | 0 | 0 | 215866 | | 15 CAL | 3155 | 1726 | 726 | 5342 | 239 | 724 | 0 | 3039 | 0 | 362 | 0 | 0 | 1078 | 6363 | 14152 | 7449 | 487 | 0 | 0 | 0 | 0 | 0 | 0 | 44842 | | 16 STM | 1768 | 2753 | 459 | 3404 | 0 | 0 | 0 | 390 | 0 | 0 | 0 | 0 | 0 | 572 | 4127 | 50930 | 5356 | 0 | 0 | 0 | 0 | 0 | 0 | 69759 | | 17 CHS | 5188 | 4462 | 1160 | 13570 | 1057 | 2586 | 1769 | 5273 | 0 | 0 | 0 | 0 | 0 | 2044 | 1685 | 1257 | 27711 | 0 | 0 | 0 | 0 | 289 | 0 | 68052 | | 18 FAU | 549 | 0 | 566 | 0 | 0 | 883 | 431 | 8827 | 1816 | 6135 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9291 | 0 | 0 | 214 | 0 | 0 | 28712 | | 19 STA | 1637 | 2124 | 857 | 131 | 0 | 506 | 1285 | 7845 | 0 | 11456 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16184 | 536 | 9022 | 893 | 0 | 52476 | | 20 CL/JF | 534 | 0 | 562 | 0 | 0 | 0 | 0 | 3356 | 5698 | 0 | 3617 | 0 | 157 | 0 | 0 | 0 | 0 | 314 | 0 | 12314 | 0 | 297 | 0 | 26848 | | 21 SP/FB | 1955 | 916 | 787 | 1011 | 567 | 594 | 0 | 617 | 0 | 2458 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 258 | 5808 | 1622 | 31616 | 4828 | 0 | 53038 | | 22 KGEO | 286 | 0 | 0 | 0 | 0 | 0 | 0 | 328 | 0 | 804 | 0 | 0 | 0 | 366 | 0 | 244 | 1000 | 244 | 838 | 0 | 889 | 7684 | 0 | 12684 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ======= | | | | | | | | | | | | | | | | | 40060 | | | | | | | ====== | | TOTAL | 254344 | | 390036 | | 37024 | | 66198 | | 96451 | | 91335 | | 105312 | | 21290 | | 40262 | | 27592 | | 42377 | | 0 | | | | | 179309 | | 277156 | | 104120 | | 581135 | | 124874 | | 45500 | | 196395 | | 60453 | | 14493 | | 17197 | | 14122 | | 2786976 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Difference (Est-Obs) Auto Driver | | DESTIN | IATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|------|--------|------|------|-------|--------|------|--------------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8<br> | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22<br>====== | 23 | TOTAL | | 1 DC CR | 447 | -2461 | -573 | 365 | 110 | -1123 | 116 | 83 | -354 | 11 | 2 | 0 | 29 | -644 | 1 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | -3977 | | 2 DC NC | -32150 | -23382 | -10757 | -5990 | -221 | -4519 | -1271 | -4676 | -1204 | -463 | 59 | 1 | 329 | -2271 | -150 | 22 | 203 | 4 | 1 | 1 | 1 | 0 | 0 | -86434 | | 3 MTG | 22486 | -7552 | -31469 | 2108 | -130 | -3963 | 569 | -4492 | -1107 | -425 | 770 | 319 | -2075 | -1858 | 102 | 164 | 332 | 33 | -448 | -706 | 18 | 2 | 0 | -27323 | | 4 PG | 689 | -236 | -13851 | 7594 | 2075 | -1063 | 553 | -7394 | -1331 | 8 | 75 | -1098 | -449 | 1673 | 775 | 687 | -206 | 11 | 7 | 4 | 12 | 15 | 0 | -11450 | | 5 ARLCR | 199 | -483 | -502 | 56 | 277 | 141 | 103 | -1148 | 16 | -403 | 0 | 0 | -209 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1948 | | 6 ARNCR | -9092 | -3847 | -1805 | 534 | 114 | -2902 | -210 | -2586 | -1168 | -274 | 15 | 0 | 32 | -251 | -106 | 7 | 21 | 10 | -332 | 1 | 4 | 0 | 0 | -21835 | | 7 ALX | -6560 | -1333 | 120 | -470 | 366 | -35 | -1010 | 5126 | 66 | -945 | 10 | 0 | 27 | -290 | 4 | 11 | 43 | 10 | 14 | 1 | 11 | 0 | 0 | -4834 | | 8 FFX | 6087 | 2759 | 6752 | 4677 | -4526 | -4190 | -2801 | 2847 | 1611 | -5823 | 262 | 11 | -2240 | 528 | -372 | 170 | 5 | -153 | -726 | -316 | 298 | -120 | 0 | 4741 | | 9 LDN | 2551 | 1413 | 2994 | 1918 | 894 | 1372 | 781 | -11331 | 74 | 1261 | 1552 | 84 | 336 | -2 | 11 | 38 | 62 | 29 | 80 | 1196 | 97 | 5 | 0 | 5416 | | 10 PW | 7327 | -1555 | 3411 | 996 | -631 | 1680 | 416 | -26588 | 1301 | 2626 | 171 | 10 | 99 | 249 | 17 | -426 | -187 | 399 | -1041 | 217 | 333 | 40 | 0 | -11136 | | 11 FRD | 1714 | 158 | -5940 | 29 | 217 | 644 | 86 | 1800 | -1015 | -155 | -4077 | 1748 | 3827 | 2403 | 21 | 9 | 67 | 32 | 2 | 542 | 3 | 0 | 0 | 2113 | | 12 CAR | 1636 | 1449 | -552 | -880 | 207 | 406 | -34 | 1108 | 227 | 24 | 6241 | 4109 | -5389 | -3024 | 16 | 4 | 43 | 6 | 0 | 132 | 0 | 0 | 0 | 5729 | | 13 HOW | 865 | 2659 | -1176 | -11569 | 146 | 684 | -163 | -182 | -161 | 39 | 3291 | 166 | 2709 | -4729 | 68 | 110 | 20 | 4 | 1 | -249 | 2 | 1 | 0 | -7465 | | 14 AAR | 1660 | 1744 | 4179 | -7817 | -686 | -383 | -966 | -1260 | 122 | -121 | 802 | -577 | -3853 | 4500 | 642 | 459 | 812 | 3 | 2 | -120 | 3 | 3 | 0 | -851 | | 15 CAL | 471 | 797 | 891 | -723 | 12 | -126 | 341 | -1919 | 36 | -323 | 31 | 5 | -760 | -3638 | 4153 | -1676 | 1760 | 2 | 3 | 0 | 8 | 11 | 0 | -643 | | 16 STM | 925 | -885 | 536 | -48 | 225 | 480 | 294 | 557 | 25 | 45 | 14 | 1 | 168 | 236 | -353 | -750 | 539 | 4 | 12 | 0 | 28 | 61 | 0 | 2115 | | 17 CHS | 2410 | 965 | 1278 | -3537 | -467 | -1247 | -935 | -2815 | 58 | 71 | 30 | 3 | 312 | -639 | -77 | 1711 | 2588 | 3 | 8 | 0 | 24 | -224 | 0 | -480 | | 18 FAU | 362 | 462 | 152 | 239 | 230 | -269 | -18 | -522 | 301 | -508 | 47 | 2 | 14 | 21 | 2 | 15 | 16 | 867 | 888 | 176 | 389 | 27 | 0 | 2895 | | 19 STA | -267 | -1271 | -183 | 383 | 334 | 614 | -244 | 860 | 866 | -2542 | 20 | 0 | 8 | 38 | 17 | 103 | 109 | 1785 | 4782 | -477 | 1165 | -544 | 0 | 5556 | | 20 CL/JF | -75 | 283 | 1358 | 269 | 96 | 257 | 123 | 655 | -1908 | 643 | -2233 | 75 | 129 | 150 | 0 | 0 | 1 | 20 | 14 | 4002 | 16 | -296 | 0 | 3579 | | 21 SP/FB | -1437 | -617 | -656 | -764 | -432 | -30 | 556 | 5050 | 626 | 2676 | 15 | 0 | 0 | 8 | 22 | 114 | 147 | 1162 | 2057 | -1573 | -563 | -4432 | 0 | 1926 | | 22 KGEO | 335 | 378 | 139 | 507 | 119 | 230 | 138 | 611 | 89 | 21 | 0 | 0 | 11 | -321 | 37 | -111 | -682 | -59 | 145 | 6 | 395 | -3637 | 0 | -1648 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 584 | | -45652 | :===== | -1671 | ====== | -3575 | | -2830 | ====== | 7097 | ====== | -6946 | ====== | 4830 | ====== | 5704 | | 5470 | ====== | 2243 | ====== | 0 | :====== | | | | -30556 | | -12123 | | -13340 | | -46215 | | -4558 | | 4859 | | -7858 | | 662 | | 4170 | | 2838 | | -9088 | | -145954 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Ratio (Est/Obs) Auto Driver | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|--------|--------|--------|------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|-------|---------|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.10 | 0.21 | 0.43 | 2.76 | 109.95 | 0.10 | 116.00 | 1.08 | 0.13 | 10.82 | 2.16 | 0 | 29.17 | 0.10 | 0.86 | 1.28 | 12.62 | 0.40 | 0 | 0 | 0 | 0 | <br> 0 | 0.67 | | 2 DC NC | 0.28 | 0.24 | 0.38 | 0.61 | 0.80 | 0.17 | 0.33 | 0.56 | 0.19 | 0.13 | 58.62 | 0.96 | 2.78 | 0.33 | 0.19 | 22.41 | 202.50 | 3.51 | 0.71 | 0.71 | 1.04 | 0.07 | o j | 0.35 | | 3 MTG | 1.61 | 0.79 | 0.87 | 1.08 | 0.96 | 0.64 | 1.30 | 0.83 | 0.49 | 0.42 | 1.24 | 318.56 | 0.77 | 0.75 | 101.93 | 164.14 | 331.90 | 32.55 | 0.02 | 0.16 | 17.50 | 2.07 | 0 | 0.93 | | 4 PG | 1.02 | 0.99 | 0.69 | 1.05 | 2.09 | 0.89 | 1.15 | 0.65 | 0.20 | 1.04 | 1.64 | 0.02 | 0.93 | 1.14 | 774.83 | 686.90 | 0.96 | 10.97 | 6.70 | 4.02 | 11.63 | 15.02 | 0 | 0.97 | | 5 ARLCR | 198.90 | 0.21 | 0.18 | 55.80 | 2.36 | 1.62 | 102.72 | 0.31 | 16.16 | 0.02 | 0.27 | 0 | 0.00 | 2.61 | 0 | 0.10 | 0.59 | 0.17 | 0.03 | 0 | 0.01 | 0 | 0 | 0.50 | | 6 ARNCR | 0.47 | 0.49 | 0.62 | 1.65 | 1.03 | 0.83 | 0.95 | 0.88 | 0.30 | 0.49 | 14.76 | 0.05 | 31.87 | 0.24 | 0.02 | 6.74 | 20.80 | 9.67 | 0.02 | 1.35 | 4.36 | 0.05 | 0 | 0.73 | | 7 ALX | 0.50 | 0.70 | 1.06 | 0.75 | 1.20 | 0.99 | 0.91 | 1.38 | 1.25 | 0.32 | 10.32 | 0.06 | 26.61 | 0.21 | 4.43 | 11.43 | 42.99 | 9.64 | 14.14 | 1.23 | 10.68 | 0.40 | 0 | 0.92 | | 8 FFX | 1.11 | 1.13 | 1.38 | 1.80 | 0.72 | 0.89 | 0.90 | 1.01 | 1.09 | 0.70 | 262.44 | 10.79 | 0.13 | 3.22 | 0.12 | 170.30 | 1.01 | 0.81 | 0.31 | 0.33 | 297.80 | 0.09 | 0 | 1.01 | | 9 LDN | 1.56 | 1.55 | 1.701 | 917.72 | 2.35 | 1.52 | 1.73 | 0.82 | 1.00 | 1.57 | 1552.02 | 83.86 | 336.49 | 1.00 | 10.52 | 37.88 | 62.03 | 1.04 | 79.66 | 3.49 | 97.45 | 4.99 | 0 | 1.04 | | 10 PW | 2.34 | 0.81 | 2.29 | 1.49 | 0.83 | 1.27 | 1.06 | 0.67 | 1.24 | 1.03 | 171.39 | 9.68 | 99.13 | 248.72 | 16.84 | 0.13 | 0.36 | 1.14 | 0.64 | 217.45 | 1.52 | 40.25 | 0 | 0.95 | | 11 FRD | 2.71 | 1.06 | 0.77 | 1.01 | 2.29 | 3.48 | 1.37 | 1.90 | 0.61 | 0.48 | 0.95 | 1.45 | 1.98 | 2.98 | 20.78 | 9.26 | 66.74 | 31.58 | 1.85 | 2.16 | 2.74 | 0.12 | 0 | 1.02 | | 12 CAR | 3.81 | 15.58 | 0.93 | 0.67 | 206.95 | 406.39 | 0.79 | 7.70 | 226.56 | 23.70 | 3.92 | 1.11 | 0.49 | 0.46 | 16.09 | 3.66 | 42.54 | 6.09 | 0.25 | 132.22 | 0.23 | 0.10 | 0 | 1.08 | | 13 HOW | 1.18 | 1.97 | 0.93 | 0.46 | 1.56 | 3.10 | 0.73 | 0.92 | 0.42 | 39.42 | 8.78 | 1.17 | 1.05 | 0.78 | 67.53 | 110.07 | 1.14 | 3.77 | 0.94 | 0.23 | 1.63 | 0.61 | 0 | 0.94 | | 14 AAR | 1.18 | 1.23 | 1.62 | 0.71 | 0.54 | 0.83 | 0.49 | | 122.37 | 0.41 | 802.25 | 0.28 | 0.80 | 1.03 | 2.05 | | 811.58 | 3.27 | 2.06 | 0.17 | 3.42 | 2.89 | 0 | 1.00 | | 15 CAL | 1.15 | 1.46 | 2.23 | 0.86 | 1.05 | 0.83 | 340.89 | 0.37 | 35.55 | 0.11 | 30.90 | 5.02 | 0.29 | 0.43 | 1.29 | 0.78 | 4.61 | 1.75 | 3.11 | 0.27 | 8.08 | 11.33 | 0 | 0.99 | | 16 STM | 1.52 | 0.68 | 2.17 | | 224.96 | | | 2.43 | 25.49 | 45.33 | 13.79 | | 167.54 | 1.41 | 0.91 | 0.99 | 1.10 | 4.07 | 12.44 | 0.07 | 28.07 | 61.20 | 0 | 1.03 | | 17 CHS | 1.46 | 1.22 | 2.10 | 0.74 | 0.56 | 0.52 | 0.47 | 0.47 | 57.98 | 70.54 | 29.51 | 3.21 | 312.13 | 0.69 | 0.95 | 2.36 | 1.09 | 3.04 | 8.38 | 0.20 | 23.91 | 0.23 | 0 | 0.99 | | 18 FAU | 1.66 | 462.02 | | | 229.67 | 0.70 | 0.96 | 0.94 | 1.17 | 0.92 | 47.22 | 2.11 | 14.30 | 21.00 | 2.37 | 15.37 | 16.30 | 1.09 | | 175.97 | 2.81 | 27.41 | 0 | 1.10 | | 19 STA | 0.84 | 0.40 | 0.79 | | 334.07 | 2.21 | 0.81 | 1.11 | 866.01 | 0.78 | 19.84 | 0.10 | 7.70 | 38.03 | | 102.72 | | 784.79 | 1.30 | 0.11 | 1.13 | 0.39 | 0 | 1.11 | | 20 CL/JF | 0.86 | | 3.42 | 268.74 | 96.26 | 257.01 | 123.46 | 1.20 | | 642.94 | 0.38 | 74.82 | 1.82 | 149.81 | 0.05 | 0 | 1.01 | 1.06 | 14.47 | 1.32 | 16.45 | 0.00 | 0 | 1.13 | | 21 SP/FB | 0.27 | 0.33 | 0.17 | 0.24 | 0.24 | 0.95 | | | 625.51 | 2.09 | 14.80 | 0 | 0 | 8.23 | | | 147.24 | 5.50 | 1.35 | 0.03 | 0.98 | 0.08 | 0 | 1.04 | | 22 KGEO | 2.17 | 378.38 | 139.08 | 506.96 | 119.21 | 230.40 | 138.23 | 2.86 | 88.77 | 1.03 | 0.27 | 0 | 10.70 | 0.12 | 37.24 | 0.54 | 0.32 | 0.76 | 1.17 | 6.33 | 1.44 | 0.53 | 0 | 0.87 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.00 | | 0.88 | | 0.95 | | 0.95 | | 0.97 | | 1.08 | | 0.93 | | 1.23 | | 1.14 | | 1.20 | | 1.05 | | 0 | | | | | 0.83 | | 0.96 | | 0.87 | | 0.92 | | 0.96 | | 1.11 | | 0.96 | | 1.01 | | 1.29 | | 1.17 | | 0.36 | | 0.95 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Est Motr Psn | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|--------|-------|--------|-------|--------|--------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 15870 | 6115 | 1996 | 1117 | 1681 | 2430 | 700 | 2162 | 53 | 12 | 2 | 0 | 30 | 71 | 1 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 32253 | | 2 DC NC | 123212 | 45974 | 24107 | 17352 | 6724 | 10687 | 3241 | 10666 | 298 | 74 | 59 | 1 | 540 | 1163 | 35 | 23 | 205 | 4 | 1 | 1 | 1 | 0 | 0 | 244366 | | 3 MTG | 127832 | 42954 | 254668 | 32917 | 6692 | 11396 | 3269 | 24539 | 1087 | 310 | 4162 | 325 | 7306 | 5721 | 103 | 169 | 338 | 33 | 11 | 134 | 18 | 2 | 0 | 523987 | | 4 PG | 89130 | 59999 | 40396 | 176210 | 8850 | 14692 | 5632 | 15813 | 342 | 204 | 194 | 25 | 6454 | 14362 | 794 | 710 | 4938 | 11 | 7 | 4 | 12 | 15 | 0 | 438796 | | 5 ARLCR | 3198 | 413 | 223 | 73 | 695 | 965 | 217 | 669 | 17 | 6 | 0 | 0 | 1 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 6482 | | 6 ARNCR | 44732 | 7664 | 4498 | 1594 | 8631 | 23205 | 6226 | 22630 | 525 | 266 | 15 | 0 | 32 | 79 | 2 | 7 | 21 | 10 | 5 | 1 | 4 | 0 | 0 | 120146 | | 7 ALX | 22633 | 5135 | 2808 | 1596 | 4238 | 10697 | 14007 | 21684 | 342 | 468 | 10 | 0 | 27 | 78 | 4 | 12 | 43 | 10 | 14 | 1 | 11 | 0 | 0 | 83817 | | 8 FFX | 103894 | 30470 | 28256 | 11299 | 19278 | 46493 | | 336079 | 21021 | 13882 | 266 | 11 | 332 | 797 | 52 | 175 | 344 | 685 | 331 | 158 | 303 | 12 | 0 | 645341 | | 9 LDN | 11384 | 4877 | 7878 | 2036 | 2427 | 5470 | 2065 | 53448 | 57464 | 3612 | 1611 | 84 | 346 | 397 | 11 | 40 | 63 | 717 | 81 | 1747 | 98 | 5 | 0 | 155861 | | 10 PW | 27617 | 10178 | 8281 | 3673 | 6524 | 13956 | 9391 | 58856 | 7050 | 85131 | 178 | 10 | 122 | 291 | 17 | 69 | 110 | 3451 | 1942 | 223 | 1004 | 41 | 0 | 238113 | | 11 FRD | 5213 | 3178 | 21717 | 2807 | 562 | 1101 | 348 | 4261 | 1652 | 146 | 83032 | 5980 | 8313 | 3868 | 21 | 9 | 68 | 33 | 2 | 1065 | 3 | 0 | 0 | 143379 | | 12 CAR | 2351 | 1617 | 8396 | 1909 | 220 | 427 | 136 | 1353 | 236 | 24 | 8902 | 44961 | 5547 | 2746 | 16 | 4 | 43 | 6 | 0 | 139 | 0 | 0 | 0 | 79034 | | 13 HOW | 14244 | 7924 | 17172 | 11012 | 1126 | 1853 | 582 | 2382 | 117 | 40 | 3930 | 1186 | 57556 | 17809 | 69 | 115 | 162 | 4 | 1 | 78 | 2 | 1 | 0 | 137364 | | 14 AAR | 21053 | 12502 | 12680 | 20496 | 1766 | 3062 | 1146 | 3648 | 126 | 86 | 848 | 232 | 16657 | 145972 | 1315 | 567 | 850 | 3 | 2 | 24 | 3 | 3 | 0 | 243041 | | 15 CAL | 4809 | 3007 | 1810 | 4907 | 439 | 793 | 386 | 1215 | 36 | 40 | 32 | 5 | 336 | 2901 | 19259 | 6096 | 2385 | 2 | 3 | 0 | 8 | 12 | 0 | 48481 | | 16 STM | 3295 | 2097 | 1097 | 3557 | 317 | 573 | 321 | 1029 | 26 | 48 | 14 | 1 | 177 | 863 | 4000 | 52886 | 6279 | 4 | 13 | 0 | 28 | 64 | 0 | 76688 | | 17 CHS | 12940 | 7174 | 2984 | 10674 | 1179 | 2023 | 985 | 2687 | 59 | 73 | 30 | 3 | 328 | 1488 | 1691 | 3126 | 32192 | 3 | 8 | 0 | 24 | 68 | 0 | 79741 | | 18 FAU | 1165 | 565 | 805 | 266 | 314 | 763 | 471 | 9049 | 2232 | 5907 | 48 | 2 | 15 | 23 | 2 | 16 | 17 | 10639 | 928 | 183 | 631 | 28 | 0 | 34070 | | 19 STA | 2706 | 1214 | 1001 | 659 | 728 | 1667 | 1266 | 10082 | 920 | 9383 | 22 | 0 | 11 | 51 | 17 | 107 | 113 | 1885 | 21887 | 61 | 10665 | 362 | 0 | 64806 | | 20 CL/JF | 635 | 371 | 2130 | 287 | 152 | 338 | 143 | 4589 | 4059 | 685 | 1468 | 78 | 309 | 160 | 0 | 0 | 1 | 357 | 15 | 17058 | 17 | 1 | 0 | 32852 | | 21 SP/FB | 1438 | 538 | 214 | 307 | 455 | 1056 | 806 | 7192 | 674 | 5504 | 16 | 0 | 0 | 10 | 22 | 118 | 152 | 1514 | 8239 | 51 | 32478 | 413 | 0 | 61198 | | 22 KGEO | 673 | 400 | 154 | 533 | 135 | 257 | 158 | 1105 | 95 | 879 | 0 | 0 | 11 | 47 | 39 | 139 | 334 | 199 | 1033 | 6 | 1352 | 4225 | 0 | 11772 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 0 | | TOTAL | 640022 | | 443274 | | 73131 | | 82701 | | 98434 | | 104840 | | 104440 | | 27469 | | 48670 | | 34522 | | 46662 | | 0 | :====== | | IOTAL | | 254266 | 4452/4 | 305279 | /3131 | 153903 | | E0E120 | 98434 | 126780 | 104840 | 52905 | 104448 | 100000 | 2/469 | C4200 | 400/0 | 10570 | 34322 | 20935 | 40062 | 5252 | U | 2501500 | | | | 254366 | | 3052/9 | | 153903 | | 595138 | | T70\80 | | 54905 | | 198899 | | 64388 | | 19570 | | 20935 | | 5252 | | 3501590 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Obs Motr Psn | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|-------|--------|-------|-------|-------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | | | ====== | ====== | ====== | ====== | ====== | | ====== | | | | ====== | | ====== | | ====== | | | | | ====== | | 1 DC CR | 14776 | 5411 | 3391 | 884 | 1241 | 2992 | 534 | 1387 | 406 | 0 | 0 | 0 | 0 | 713 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31735 | | 2 DC NC | 124172 | 44510 | 23209 | 18937 | 3349 | 8305 | 4097 | 12942 | 1493 | 534 | 0 | 0 | 539 | 3388 | 185 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 245660 | | 3 MTG | 107692 | | 268996 | | 5791 | 14856 | 3698 | 27463 | 2158 | 729 | 3411 | 0 | 9008 | 7305 | 0 | 0 | 0 | 0 | 459 | 838 | 0 | 0 | 0 | 529267 | | 4 PG | 98499 | 51633 | | 172158 | 3409 | 13003 | 4695 | 23509 | 1666 | 412 | 116 | 1123 | 6527 | 13585 | 0 | 0 | 4940 | 0 | 0 | 0 | 0 | 0 | 0 | 448378 | | 5 ARLCR | 3561 | 613 | 613 | 0 | 204 | 1064 | 0 | 1661 | 0 | 409 | 0 | 0 | 210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8334 | | 6 ARNCR | 45715 | 8853 | 6330 | 1704 | 7798 | 23085 | 5152 | 22720 | 1996 | 533 | 0 | 0 | 0 | 329 | 108 | 0 | 0 | 0 | 442 | 0 | 0 | 0 | 0 | 124766 | | 7 ALX | 31133 | 7207 | 2144 | 1911 | 3753 | 11180 | 14523 | 14571 | 263 | 1397 | 0 | 0 | 0 | 367 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 88448 | | 8 FFX | 114238 | 28211 | 19420 | 7325 | 25698 | 53556 | | 319226 | 20797 | 19711 | 0 | 0 | 2562 | 238 | 424 | 0 | 336 | 815 | 1052 | 471 | 0 | 132 | 0 | 646709 | | 9 LDN | 9282 | 3142 | 4471 | 0 | 1430 | 2920 | 1585 | 63745 | 57188 | 2520 | 0 | 0 | 0 | 382 | 0 | 0 | 0 | 662 | 0 | 480 | 0 | 0 | 0 | 147807 | | 10 PW | 17982 | 12546 | 3699 | 3486 | 5616 | 11257 | 8961 | 82168 | 5416 | 82651 | 0 | 0 | 0 | 0 | 0 | 492 | 295 | 2907 | 2914 | 0 | 636 | 0 | 0 | 241023 | | 11 FRD | 4501 | 3521 | 29509 | 3081 | 168 | 620 | 229 | 1997 | 2587 | 298 | 87979 | 4749 | 3917 | 1211 | 0 | 0 | 0 | 0 | 0 | 468 | 0 | 0 | 0 | 144836 | | 12 CAR | 1299 | 516 | 8582 | 2706 | 0 | 0 | 165 | 165 | 0 | 0 | 2233 | 41665 | 10974 | 6564 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 74869 | | 13 HOW | 13258 | 3819 | 16204 | 22097 | 260 | 1683 | 1137 | 2315 | 276 | 0 | 423 | 967 | 53469 | 21599 | 0 | 0 | 138 | 0 | 0 | 325 | 0 | 0 | 0 | 137970 | | 14 AAR | 25357 | 9646 | 9703 | 27723 | 3415 | 2788 | 1972 | 5666 | 0 | 203 | 0 | 801 | | 140775 | 610 | 81 | | 0 | 0 | 144 | 0 | 0 | 0 | 248419 | | 15 CAL | 5538 | 1726 | 726 | 5342 | 239 | 1447 | 0 | 3039 | 0 | 362 | 0 | 0 | 1078 | 6363 | 14152 | 7449 | 487 | 0 | 0 | 0 | 0 | 0 | 0 | 47948 | | 16 STM | 2227 | 2753 | 459 | 4443 | 0 | 0 | 0 | 390 | 0 | 0 | 0 | 0 | 0 | 572 | 5100 | 56179 | 5356 | 0 | 0 | 0 | 0 | 0 | 0 | 77480 | | 17 CHS | 9002 | 4462 | 1805 | 15081 | 1321 | 2586 | 1769 | 5902 | 0 | 0 | 0 | 0 | 0 | 2044 | 1685 | 1257 | 30022 | 0 | 0 | 0 | 0 | 289 | 0 | 77226 | | 18 FAU | 2449 | 0 | 566 | 0 | 0 | 883 | 431 | 9103 | 2092 | 6302 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9722 | 0 | - 0 | 214 | 0 | 0 | 31762 | | 19 STA | 3286 | 2356 | 857 | 131 | 262 | 3942 | 1285 | 9297 | 0 | 11962 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 18199 | 536 | 10136 | 893 | 0 | 63142 | | 20 CL/JF | 2298 | 0 | 1668 | 0 | 0 | 0 | 0 | 3551 | 6898 | 0 | 3617 | 0 | 157 | 0 | 0 | 0 | 0 | 314 | 0 | 12528 | 0 | 297 | 0 | 31327 | | 21 SP/FB | 4371 | 916 | 787 | 1011 | 985 | 594 | 1092 | 1586 | 0 | 3194 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 258 | 6298 | 1622 | 32722 | 4828 | 0 | 60264 | | 22 KGEO | 688 | 0 | 0 | 0 | 0 | 0 | 0 | 328 | 0 | 1048 | 0 | 0 | 0 | 366 | 0 | 244 | 1000 | 244 | 838 | 0 | 889 | 8452 | 0 | 14099 | | 23 EXTL | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | 0 | | | | 0 | | 0 | 0 | | TOTAL | 641323 | | 456241 | | 64941 | | 83821 | | 103235 | | 97779 | | 107977 | | 22263 | | 42573 | | 30202 | | 44597 | | 0 | | | | | 238582 | | 318144 | | 156761 | | 612731 | | 132265 | | 49305 | | 205801 | | 65703 | | 14924 | | 17412 | | 14891 | | 3521469 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Difference (Est-Obs) Motorized Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|--------|--------|--------|--------|-------|-------|--------|--------|--------|-------|-------|------|------|------|-------|-------|-------|----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | ====== | ====== | ====== | ====== | | ====== | ====== | ====== | ====== | | | ====== | ====== | ====== | | | | | | | ===== | | | ====== | | 1 DC CR | 1094 | 703 | -1395 | 233 | 440 | -563 | 166 | 775 | -352 | 12 | 2 | 0 | 30 | -642 | 1 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 518 | | 2 DC NC | -960 | 1464 | 898 | -1585 | 3375 | 2382 | -856 | -2276 | -1195 | -460 | 59 | 1 | 1 | -2225 | -150 | 23 | 205 | 4 | 1 | _ 1 | 1 | 0 | 0 | -1294 | | 3 MTG | 20140 | | -14328 | 2794 | 901 | -3460 | -429 | -2924 | -1071 | -420 | 752 | 325 | -1702 | -1584 | 103 | 169 | 338 | 33 | -448 | -704 | 18 | 2 | 0 | -5281 | | 4 PG | -9369 | | -12707 | 4052 | 5441 | 1689 | 938 | -7695 | -1324 | -207 | 78 | -1098 | -73 | 777 | 794 | 710 | -2 | 11 | 7 | 4 | 12 | 15 | 0 | -9582 | | 5 ARLCR | -362 | -200 | -390 | 73 | 491 | -99 | 217 | -992 | 17 | -403 | 0 | 0 | -209 | 3 | 0 | 0 | 1 | 0 | | 0 | 0 | 0 | 0 | -1852 | | 6 ARNCR | -984 | -1189 | -1832 | -111 | 832 | 120 | 1074 | -90 | -1471 | -267 | 15 | 0 | 32 | -250 | -106 | 7 | 21 | 10 | -437 | 1 | 4 | 0 | 0 | -4620 | | 7 ALX | -8500 | -2072 | 665 | -316 | 485 | -484 | -516 | 7113 | 79 | -929 | 10 | 0 | 27 | -289 | 4 | 12 | 43 | 10 | 14 | 1 | 11 | 0 | 0 | -4630 | | 8 FFX | -10345 | 2259 | 8836 | 3974 | -6421 | -7063 | -1293 | 16853 | 225 | -5829 | 266 | 11 | -2230 | 559 | -372 | 175 | 9 | -130 | -721 | -314 | 303 | -120 | 0 | -1368 | | 9 LDN | 2102 | 1735 | 3408 | 2036 | 998 | 2550 | | -10298 | 275 | 1092 | 1611 | 84 | 346 | 15 | 11 | 40 | 63 | 55 | 81 | 1267 | 98 | 5 | 0 | 8054 | | 10 PW | 9636 | -2367 | 4582 | 186 | 908 | 2699 | 430 | -23312 | 1634 | 2481 | 178 | 10 | 122 | 291 | 17 | -423 | -184 | 543 | -972 | 223 | 368 | 41 | 0 | -2909 | | 11 FRD | 712 | -342 | -7792 | -273 | 393 | 481 | 119 | 2264 | -935 | -152 | -4947 | 1231 | 4396 | 2657 | 21 | 9 | 68 | 33 | 2 | 598 | 3 | 0 | 0 | -1456 | | 12 CAR | 1052 | 1100 | -186 | -797 | 220 | 427 | -29 | 1188 | 236 | 24 | 6669 | 3296 | -5427 | -3818 | 16 | 4 | 43 | 6 | 0 | 139 | 0 | 0 | 0 | 4165 | | 13 HOW | 985 | 4104 | | -11086 | 867 | 169 | -555 | 67 | -158 | 40 | 3507 | 220 | 4086 | -3789 | 69 | 115 | 24 | 4 | 1 | -247 | 2 | 1 | 0 | -606 | | 14 AAR | -4304 | 2857 | 2977 | -7227 | -1650 | 275 | -825 | -2018 | 126 | -118 | 848 | -569 | -2879 | 5197 | 704 | 487 | 850 | 3 | 2 | -120 | 3 | 3 | 0 | -5378 | | 15 CAL | -729 | 1281 | 1084 | -435 | 200 | -655 | 386 | -1824 | 36 | -322 | 32 | 5 | -741 | -3462 | 5107 | -1353 | 1897 | 2 | 3 | 0 | 8 | 12 | 0 | 533 | | 16 STM | 1068 | -656 | 638 | -886 | 317 | 573 | 321 | 638 | 26 | 48 | 14 | 1 | 177 | 291 | -1101 | -3293 | 923 | 4 | 13 | 0 | 28 | 64 | 0 | -792 | | 17 CHS | 3938 | 2712 | 1179 | -4407 | -142 | -563 | -784 | -3214 | 59 | 73 | 30 | 3 | 328 | -556 | 7 | 1868 | 2170 | 3 | 8 | 0 | 24 | -222 | 0 | 2515 | | 18 FAU | -1284 | 565 | 239 | 266 | 314 | -120 | 40 | -54 | 140 | -395 | 48 | 2 | 15 | 23 | 2 | 16 | 17 | 917 | 928 | 183 | 417 | 28 | 0 | 2308 | | 19 STA | -580 | -1142 | 143 | 528 | 466 | -2275 | -19 | 785 | 920 | -2579 | 22 | 0 | 11 | 51 | 17 | 107 | 113 | 1885 | 3688 | -475 | 529 | -530 | 0 | 1664 | | 20 CL/JF | -1663 | 371 | 463 | 287 | 152 | 338 | 143 | 1038 | -2839 | 685 | -2149 | 78 | 151 | 160 | 0 | 0 | 1 | 43 | 15 | 4530 | 17 | -296 | 0 | 1525 | | 21 SP/FB | -2933 | -378 | -573 | -703 | -530 | 462 | -286 | 5606 | 674 | 2309 | 16 | 0 | 0 | 10 | 22 | 118 | 152 | 1256 | 1940 | -1571 | -244 | -4415 | 0 | 934 | | 22 KGEO | -15 | 400 | 154 | 533 | 135 | 257 | 158 | 776 | 95 | -169 | 0 | 0 | 11 | -320 | 39 | -105 | -666 | -46 | 195 | 6 | 463 | -4227 | 0 | -2327 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | -1301 | | -12967 | | 8191 | | -1120 | | -4802 | | 7061 | | -3529 | | 5206 | | 6097 | | 4320 | | 2065 | | 0 | | | | | 15785 | | -12865 | | -2858 | | -17594 | | -5484 | | 3600 | | -6901 | | -1315 | | 4647 | | 3524 | | -9638 | | -19879 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Ratio (Est/Obs) Motorized Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|-------------|--------------|---------|---------|--------------|--------------|--------|------|--------|--------|-------------|--------------|--------------|--------|--------|--------|---------|--------|--------------|-------------|--------------|-------|---------|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.07 | 1.13 | 0.59 | 1.26 | 1.35 | 0.81 | 1.31 | 1.56 | 0.13 | 11.59 | 2.16 | ·======<br>0 | 30.40 | 0.10 | 0.86 | 1.28 | 12.64 | 0.40 | ·======<br>0 | ======<br>0 | ·======<br>0 | 0 | <br>0 l | 1.02 | | 2 DC NC | 0.99 | 1.03 | 1.04 | 0.92 | 2.01 | 1.29 | 0.79 | 0.82 | 0.20 | 0.14 | 58.92 | 0.96 | 1.00 | 0.34 | 0.19 | 22.60 | 204.75 | 3.51 | 0.71 | 0.71 | 1.04 | 0.07 | 0 | 0.99 | | 3 MTG | 1.19 | 0.92 | 0.95 | 1.09 | 1.16 | 0.77 | 0.88 | 0.89 | 0.50 | 0.42 | 1.22 | 325.13 | 0.81 | 0.78 | 102.56 | 169.25 | 337.90 | 33.03 | 0.02 | 0.16 | 17.50 | 2.07 | 0 j | 0.99 | | 4 PG | 0.90 | 1.16 | 0.76 | 1.02 | 2.60 | 1.13 | 1.20 | 0.67 | 0.21 | 0.50 | 1.67 | 0.02 | 0.99 | 1.06 | 794.36 | 710.15 | 1.00 | 10.99 | 6.70 | 4.02 | 11.65 | 15.19 | 0 j | 0.98 | | 5 ARLCR | 0.90 | 0.67 | 0.36 | 73.11 | 3.40 | 0.91 | 217.32 | 0.40 | 16.75 | 0.02 | 0.27 | 0 | 0.00 | 2.65 | 0 | 0.10 | 0.59 | 0.17 | 0.03 | 0 | 0.01 | 0 | 0 | 0.78 | | 6 ARNCR | 0.98 | 0.87 | 0.71 | 0.94 | 1.11 | 1.01 | 1.21 | 1.00 | 0.26 | 0.50 | 14.76 | 0.05 | 32.02 | 0.24 | 0.02 | 6.77 | 20.85 | 9.77 | 0.01 | 1.35 | 4.36 | 0.05 | 0 | 0.96 | | 7 ALX | 0.73 | 0.71 | 1.31 | 0.83 | 1.13 | 0.96 | 0.96 | 1.49 | 1.30 | 0.33 | 10.32 | 0.06 | 26.71 | 0.21 | 4.43 | 11.62 | 43.30 | 9.83 | 14.22 | 1.23 | 10.69 | 0.40 | 0 | 0.95 | | 8 FFX | 0.91 | 1.08 | 1.45 | 1.54 | 0.75 | 0.87 | 0.96 | 1.05 | 1.01 | 0.70 | 265.90 | 10.79 | 0.13 | 3.35 | 0.12 | 174.70 | 1.03 | 0.84 | 0.31 | 0.33 | 302.71 | 0.09 | 0 | 1.00 | | 9 LDN | 1.23 | 1.55 | 1.762 | 035.97 | 1.70 | 1.87 | 1.30 | 0.84 | 1.00 | 1.433 | L610.95 | 84.34 | 346.43 | 1.04 | 10.59 | 39.53 | 62.99 | 1.08 | 80.51 | 3.64 | 98.46 | 5.00 | 0 | 1.05 | | 10 PW | 1.54 | 0.81 | 2.24 | 1.05 | 1.16 | 1.24 | 1.05 | 0.72 | 1.30 | | 178.00 | 9.70 | 121.79 | 290.68 | 17.09 | 0.14 | 0.37 | 1.19 | 0.67 | 222.89 | 1.58 | 40.73 | 0 | 0.99 | | 11 FRD | 1.16 | 0.90 | 0.74 | 0.91 | 3.34 | 1.78 | 1.52 | 2.13 | 0.64 | 0.49 | 0.94 | 1.26 | 2.12 | 3.19 | 20.93 | 9.47 | 67.84 | 32.79 | 1.85 | 2.28 | 2.74 | 0.12 | 0 | 0.99 | | 12 CAR | 1.81 | 3.13 | 0.98 | 0.71 | 220.16 | 427.47 | 0.82 | 8.18 | 235.53 | 23.80 | 3.99 | 1.08 | 0.51 | 0.42 | 16.25 | 3.68 | 43.47 | 6.27 | 0.25 | 138.80 | 0.23 | 0.10 | 0 | 1.06 | | 13 HOW | 1.07 | 2.07 | 1.06 | 0.50 | 4.34 | 1.10 | 0.51 | 1.03 | 0.43 | 40.48 | 9.30 | 1.23 | 1.08 | | 68.66 | 114.92 | 1.18 | 3.84 | 0.94 | 0.24 | 1.63 | 0.61 | 0 | 1.00 | | 14 AAR | 0.83 | 1.30 | 1.31 | 0.74 | 0.52 | 1.10 | 0.58 | | 125.87 | | 847.96 | 0.29 | 0.85 | 1.04 | 2.15 | | 849.62 | 3.29 | 2.06 | 0.17 | 3.42 | 2.91 | 0 | 0.98 | | 15 CAL | 0.87 | 1.74 | 2.49 | 0.92 | 1.84 | 0.55 | | 0.40 | 36.48 | 0.11 | 31.63 | 5.02 | 0.31 | 0.46 | 1.36 | 0.82 | 4.89 | 1.78 | 3.14 | 0.27 | 8.16 | 11.72 | 0 | 1.01 | | 16 STM | 1.48 | 0.76 | 2.39 | | | 572.79 | | 2.64 | 26.07 | 47.79 | 14.00 | | 176.88 | 1.51 | 0.78 | 0.94 | 1.17 | 4.17 | 12.57 | 0.07 | 28.47 | 63.94 | 0 | 0.99 | | 17 CHS | 1.44 | 1.61 | 1.65 | 0.71 | 0.89 | 0.78 | 0.56 | 0.46 | 59.47 | 72.64 | 29.85 | 3.21 | 328.16 | 0.73 | 1.00 | 2.49 | 1.07 | 3.05 | 8.40 | 0.20 | 24.05 | 0.23 | 0 | 1.03 | | 18 FAU | 0.48 | 564.62 | | | | 0.86 | 1.09 | 0.99 | 1.07 | 0.94 | 48.18 | 2.11 | | 22.95 | 2.37 | 15.84 | 16.50 | | | 183.38 | 2.95 | 28.25 | 0 | 1.07 | | 19 STA | 0.82 | 0.52 | 1.17 | 5.03 | 2.78 | 0.42 | 0.99 | 1.08 | 920.38 | 0.78 | 22.33 | 0.10 | 10.89 | 50.58 | | 106.55 | 112.521 | | 1.20 | 0.11 | 1.05 | 0.41 | 0 | 1.03 | | 20 CL/JF | | | | 286.65 | | | | 1.29 | | 685.40 | 0.41 | 78.20 | 1.96 | 159.71 | 0.05 | 0 | 1.01 | 1.14 | 14.84 | 1.36 | 16.69 | 0.00 | 0 | 1.05 | | 21 SP/FB | 0.33 | 0.59 | 0.27 | 0.30 | 0.46 | 1.78 | 0.74 | 4.53 | | 1.72 | 16.01 | 0 | 0 | 10.20 | 22.39 | | 152.17 | 5.87 | 1.31 | 0.03 | 0.99 | 0.09 | 0 | 1.02 | | 22 KGEO | 0.98 | 400.17 | 154.47 | 532.59 | 134.50 | 256.55 | | 3.36 | 94.90 | 0.84 | 0.27 | 0 | 10.93 | 0.13 | 38.52 | 0.57 | 0.33 | 0.81 | 1.23 | 6.40 | 1.52 | 0.50 | 0 | 0.83 | | 23 EXTL | U<br>====== | U<br>======= | .====== | .====== | U<br>======= | U<br>======= | 0 | 0 | 0 | .===== | U<br>====== | 0 | U<br>======= | | | u | .====== | ====== | | U | 0 | 0 | 0 | ====== | | TOTAL | 1.00 | | 0.97 | | 1.13 | | 0.99 | | 0.95 | | 1.07 | | 0.97 | | 1.23 | | 1.14 | | 1.14 | | 1.05 | | 0 | | | | | 1.07 | | 0.96 | | 0.98 | | 0.97 | | 0.96 | | 1.07 | | 0.97 | | 0.98 | | 1.31 | | 1.20 | | 0.35 | | 0.99 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Est Auto Occ. | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|------|------|------|------|------|------|------|------|------|------|------|--------------|------|------|------|------|------|------|------|--------------|----|-------| | ORIGIN | 1 | 2 | 3 | 4 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14<br>====== | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22<br>====== | 23 | TOTAL | | 1 DC CR | 1.06 | 1.05 | 1.02 | 1.02 | 1.05 | 1.01 | 1.02 | 1.02 | 1.02 | 1.00 | 1.00 | 0 | 1.01 | 1.02 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 1.05 | | 2 DC NC | 1.05 | 1.04 | 1.03 | 1.03 | 1.05 | 1.02 | 1.03 | 1.03 | 1.02 | 1.00 | 1.01 | 1.00 | 1.02 | 1.03 | 1.00 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.04 | | 3 MTG | 1.05 | 1.04 | 1.05 | 1.05 | 1.05 | 1.05 | 1.04 | 1.06 | 1.03 | 1.02 | 1.05 | 1.02 | 1.05 | 1.05 | 1.01 | 1.03 | 1.02 | 1.01 | 1.00 | 1.01 | 1.00 | 1.00 | 0 | 1.05 | | 4 PG | 1.05 | 1.04 | 1.05 | 1.05 | 1.06 | 1.04 | 1.04 | 1.04 | 1.02 | 1.02 | 1.01 | 1.00 | 1.05 | 1.05 | 1.03 | 1.03 | 1.04 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | 0 | 1.05 | | 5 ARLCR | 1.05 | 1.03 | 1.04 | 1.02 | 1.06 | 1.05 | 1.05 | 1.05 | 1.03 | 1.01 | 1.00 | 0 | 1.00 | 1.02 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 0 | 0 | 1.05 | | 6 ARNCR | 1.03 | 1.04 | 1.04 | 1.02 | 1.05 | 1.05 | 1.05 | 1.05 | 1.04 | 1.02 | 1.00 | 1.00 | 1.00 | 1.02 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.04 | | 7 ALX | 1.03 | 1.03 | 1.04 | 1.03 | 1.04 | 1.04 | 1.05 | 1.05 | 1.04 | 1.03 | 1.00 | 1.00 | 1.00 | 1.02 | 1.00 | 1.02 | 1.01 | 1.02 | 1.01 | 1.00 | 1.00 | 1.00 | 0 | 1.04 | | 8 FFX | 1.04 | 1.04 | 1.05 | 1.04 | 1.05 | 1.05 | 1.04 | 1.05 | 1.04 | 1.04 | 1.01 | 1.00 | 1.02 | 1.03 | 1.00 | 1.03 | 1.01 | 1.04 | 1.02 | 1.01 | 1.02 | 1.00 | 0 | 1.05 | | 9 LDN | 1.08 | 1.07 | 1.05 | 1.05 | 1.09 | 1.09 | 1.06 | 1.06 | 1.04 | 1.04 | 1.04 | 1.01 | 1.03 | 1.04 | 1.01 | 1.04 | 1.02 | 1.04 | 1.01 | 1.04 | 1.01 | 1.00 | 0 | 1.05 | | 10 PW | 1.07 | 1.06 | 1.13 | 1.13 | 1.07 | 1.07 | 1.05 | 1.07 | 1.05 | 1.04 | 1.04 | 1.00 | 1.12 | 1.15 | 1.01 | 1.05 | 1.03 | 1.04 | 1.04 | 1.03 | 1.04 | 1.01 | 0 | 1.06 | | 11 FRD | 1.05 | 1.04 | 1.07 | 1.05 | 1.06 | 1.05 | 1.04 | 1.07 | 1.05 | 1.03 | 1.05 | 1.06 | 1.07 | 1.07 | 1.01 | 1.02 | 1.02 | 1.04 | 1.00 | 1.05 | 1.00 | 1.00 | 0 | 1.06 | | 12 CAR | 1.06 | 1.04 | 1.07 | 1.05 | 1.06 | 1.05 | 1.04 | 1.06 | 1.04 | 1.00 | 1.06 | 1.05 | 1.07 | 1.07 | 1.01 | 1.01 | 1.02 | 1.03 | 1.00 | 1.05 | 1.00 | 1.00 | 0 | 1.06 | | 13 HOW | 1.05 | 1.05 | 1.06 | 1.05 | 1.06 | 1.05 | 1.04 | 1.05 | 1.02 | 1.02 | 1.06 | 1.05 | 1.05 | 1.05 | 1.02 | 1.04 | 1.03 | 1.02 | 1.00 | 1.03 | 1.00 | 1.00 | 0 | 1.05 | | 14 AAR | 1.06 | 1.05 | 1.06 | 1.05 | 1.06 | 1.05 | 1.05 | 1.05 | 1.03 | 1.03 | 1.06 | 1.03 | 1.06 | 1.05 | 1.05 | 1.05 | 1.05 | 1.01 | 1.00 | 1.01 | 1.00 | 1.01 | 0 | 1.05 | | 15 CAL | 1.06 | 1.05 | 1.06 | 1.05 | 1.07 | 1.05 | 1.05 | 1.05 | 1.03 | 1.03 | 1.02 | 1.00 | 1.06 | 1.06 | 1.05 | 1.06 | 1.06 | 1.02 | 1.01 | 1.00 | 1.01 | 1.03 | 0 | 1.05 | | 16 STM | 1.07 | 1.05 | 1.06 | 1.06 | 1.07 | 1.05 | 1.05 | 1.05 | 1.02 | 1.05 | 1.02 | 1.00 | 1.06 | 1.07 | 1.06 | 1.05 | 1.06 | 1.02 | 1.01 | 1.00 | 1.01 | 1.04 | 0 | 1.05 | | 17 CHS | 1.06 | 1.05 | 1.06 | 1.05 | 1.06 | 1.05 | 1.05 | 1.05 | 1.03 | 1.03 | 1.01 | 1.00 | 1.05 | 1.06 | 1.05 | 1.05 | 1.05 | 1.00 | 1.00 | 1.00 | 1.01 | 1.04 | 0 | 1.05 | | 18 FAU | 1.13 | 1.11 | 1.10 | 1.10 | 1.16 | 1.14 | 1.07 | 1.08 | 1.05 | 1.05 | 1.02 | 1.00 | 1.03 | 1.09 | 1.00 | 1.03 | 1.01 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | 0 | 1.06 | | 19 STA | 1.09 | 1.07 | 1.34 | 1.26 | 1.08 | 1.08 | 1.09 | 1.11 | 1.06 | 1.05 | 1.13 | 1.00 | 1.41 | 1.33 | 1.01 | 1.04 | 1.03 | 1.06 | 1.04 | 1.03 | 1.05 | 1.04 | 0 | 1.07 | | 20 CL/JF | 1.06 | 1.04 | 1.08 | 1.04 | 1.10 | 1.10 | 1.07 | 1.09 | 1.07 | 1.07 | 1.06 | 1.05 | 1.08 | 1.07 | 1.00 | 0 | 1.00 | 1.07 | 1.03 | 1.05 | 1.01 | 1.00 | 0 | 1.06 | | 21 SP/FB | 1.10 | 1.08 | 1.43 | 1.24 | 1.09 | 1.09 | 1.12 | 1.13 | 1.08 | 1.06 | 1.08 | 0 | 0 | 1.24 | 1.01 | 1.04 | 1.03 | 1.07 | 1.05 | 1.04 | 1.05 | 1.04 | 0 | 1.06 | | 22 KGEO | 1.03 | 1.03 | 1.10 | 1.05 | 1.05 | 1.06 | 1.09 | 1.14 | 1.07 | 1.06 | 1.00 | 0 | 1.02 | 1.04 | 1.03 | 1.04 | 1.05 | 1.07 | 1.05 | 1.01 | 1.05 | 1.04 | 0 | 1.06 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.05 | | 1.06 | | 1.06 | | 1.04 | | 1.05 | | 1.05 | | 1.06 | | 1.05 | | 1.05 | | 1.04 | | 1.05 | | 0 | | | | | 1.05 | | 1.05 | | 1.05 | | 1.06 | | 1.04 | | 1.05 | | 1.05 | | 1.05 | | 1.05 | | 1.04 | | 1.04 | | 1.05 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Obs Auto Occ. | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.29 | 1.15 | 1.00 | 1.00 | 0 | 1.00 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.15 | | 2 DC NC | 1.13 | 1.12 | 1.01 | 1.02 | 1.17 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 0 | 2.92 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.08 | | 3 MTG | 1.07 | 1.10 | 1.06 | 1.05 | 1.09 | 1.00 | 1.00 | 1.03 | 1.00 | 1.00 | 1.06 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 1.06 | | 4 PG | 1.09 | 1.09 | 1.04 | 1.11 | 1.00 | 1.11 | 1.00 | 1.05 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.14 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.09 | | 5 ARLCR | 101.84 | 1.00 | 1.00 | 0 | 1.00 | 2.00 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.08 | | 6 ARNCR | 1.10 | 1.07 | 1.00 | 1.00 | 1.02 | 1.06 | 1.05 | 1.00 | 1.07 | 1.00 | 0 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.05 | | 7 ALX | 1.10 | 1.00 | 1.00 | 1.00 | 1.11 | 1.23 | 1.10 | 1.01 | 1.00 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.08 | | 8 FFX | 1.09 | 1.09 | 1.00 | 1.00 | 1.03 | 1.06 | 1.02 | 1.04 | 1.11 | 1.03 | 0 | 0 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 0 | 1.05 | | 9 LDN | 1.19 | 1.00 | 1.00 | 0 | 1.77 | 1.00 | 1.00 | 1.04 | 1.04 | 1.13 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 1.05 | | 10 PW | 1.13 | 1.10 | 1.40 | 1.52 | 1.18 | 1.19 | 1.28 | 1.01 | 1.00 | 1.05 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 0 | 0 | 1.06 | | 11 FRD | 1.00 | 1.00 | 1.04 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.06 | 1.21 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.06 | | 12 CAR | 1.28 | 1.00 | 1.02 | 1.00 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 1.05 | 1.08 | 1.04 | 1.17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.07 | | 13 HOW | 1.07 | 1.00 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 1.00 | 1.03 | 1.00 | 0 | 0 | 1.00 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.02 | | 14 AAR | 1.06 | 1.07 | 1.15 | 1.04 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 0 | 1.00 | 1.00 | 1.05 | 1.00 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.05 | | 15 CAL | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.02 | | 16 STM | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.24 | 1.10 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.09 | | 17 CHS | 1.00 | 1.00 | 1.30 | 1.09 | 1.00 | 1.00 | 1.00 | 1.12 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.08 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.07 | | 18 FAU | 1.00 | 0 | 1.00 | 0 | 0 | 1.00 | 1.00 | 1.03 | 1.15 | 1.03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.05 | 0 | 0 | 1.00 | 0 | 0 | 1.04 | | 19 STA | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.53 | 1.00 | 1.12 | 0 | 1.04 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.12 | 1.00 | 1.12 | 1.00 | 0 | 1.09 | | 20 CL/JF | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.06 | 1.21 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.02 | 0 | 1.00 | 0 | 1.06 | | 21 SP/FB | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 0 | 1.30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.08 | 1.00 | 1.02 | 1.00 | 0 | 1.03 | | 22 KGEO | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 1.10 | 0 | 1.06 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.10 | | 1.05 | | 1.07 | | 1.06 | | 1.06 | | 1.06 | | 1.02 | | 1.05 | | 1.06 | | 1.09 | | 1.04 | | 0 | | | | | 1.08 | | 1.08 | | 1.08 | | 1.03 | | 1.05 | | 1.08 | | 1.05 | | 1.09 | | 1.03 | | 1.01 | | 1.05 | | 1.06 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Est Pct. Tran | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|--------|--------|------|--------|------|------|-----|---------|--------|----|-----|--------|-----|--------|-----|----|--------|-------|--------|--------|----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======== | | | ====== | ====== | | | | | | | ====== | | | ====== | | | | | ====== | | ====== | | | ====== | | 1 DC CR | 66.8 | 88.6 | 77.8 | 47.9 | 93.2 | 94.9 | 83.0 | 49.0 | 1.4 | 6.6 | 0 | 0 | 3.2 | 1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 73.3 | | 2 DC NC | 89.1 | 83.1 | 72.1 | 43.6 | 86.1 | 91.4 | 80.3 | 43.0 | 0.8 | 3.9 | 0 | 0 | 2.7 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80.1 | | 3 MTG | 51.1 | 31.0 | 16.1 | 7.7 | 50.8 | 36.0 | 20.5 | 6.1 | 0.0 | 0.3 | 0.0 | 0 | 0.3 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25.2 | | 4 PG | 48.8 | 30.1 | 21.4 | 8.2 | 52.6 | 39.9 | 20.5 | 8.9 | 0 | 0.1 | 0 | 0 | 1.1 | 0.3 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 22.3 | | 5 ARLCR | 93.5 | 67.5 | 48.4 | 22.4 | 26.4 | 60.0 | 50.5 | 19.7 | 0.2 | 1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 67.8 | | 6 ARNCR | 81.6 | 49.1 | 30.7 | 13.0 | 47.0 | 37.5 | 34.2 | 11.2 | 0.1 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49.3 | | 7 ALX | 70.5 | 37.2 | 23.7 | 7.4 | 44.7 | 39.8 | 19.5 | 9.0 | 0.0 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 35.2 | | 8 FFX | 39.1 | 20.0 | 9.7 | 3.1 | 35.7 | 27.0 | 14.4 | 4.0 | 0.2 | 0.3 | 0 | 0 | 1.5 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 13.5 | | 9 LDN | 33.0 | 12.8 | 3.6 | 1.2 | 29.9 | 19.7 | 5.4 | 0.7 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.7 | | 10 PW | 50.7 | 32.2 | 17.1 | 7.6 | 50.8 | 38.6 | 20.3 | 2.8 | 0.4 | 1.1 | 0.0 | 0 | 9.1 | 2.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 13.5 | | 11 FRD | 45.0 | 10.6 | 3.5 | 0.9 | 27.1 | 13.4 | 5.6 | 4.8 | 0 | 0 | 1.2 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.5 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 58.2 | 28.5 | 10.4 | 4.4 | 62.0 | 43.1 | 21.5 | 5.8 | 0 | 0.2 | 0 | 0 | 0.8 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.0 | | 14 AAR | 45.7 | 20.6 | 8.9 | 2.5 | 51.6 | 33.9 | 14.3 | 5.7 | 0 | 0.2 | 0 | 0 | 0.2 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.7 | | 15 CAL | 19.8 | 11.8 | 5.5 | 0.9 | 39.2 | 20.7 | 7.0 | 3.1 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0.1 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.9 | | 16 STM | 12.5 | 6.2 | 4.0 | 0.4 | 23.7 | 11.6 | 3.5 | 3.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.2 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | | 17 CHS | 37.7 | 20.6 | 13.7 | 1.3 | 46.8 | 30.5 | 11.1 | 3.8 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0 | 0.1 | 1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 10.8 | | 18 FAU | 11.6 | 9.0 | 2.3 | 0.8 | 15.5 | 8.6 | 5.8 | 0.6 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | | 19 STA | 44.9 | 24.5 | 9.6 | 1.8 | 50.4 | 27.5 | 10.2 | 3.9 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 4.6 | | 20 CL/JF | 23.3 | 20.5 | 3.1 | 2.2 | 29.9 | 16.3 | 7.1 | 4.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.8 | | 21 SP/FB | 60.3 | 40.2 | 12.6 | 0.3 | 67.6 | 41.7 | 23.1 | 10.7 | 0 | 1.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 4.7 | | 22 KGEO | 4.4 | 3.0 | 0.9 | 0.1 | 6.9 | 5.2 | 4.2 | 3.2 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 58.1 | | 17.9 | ====== | 49.0 | ====== | 20.9 | | 0.5 | :====== | 1.0 | | 0.6 | ====== | 0.1 | ====== | 0.7 | | 0.0 | ===== | 0.0 | ====== | 0 | ====== | | | | 38.8 | | 8.9 | | 38.0 | | 5.2 | | 0.9 | | 0 | | 0.1 | | 0.1 | | 0 | | 0 | | 0 | | 20.7 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBW Trips MODE: Obs Pct. Tran | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|------|------|-------|------|-------|------|------|------|-----|----|-----|----|----|----|----|----|------|----|-----|----|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 60.7 | 33.6 | 70.3 | 76.5 | 100.0 | 58.4 | 100.0 | 28.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56.0 | | 2 DC NC | 59.1 | 22.6 | 24.7 | 16.5 | 61.1 | 34.7 | 53.8 | 18.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41.4 | | 3 MTG | 63.3 | 15.3 | 7.7 | 6.2 | 38.5 | 26.5 | 48.0 | 1.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20.0 | | 4 PG | 52.8 | 14.9 | 13.5 | 5.4 | 44.3 | 18.5 | 20.4 | 5.3 | 0 | 53.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18.4 | | 5 ARLCR | 97.1 | 0 | 0 | 0 | 0 | 57.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48.9 | | 6 ARNCR | 58.9 | 8.2 | 24.1 | 51.6 | 44.4 | 22.9 | 16.1 | 4.3 | 10.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23.7 | 0 | 0 | 0 | 0 | 32.8 | | 7 ALX | 53.7 | 38.1 | 9.8 | 0 | 44.5 | 31.4 | 10.4 | 5.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30.8 | | 8 FFX | 47.7 | 20.3 | 9.1 | 19.7 | 34.4 | 27.7 | 9.8 | 0.8 | 1.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14.4 | | 9 LDN | 42.2 | 18.6 | 4.5 | 0 | 17.9 | 8.9 | 32.7 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.1 | | 10 PW | 65.7 | 29.1 | 0 | 11.9 | 24.1 | 33.4 | 4.2 | 1.5 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9.5 | | 11 FRD | 77.7 | 27.2 | 9.5 | 14.5 | 0 | 58.1 | 0 | 0 | 0 | 0 | 1.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.2 | | 12 CAR | 42.4 | 80.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.3 | | 13 HOW | 61.4 | 27.9 | 1.7 | 1.2 | 0 | 80.7 | 47.2 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 8.6 | | 14 AAR | 61.8 | 14.5 | 20.7 | 0 | 56.4 | 17.2 | 3.7 | 20.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 9.1 | | 15 CAL | 43.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.0 | | 16 STM | 20.6 | 0 | 0 | 23.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.9 | | 17 CHS | 42.4 | 0 | 16.4 | 2.3 | 20.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 6.1 | | 18 FAU | 77.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 6.0 | | 19 STA | 50.2 | 9.8 | 0 | 0 | 100.0 | 80.4 | 0 | 5.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9.2 | | 20 CL/JF | 76.8 | 0 | 66.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9.2 | | 21 SP/FB | 55.3 | 0 | 0 | 0 | 42.4 | 0 | 100.0 | 61.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.5 | 0 | 0 | 8.9 | | 22 KGEO | 58.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.6 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 56.5 | | 10.1 | == | 39.2 | | 16.2 | | 0.7 | | 0.9 | | 0.3 | | 0 | | 0 | | 0.3 | == | 1.1 | | 0 | == | | | | 18.6 | | 6.2 | | 28.5 | | 2.0 | | 0.6 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 16.2 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Est Transit | ORIGIN 1 2 3 4 | 5 6<br>==================================== | 7 8<br>======== | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | moma r | |----------------------------------------------|---------------------------------------------|------------------|-----|---------|---------|--------|----------------|---------|-----|--------|---------|----|----|----|---------|----|----------|-------------| | | ====================================== | | | | | | | | | | Δ, | Τ0 | 19 | 20 | 21 | | 23 | TOTAL | | | 21 195 | | | .====== | .====== | .===== | | .====== | | .===== | | | | | .====== | | | | | 1 DC CR 462 606 130 11 | | 37 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1489 | | 2 DC NC 2019 4065 1366 473 | | 170 94 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8840 | | 3 MTG 212 158 4857 90 | , | 0 1 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5341 | | 4 PG 255 341 446 1722<br>5 ARICR 25 3 1 0 | 16 66<br>4 148 | 22 4 | 0 | 1 | 0 | 0 | 8 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 <br>0 | 2889<br>201 | | 3 Interest 23 3 1 0 | | 11 10<br>158 267 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1766 | | 6 ARNCR 179 13 2 0<br>7 ALX 44 1 0 0 | | 324 188 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 <br>0 | 752 | | 8 FFX 72 14 30 23 | | 111 1651 | U | 74 | 2 | 0 | 10 | 4 | 0 | | 24 | 0 | 0 | 0 | 0 | 0 | 0 1 | 2167 | | 9 LDN 2 0 0 0 | 0 0 | 0 22 | 105 | 21 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 150 | | 10 PW 12 33 76 55 | 8 90 | 62 629 | 45 | 389 | 4 | 0 | 24 | 15 | 1 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 1 | 1502 | | 11 FRD 0 0 0 0 | 0 90 | 0 0 | 4.0 | 0 | 134 | 0 | A <del>1</del> | 13 | U T | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 134 | | 12 CAR 0 0 0 0 | 0 0 | 0 0 | 0 | 0 | 134 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 134 | | 13 HOW 0 0 1 4 | 0 0 | 0 0 | 0 | 2 | 0 | 0 | 44 | 2 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 0 1 | 57 | | 14 AAR 4 0 0 5 | 0 0 | 0 12 | 0 | 4 | 0 | 0 | 1 | 7 | 0 | 0 | 0 | n | 0 | 0 | 0 | 0 | 0 1 | 34 | | 15 CAL 1 0 0 0 | 0 0 | 0 12 | 0 | 1 | 0 | 0 | n | ń | 5 | 0 | 0 | n | 0 | 0 | 0 | 0 | 0 1 | 8 | | 16 STM 0 0 0 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 0 1 | 11 | | 17 CHS 0 0 0 0 | 0 0 | 0 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | Ó | 111 | 0 | 0 | 0 | 0 | 0 | o i | 112 | | 18 FAU 0 0 0 0 | 0 0 | 0 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ō i | 11 | | 19 STA 0 0 0 0 | 0 0 | 0 24 | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ō | 0 | 0 | 0 | 0 | 0 | ō i | 24 | | 20 CL/JF 0 0 0 0 | 0 0 | 0 0 | ō | 0 | 0 | 0 | 0 | 0 | ō | 0 | Ō | Ō | Ō | 0 | Ō | 0 | ōi | 0 | | 21 SP/FB 0 0 0 0 | 0 0 | 0 66 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o i | 66 | | 22 KGEO 0 0 0 0 | 0 0 | 0 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o i | 12 | | 23 EXTL 0 0 0 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL 3287 6910 | <br>194 | ========<br>895 | 156 | | 139 | | 91 | | 7 | | <br>187 | | | | 1 | | 0 I | ====== | | 5234 2384 | 2502 | 3023 | 130 | 500 | 100 | 0 | 71 | 35 | , | 23 | 107 | 0 | 3 | 0 | _ | 0 | 0 | 25567 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Obs Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|------|-----|-------|--------|------|--------|----|--------|--------|-------|------|----|--------|----|----|----|----|-----|----|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6<br> | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1117 | 1221 | 510 | 215 | 0 | 1049 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4111 | | 2 DC NC | 13476 | 13727 | 1150 | 3146 | 191 | 787 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32476 | | 3 MTG | 4654 | 1179 | 5153 | 0 | 0 | 0 | 109 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11095 | | 4 PG | 1494 | 1270 | 181 | 3969 | 181 | 245 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7340 | | 5 ARLCR | 420 | 0 | 204 | 0 | 0 | 450 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1074 | | 6 ARNCR | 889 | 204 | 0 | 0 | 210 | 2530 | 0 | 413 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4245 | | 7 ALX | 645 | 0 | 0 | 0 | 207 | 225 | 566 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1644 | | 8 FFX | 1131 | 0 | 0 | 0 | 0 | 915 | 0 | 1630 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 3676 | | 9 LDN | 0 | 80 | 0 | 0 | 0 | 191 | 0 | 0 | 259 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 530 | | 10 PW | 0 | 0 | 0 | 0 | 0 | 318 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 318 | | 11 FRD | 224 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 382 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 606 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 639 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 639 | | 13 HOW | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 14 AAR | 72 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1124 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1268 | | 15 CAL | 239 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 239 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 526 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 526 | | 17 CHS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 463 | 0 | 0 | 463 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ======= | ====== | ====== | ====== | | | | ====== | | ====== | | ====== | ====== | ===== | | | ====== | | | | | | | | ====== | | TOTAL | 24360 | | 7197 | | 861 | | 676 | | 259 | | 382 | | 0 | | 0 | | 0 | | 0 | | 463 | | 0 | | | | | 17680 | | 7329 | | 6710 | | 2043 | | 0 | | 639 | | 1124 | | 526 | | 0 | | 0 | | 0 | | 70250 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Difference (Est-Obs) Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|------|-------|------|-------------|------|------|-------|--------|------|------|----|-------|----|------|-----|----|----|----|------|----|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6<br>====== | 7 | 8 | 9<br> | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | -655 | -615 | -380 | -204 | 21 | -854 | 37 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2622 | | 2 DC NC | -11457 | -9662 | 217 | -2673 | -148 | -179 | 170 | 94 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -23637 | | 3 MTG | -4442 | -1021 | -296 | 90 | 7 | 11 | -109 | 1 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -5753 | | 4 PG | -1239 | -929 | 265 | -2247 | -165 | -179 | 22 | 4 | 0 | 1 | 0 | 0 | 8 | 6 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -4451 | | 5 ARLCR | -395 | 3 | -204 | 0 | 4 | -301 | 11 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -873 | | 6 ARNCR | -710 | -191 | 2 | 0 | -126 | -1470 | 158 | -146 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2480 | | 7 ALX | -601 | 1 | 0 | 0 | -200 | -40 | -243 | 188 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -892 | | 8 FFX | -1058 | 14 | 30 | 23 | 3 | -777 | 111 | 21 | 5 | 74 | 2 | 0 | 10 | 4 | 0 | 5 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | -1509 | | 9 LDN | 2 | -80 | 0 | 0 | 0 | -191 | 0 | 22 | -154 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -380 | | 10 PW | 12 | 33 | 76 | 55 | 8 | -228 | 62 | 629 | 45 | 389 | 4 | 0 | 24 | 15 | 1 | 9 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 1184 | | 11 FRD | -224 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -249 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -472 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -639 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -639 | | 13 HOW | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 44 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57 | | 14 AAR | -68 | 0 | 0 | 5 | -72 | 0 | 0 | 12 | 0 | 4 | 0 | 0 | 1 | -1117 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1234 | | 15 CAL | -238 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -231 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -517 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -516 | | 17 CHS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 111 | 0 | 0 | 0 | 0 | 0 | 0 | 112 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 i | 11 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -463 | 0 | 0 i | -439 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 i | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 66 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 i | 66 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 i | 12 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 i | 0 | | | | | | | | | | | | ====== | | | | | | | | | | | | | | | | TOTAL | -21073 | | -287 | | -667 | | 219 | | -104 | | -243 | | 0 | | 0 | | 0 | | 0 | | -462 | | 0 | | | | | -12445 | | -4945 | | -4208 | | 980 | | 0 | | -639 | | -1090 | | -503 | | 0 | | 0 | | 0 | | -44683 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Ratio (Est/Obs) Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|-------|-------|-------|--------|--------|--------|-------|--------|------|----|-------|-------|------|------|--------|----|----|----|------|----|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 0.41 | 0.50 | 0.26 | 0.05 | 21.34 | 0.19 | 36.74 | 26.38 | 0 | 0.15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.36 | | 2 DC NC | 0.15 | 0.30 | 1.19 | 0.15 | 0.22 | 0.77 | 170.23 | 93.93 | 0 | 0.97 | 0 | 0 | 0.32 | 0.03 | 0 | 0 | 0.11 | 0 | 0 | 0 | 0 | 0 | 0 | 0.27 | | 3 MTG | 0.05 | 0.13 | 0.94 | 90.25 | 7.34 | 10.83 | 0.00 | 1.04 | 0 | 1.55 | 0 | 0 | 2.61 | 0.11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.48 | | 4 PG | 0.17 | 0.27 | 2.46 | 0.43 | 0.09 | 0.27 | 21.86 | 4.48 | 0 | 0.93 | 0 | 0 | 8.23 | 6.10 | 0 | 0 | 0.95 | 0 | 0 | 0 | 0 | 0 | 0 | 0.39 | | 5 ARLCR | 0.06 | 2.67 | 0.00 | 0 | 3.79 | 0.33 | 10.63 | 10.16 | 0 | 0.07 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.19 | | 6 ARNCR | 0.20 | 0.06 | 2.42 | 0 | 0.40 | 0.42 | 158.36 | 0.65 | 0 | 2.73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.42 | | 7 ALX | 0.07 | 1.04 | 0.17 | 0 | 0.04 | 0.82 | 0.57 | 188.11 | 0 | 1.85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.46 | | 8 FFX | 0.06 | 14.17 | 30.42 | 23.49 | 3.07 | 0.15 | 110.50 | 1.01 | 5.08 | 73.80 | 1.68 | 0 | 10.16 | 4.34 | 0.41 | 4.54 | 23.58 | 0 | 0 | 0 | 0.22 | 0 | 0 j | 0.59 | | 9 LDN | 1.78 | 0 | 0 | 0 | 0 | 0 | 0 | 22.06 | 0.41 | 21.08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.28 | | 10 PW | 12.29 | 32.68 | 76.48 | 54.60 | 7.79 | 0.28 | 61.96 | 629.42 | 45.31 | 388.94 | 3.73 | 0 | 23.91 | 14.90 | 0.91 | 9.02 | 50.23 | 0 | 0 | 0 | 0.46 | 0 | 0 j | 4.72 | | 11 FRD | 0.00 | 0 | 0.03 | 0 | 0 | 0 | 0 | 0.26 | 0 | 0.27 | 0.35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.22 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0 | | 13 HOW | 0.27 | 0 | 0.87 | 4.28 | 0 | 0 | 0 | 2.69 | 0 | 2.40 | 0 | 0 | 44.32 | 2.21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 57.04 | | 14 AAR | 0.06 | 0.27 | 0.28 | 5.23 | 0 | 0.14 | 0.03 | 11.90 | 0 | 3.92 | 0 | 0 | 1.46 | 0.01 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.03 | | 15 CAL | 0.00 | 0.06 | 0.01 | 0 | 0 | 0.03 | 0.01 | 0.69 | 0 | 0.70 | 0 | 0 | 0 | 0 | 5.20 | 0.17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.03 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.04 | 0.02 | 1.15 | 0 | 0 | 0 | 0 | 0 | 0 | 0.02 | | 17 CHS | 0.15 | 0 | 0 | 0.03 | 0 | 0.01 | 0 | 0.63 | 0 | 0.70 | 0 | 0 | 0 | 0 | 0 | 0 | 110.92 | 0 | 0 | 0 | 0 | 0 | 0 j | 112.44 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.97 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 10.97 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23.84 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.05 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 65.52 | 0 | 0.08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 65.60 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12.39 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12.39 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0 | | | | | | | | ====== | | | | | | | | | | | | | | | | | | | | TOTAL | 0.13 | | 0.96 | | 0.23 | | 1.32 | | 0.60 | | 0.36 | | 0 | | 0 | | 0 | | 0 | | 0.00 | | 0 | | | | | 0.30 | | 0.33 | | 0.37 | | 1.48 | | 0 | | 0 | | 0.03 | | 0.04 | | 0 | | 0 | | 0 | | 0.36 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Est Auto Person | | DESTIN | IATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|------|-------|-------|--------|--------|--------|--------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 4132 | 3576 | 999 | 478 | 129 | 777 | 313 | 1285 | 33 | 12 | 0 | 0 | 13 | 26 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 11780 | | 2 DC NC | 18126 | 56935 | 17116 | 17092 | 681 | 4710 | 2473 | 9760 | 263 | 132 | 4 | 0 | 532 | 834 | 0 | 0 | 200 | 6 | 0 | 0 | 0 | 0 | 0 | 128863 | | 3 MTG | 2786 | | 384439 | 20417 | 69 | 615 | 126 | 2437 | 114 | 6 | 2242 | 316 | 4341 | 2313 | 0 | 0 | 73 | 0 | 0 | 1 | 0 | 0 | 0 | 432183 | | 4 PG | 2953 | 15579 | | | 234 | 1986 | 2577 | 7262 | 108 | 91 | 1 | 1 | 5253 | 8808 | 17 | 51 | 7375 | 3 | 0 | 0 | 0 | 0 | 0 | 325824 | | 5 ARLCR | 108 | 117 | 37 | 28 | 409 | 1715 | 310 | 877 | 20 | 12 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3635 | | 6 ARNCR | 2066 | 2564 | 787 | 816 | 3279 | 45202 | 7051 | 22003 | 317 | 216 | 9 | 0 | 7 | 56 | 0 | 0 | 56 | 1 | 0 | 0 | 0 | 0 | 0 | 84429 | | 7 ALX | 742 | 1088 | 152 | 762 | 687 | 7652 | 24244 | 17016 | 120 | 279 | 0 | 0 | 2 | 30 | 0 | 0 | 113 | 0 | 0 | 0 | 0 | 0 | 0 | 52889 | | 8 FFX | 3605 | 5963 | 3481 | 4811 | 1612 | 20467 | 18963 | 436010 | 8137 | 7713 | 178 | 0 | 106 | 466 | 0 | 0 | 935 | 72 | 3 | 4 | 39 | 0 | 0 | 512566 | | 9 LDN | 374 | 596 | 675 | 530 | 123 | 1306 | 543 | 17414 | 96541 | 1047 | 3848 | 72 | 55 | 108 | 0 | 0 | 110 | 157 | 0 | 1480 | 3 | 0 | 0 | 124982 | | 10 PW | 293 | 427 | 150 | 426 | 160 | 1789 | 2112 | 28326 | | 190415 | 49 | 0 | 7 | 37 | 0 | 0 | 175 | 1533 | 113 | 7 | 260 | 0 | 0 | 227745 | | 11 FRD | 6 | 18 | 7781 | 29 | 5 | 52 | 7 | 678 | 2094 | 5 | 88767 | 4733 | 1290 | 114 | 0 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | 105620 | | 12 CAR | 0 | 0 | 834 | 15 | 0 | 1 | 0 | 28 | 55 | 0 | 1867 | 73851 | 1849 | 128 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 78629 | | 13 HOW | 27 | 227 | 4253 | 5890 | 2 | 22 | 8 | 136 | 10 | 0 | 854 | 1886 | 108207 | 13137 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 134668 | | 14 AAR | 252 | 1108 | 1871 | 12119 | 47 | 376 | 383 | 1179 | 29 | 25 | 6 | 27 | 13036 | 238006 | 256 | 43 | 422 | 0 | 0 | 0 | 0 | 0 | 0 | 269185 | | 15 CAL | 105 | 417 | 224 | 3347 | 26 | 207 | 307 | 841 | 8 | 20 | 0 | 0 | 50 | 1585 | 26429 | 4777 | 1527 | 0 | 0 | 0 | 0 | 0 | 0 | 39869 | | 16 STM | 1 | 2 | 2 | 169 | 2 | 14 | 42 | 99 | 0 | 1 | 0 | 0 | 0 | 3 | 269 | 41267 | 4417 | 0 | 0 | 0 | 0 | 0 | 0 | 46288 | | 17 CHS | 39 | 117 | 33 | 1500 | 18 | 159 | 335 | 975 | 15 | 20 | 0 | 0 | 4 | 14 | 168 | 860 | 62907 | 0 | 0 | 0 | 0 | 1 | 0 | 67166 | | 18 FAU | 40 | 54 | 53 | 46 | 5 | 57 | 32 | 2207 | 481 | 3407 | 6 | 0 | 0 | 0 | 0 | 0 | 2 | 19889 | 129 | 22 | 187 | 0 | 0 | 26616 | | 19 STA | 219 | 368 | 171 | 376 | 47 | 525 | 704 | 6671 | 79 | 15683 | 0 | 0 | 0 | 7 | 0 | 1 | 67 | 570 | 28916 | 0 | 10149 | 29 | 0 | 64582 | | 20 CL/JF | 1 | 1 | 894 | 0 | 1 | 12 | 1 | 848 | 5829 | 221 | 2305 | 64 | 98 | 4 | 0 | 0 | 0 | 179 | 0 | 15940 | 0 | 0 | 0 | 26400 | | 21 SP/FB | 16 | 9 | 40 | 11 | 15 | 173 | 228 | 3297 | 33 | 4653 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 157 | 1846 | 0 | 44382 | 3 | 0 | 54863 | | 22 KGEO | 1 | 2 | 0 | 51 | 1 | 19 | 46 | 530 | 0 | 886 | 0 | 0 | 0 | 0 | 4 | 203 | 2533 | 33 | 456 | 0 | 974 | 3469 | 0 | 9209 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | , 0 | | TOTAL | 35893 | === | 444645 | | 7551 | === | 60805 | | 115751 | | 100137 | | 134849 | | 27142 | = | 80929 | = | 31463 | | 55994 | | 0 | ==<br> | | | | 101057 | | 321783 | | 87837 | | 559880 | | 224844 | | 80950 | | 265678 | | 47203 | | 22601 | | 17494 | | 3502 | | 2827991 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Obs Auto Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|--------|--------|------|--------|-------|--------|--------|--------|-------|--------|--------|--------|--------|-------|--------|-------|--------|-------|-------|------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | | | | | | | | | | | | | | | | | | | | | | ====== | | 1 DC CR | 2838 | 1430 | 307 | 0 | 0 | 1592 | 185 | 607 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6959 | | 2 DC NC | 7544 | 59229 | 21130 | | 104 | 5249 | 829 | 4882 | 353 | 0 | 922 | 0 | 104 | 860 | 0 | 0 | 338 | 0 | 0 | 0 | 0 | 0 | 0 | 116389 | | 3 MTG | 1746 | | 390946 | | 1231 | 528 | 205 | 4056 | 124 | 1860 | 1499 | 0 | 3666 | 2088 | 0 | 0 | 872 | 0 | 143 | 0 | 0 | 0 | 0 | 426311 | | 4 PG | 2044 | 5943 | 16486 | 264755 | 0 | 414 | 109 | 2301 | 184 | 181 | 271 | 0 | 3476 | 14329 | 389 | 286 | 14859 | 0 | 0 | 0 | 0 | 197 | 0 | 326223 | | 5 ARLCR | 0 | 105 | 0 | 0 | 653 | 1708 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2466 | | 6 ARNCR | 1660 | 1142 | 639 | 102 | 990 | 52856 | 7768 | 16804 | 225 | 0 | 93 | 0 | 0 | 407 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 82686 | | 7 ALX | 890 | 710 | 338 | 952 | 133 | 4248 | 35604 | 12769 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55643 | | 8 FFX | 1021 | 119 | 1872 | 748 | 928 | 10907 | | 462099 | 13969 | 14519 | 0 | 0 | 0 | 132 | 0 | 0 | 132 | 0 | 553 | 0 | 0 | 0 | 0 | 516473 | | 9 LDN | 240 | 0 | 382 | 0 | 0 | 968 | | 21997 | 99367 | 1997 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 288 | 382 | 0 | 0 | 0 | 125621 | | 10 PW | 0 | 0 | 0 | 0 | 0 | 415 | 1643 | 24819 | | 200299 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3112 | 726 | 0 | 759 | 197 | 0 | 232180 | | 11 FRD | 0 | 0 | 5223 | 260 | 0 | 0 | 229 | 0 | 1133 | 0 | 92776 | 5217 | 180 | 260 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 105279 | | 12 CAR | 0 | 571 | 417 | 860 | 0 | 0 | 0 | 0 | 99 | 0 | 1779 | 74013 | 2569 | 380 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80688 | | 13 HOW | 208 | 338 | 3044 | | 0 | 0 | 163 | 0 | 0 | 0 | 0 | | 115444 | 7336 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 132017 | | 14 AAR | 0 | 281 | 0 | 19261 | 0 | 72 | 0 | 228 | 0 | 203 | 0 | 2164 | 12826 | 232241 | 801 | 0 | 401 | 0 | 0 | 0 | 0 | 0 | 0 | 268478 | | 15 CAL | 0 | 0 | 1125 | 5156 | 0 | 0 | 255 | 3151 | 0 | 0 | 0 | 0 | 0 | 3369 | 25478 | 1734 | 2777 | 0 | 0 | 0 | 0 | 0 | 0 | 43045 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 390 | 0 | 390 | 0 | 0 | 0 | 0 | 0 | 884 | 526 | 37296 | 4538 | 0 | 0 | 0 | 0 | 0 | 0 | 44025 | | 17 CHS | 579 | 0 | 840 | 6282 | 0 | 0 | 1265 | 0 | 0 | 0 | 0 | 0 | 0 | 609 | 222 | 3427 | 57974 | 0 | 0 | 0 | 0 | 0 | 0 | 71198 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1039 | 1711 | 4503 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15448 | 577 | 0 | 0 | 0 | 0 | 23278 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 268 | 0 | 494 | 0 | 1743 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47504 | 0 | 14462 | 0 | 0 | 64470 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 148 | 1009 | 0 | 831 | 0 | 0 | 0 | 0 | 0 | 0 | 79 | 0 | 18088 | 0 | 0 | 0 | 20155 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2121 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3978 | 0 | 57282 | 0 | 0 | 63381 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 179 | 0 | 0 | 0 | 122 | 0 | 0 | 0 | 0 | 817 | 0 | 1289 | 2472 | 0 | 4878 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | ====== | | | ====== | | ====== | ====== | ====== | | ====== | | | ====== | | ====== | | ====== | | | | | | | TOTAL | 18770 | | 442749 | | 4039 | | 57729 | | 118385 | | 98172 | | 138267 | | 27416 | | 81891 | | 54586 | | 73791 | | 0 | | | | | 79599 | | 324680 | | 79616 | | 555783 | | 227605 | | 83034 | | 263016 | | 42743 | | 18638 | | 18471 | | 2866 | | 2811845 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Difference (Est-Obs) Auto Person | | DESTIN. | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|--------|-------|--------|--------|--------|--------|--------|-------|-------|-------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|------|----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | ====== | ====== | | ====== | ====== | ====== | | ====== | | | | ====== | ====== | ====== | ====== | | ====== | ====== | | ====== | | | | | | 1 DC CR | 1293 | 2146 | 691 | 478 | 129 | -815 | 129 | 677 | 33 | 12 | 0 | 0 | 13 | 26 | 0 | 0 | | 1 | 0 | 0 | 0 | 0 | 0 | 4820 | | 2 DC NC | 10583 | -2294 | -4014 | 2246 | 577 | -539 | 1643 | 4878 | -90 | 132 | -918 | 0 | 428 | -26 | 0 | 0 | -137 | 6 | 0 | 0 | 0 | 0 | 0 | 12474 | | 3 MTG | 1041 | 2155 | -6507 | 12803 | -1162 | 86 | -79 | -1620 | -10 | -1854 | 743 | 316 | 675 | 226 | - 0 | 0 | -800 | 0 | -143 | 1 | 0 | 0 | 0 | 5871 | | 4 PG | 909 | 9637 | | -11884 | 234 | 1572 | 2468 | 4961 | -76 | -90 | -270 | 1 | 1777 | -5522 | -372 | -235 | -7484 | 3 | 0 | 0 | 0 | -197 | 0 | -399 | | 5 ARLCR | 108 | 13 | 37 | 28 | -245 | 7 | 310 | 877 | 20 | 12 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1169 | | 6 ARNCR | 406 | 1421 | 148 | 714 | 2289 | -7653 | -718 | 5199 | 92 | 216 | -84 | 0 | 7 | -351 | 0 | 0 | 56 | 1 | 0 | 0 | 0 | 0 | 0 | 1743 | | 7 ALX | -148 | 379 | -185 | -190 | 555 | | -11360 | 4247 | 120 | 279 | - 0 | 0 | 2 | 30 | 0 | 0 | 113 | - 0 | | 0 | 0 | 0 | 0 | -2754 | | 8 FFX | 2584 | 5844 | 1609 | 4063 | 683 | 9560 | 9489 | -26089 | -5831 | -6806 | 178 | 0 | 106 | 335 | 0 | 0 | 803 | 72 | -550 | 4 | 39 | 0 | 0 | -3907 | | 9 LDN | 134 | 596 | 293 | 530 | 123 | 339 | 543 | -4583 | -2827 | -950 | 3848 | 72 | 55 | 108 | 0 | 0 | 110 | 157 | -288 | 1098 | 3 | 0 | 0 | -639 | | 10 PW | 293 | 427 | 150 | 426 | 160 | 1375 | 469 | 3508 | 1255 | -9884 | 49 | 0 | 7 | 37 | 0 | 0 | 175 | -1579 | -612 | . 7 | -500 | -197 | 0 | -4434 | | 11 FRD | 6 | 18 | 2559 | -230 | 5 | 52 | -223 | 678 | 961 | 5 | -4010 | -484 | 1109 | -146 | 0 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | 342 | | 12 CAR | 0 | -570 | 417 | -845 | 0 | 1 | | 28 | -45 | 0 | 88 | -162 | -720 | -252 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2059 | | 13 HOW | -181 | -111 | 1209 | 2045 | . 2 | 22 | -155 | 136 | 10 | 0 | 854 | 247 | -7237 | 5801 | - 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 2651 | | 14 AAR | 252 | 827 | 1871 | -7143 | 47 | 304 | 383 | 952 | 29 | -178 | 6 | -2137 | 210 | 5766 | -545 | 43 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 708 | | 15 CAL | 105 | 417 | -901 | -1810 | 26 | 207 | 52 | -2310 | 8 | 20 | 0 | 0 | 50 | -1784 | 951 | 3043 | -1250 | 0 | 0 | 0 | 0 | 0 | 0 | -3175 | | 16 STM | 1 | 2 | 2 | 169 | 2 | -376 | 42 | -291 | 0 | 1 | 0 | 0 | 0 | -881 | -257 | 3971 | -121 | 0 | 0 | 0 | 0 | 0 | 0 | 2263 | | 17 CHS | -540 | 117 | -807 | -4782 | 18 | 159 | -930 | 975 | 15 | 20 | 0 | 0 | 4 | -595 | -53 | -2567 | 4933 | 0 | 0 | 0 | 0 | 1 | 0 | -4032 | | 18 FAU | 40 | 54 | 53 | 46 | . 5 | 57 | 32 | 1168 | -1230 | -1096 | 6 | 0 | 0 | 0 | 0 | 0 | 2 | 4440 | -449 | 22 | 187 | 0 | 0 | 3338 | | 19 STA | 219 | 368 | 171 | 376 | 47 | 257 | 704 | 6177 | 79 | 13940 | 0 | 0 | 0 | 7 | 0 | 1 | 67 | | -18587 | | -4313 | 29 | 0 | 112 | | 20 CL/JF | 1 | 1 | 894 | 0 | 1 | 12 | 1 | 700 | 4821 | 221 | 1474 | 64 | 98 | 4 | 0 | 0 | 0 | 101 | 0 | -2149 | 0 | 0 | 0 | 6244 | | 21 SP/FB | 16 | 9 | 40 | 11 | 15 | 173 | 228 | 3297 | 33 | 2532 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 157 | -2132 | 0 | -12899 | 3 | 0 | -8518 | | 22 KGEO | 1 | 2 | 0 | 51 | 1 | 19 | 46 | 530 | 0 | 707 | 0 | 0 | 0 | -122 | 4 | 203 | 2533 | 33 | -361 | 0 | -314 | 997 | 0 | 4331 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 17124 | | 1896 | | 3512 | | 3076 | | -2634 | | 1965 | | -3417 | | -273 | | -962 | | -23122 | | -17797 | | 0 | | | | | 21458 | | -2897 | | 8221 | | 4097 | | -2761 | | -2083 | | 2662 | | 4460 | | 3962 | | -976 | | 637 | | 16146 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Ratio (Est/Obs) Auto Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------------|--------|--------|--------|------|---------|--------|--------|-------|-------|--------|-------|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.46 | 2.50 | 3 25 | 477.98 | 129 46 | 0.49 | 1.70 | 2.12 | 33.36 | 12.39 | :======<br>0 | <br>0 | 13.02 | 26.20 | 0 | .====== | 5.15 | 0.57 | <br>0 | 0 | <br>0 | | 0 l | 1.69 | | 2 DC NC | 2.40 | 0.96 | | 1.15 | 6.55 | 0.90 | 2.98 | 2.00 | | 131.56 | 0.00 | 0 | 5.12 | 0.97 | 0.03 | 0 | 0.59 | 6.15 | 0 | 0 | 0 | 0 | 0 | 1.11 | | 3 MTG | 1.60 | 1.22 | | 2.68 | 0.06 | 1.16 | 0.62 | 0.60 | 0.92 | 0.00 | | 315.89 | 1.18 | 1.11 | 0 | 0 | 0.08 | 0.34 | 0 | 0.65 | 0 | 0 | ōi | 1.01 | | 4 PG | 1.44 | 2.62 | 1.25 | 0.96 | 233.98 | 4.80 | 23.54 | 3.16 | 0.59 | 0.50 | 0.00 | 1.25 | 1.51 | 0.61 | 0.04 | 0.18 | 0.50 | 2.78 | 0 | 0 | 0 | 0 | o i | 1.00 | | 5 ARLCR | 108.00 | 1.12 | 36.84 | 27.90 | 0.63 | 1.00 | 309.81 | 876.94 | 19.58 | 11.51 | 0.09 | 0 | 0.13 | 1.56 | 0 | 0 | 1.43 | 0.03 | 0 | 0 | 0 | 0 | 0 | 1.47 | | 6 ARNCR | 1.24 | 2.24 | 1.23 | 8.01 | 3.31 | 0.86 | 0.91 | 1.31 | 1.41 | 216.26 | 0.10 | 0 | 7.08 | 0.14 | 0 | 0 | 55.58 | 0.71 | 0 | 0 | 0 | 0 | 0 İ | 1.02 | | 7 ALX | 0.83 | 1.53 | 0.45 | 0.80 | 5.17 | 1.80 | 0.68 | 1.33 | 120.18 | 278.92 | 0.43 | 0 | 1.59 | 30.20 | 0 | 0.16 | 113.18 | 0.48 | 0 | 0 | 0.02 | 0 | 0 j | 0.95 | | 8 FFX | 3.53 | 50.14 | 1.86 | 6.44 | 1.74 | 1.88 | 2.00 | 0.94 | 0.58 | 0.53 | 178.06 | 0.37 | 105.88 | 3.54 | 0 | 0.41 | 7.10 | 72.04 | 0.00 | 3.51 | 39.46 | 0 | 0 | 0.99 | | 9 LDN | 1.56 | 596.37 | 1.77 | 530.01 | 123.38 | 1.35 | 542.67 | 0.79 | 0.97 | 0.52 | 3848.35 | 71.58 | 54.55 | 107.84 | 0 | 0 | 110.02 | 156.84 | 0.00 | 3.87 | 2.94 | 0 | 0 | 0.99 | | 10 PW | 292.62 | 426.80 | 150.25 | 426.45 | 159.70 | 4.31 | 1.29 | 1.14 | 6.96 | 0.95 | 48.68 | 0 | 7.37 | 36.60 | 0 | 0 | 175.00 | 0.49 | 0.16 | 7.08 | 0.34 | 0 | 0 | 0.98 | | 11 FRD | 5.66 | 17.94 | 1.49 | 0.11 | 4.83 | 52.44 | 0.03 | 678.09 | 1.85 | 5.06 | 0.96 | 0.91 | 7.16 | 0.44 | 0 | 0 | 0 | 0.18 | 0 | 41.18 | 0 | 0 | 0 | 1.00 | | 12 CAR | 0 | 0.00 | 2.00 | 0.02 | 0.10 | 1.11 | 0 | 27.80 | 0.55 | 0.03 | 1.05 | 1.00 | 0.72 | 0.34 | 0 | 0 | 0 | 0 | 0 | 0.18 | 0 | 0 | 0 | 0.97 | | 13 HOW | 0.13 | 0.67 | 1.40 | 1.53 | 2.22 | 21.93 | 0.05 | 136.03 | 9.96 | 0.05 | 853.97 | 1.15 | 0.94 | 1.79 | 0 | 0 | 9.06 | 0 | 0 | 0.20 | 0 | 0 | 0 | 1.02 | | 14 AAR | 252.43 | 3.95 | 1870.68 | 0.63 | 46.52 | 5.23 | 383.22 | 5.18 | 29.03 | 0.12 | 6.01 | 0.01 | 1.02 | 1.02 | 0.32 | 43.39 | 1.05 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | | 15 CAL | 104.78 | 416.91 | 0.20 | 0.65 | 25.64 | 206.61 | 1.21 | 0.27 | 7.77 | 20.38 | 0 | 0 | 50.29 | 0.47 | 1.04 | 2.75 | 0.55 | 0 | 0 | 0 | 0 | 0 | 0 | 0.93 | | 16 STM | 0.68 | 2.29 | 1.56 | 168.99 | 1.89 | 0.04 | 41.79 | 0.25 | 0 | 1.01 | 0 | 0 | 0.14 | 0.00 | 0.51 | 1.11 | 0.97 | 0 | 0 | 0 | 0 | 0.27 | 0 | 1.05 | | 17 CHS | 0.07 | 116.87 | 0.04 | 0.24 | | | | | 15.01 | 20.03 | 0 | 0 | 3.77 | 0.02 | 0.76 | 0.25 | 1.09 | 0.02 | 0 | 0 | 0 | 1.18 | 0 | 0.94 | | 18 FAU | 40.44 | 54.23 | 52.68 | 45.94 | 4.58 | 57.08 | 31.68 | 2.12 | 0.28 | 0.76 | 6.08 | 0 | 0.12 | 0.09 | 0 | 0 | 1.90 | 1.29 | 0.22 | 21.59 | 186.69 | 0 | 0 | 1.14 | | 19 STA | 219.29 | | 170.95 | | 47.05 | 1.96 | 703.80 | 13.51 | 79.09 | 9.00 | 0.03 | 0 | 0.36 | 6.60 | 0 | 0.63 | 67.17 | 570.15 | 0.61 | 0 | 0.70 | 29.09 | 0 | 1.00 | | 20 CL/JF | 1.30 | | | 0.44 | 0.96 | | 1.40 | 5.72 | | 221.32 | 2.77 | 64.15 | 97.52 | 3.66 | 0 | 0 | 0 | 2.28 | 0 | 0.88 | 0 | 0 | 0 | 1.31 | | 21 SP/FB | 15.91 | 9.15 | | 11.22 | 14.50 | | | 3296.94 | 32.57 | 2.19 | 0 | 0 | 0 | 0 | 0 | 0 | | 156.64 | 0.46 | 0 | 0.77 | 2.82 | 0 | 0.87 | | 22 KGEO | 1.27 | 1.76 | 0.49 | 50.81 | 1.49 | 18.80 | 46.24 | 529.95 | 0.11 | 4.95 | 0 | 0 | 0 | 0.00 | 3.62 | 203.272 | 533.08 | 33.28 | 0.56 | 0 | 0.76 | 1.40 | 0 | 1.89 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0<br> | 0 | 0 | 0 | 0 | 0<br> | 0 | 0 | 0 | 0 | 0<br> | 0 | 0<br> | 0 | 0 | 0 | | TOTAL | 1.91 | | 1.00 | | 1.87 | | 1.05 | | 0.98 | | 1.02 | | 0.98 | | 0.99 | | 0.99 | | 0.58 | | 0.76 | | 0 | | | | | 1.27 | | 0.99 | | 1.10 | | 1.01 | | 0.99 | | 0.97 | | 1.01 | | 1.10 | | 1.21 | | 0.95 | | 1.22 | | 1.01 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Est Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|--------|--------|------|-------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|--------|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | | | | | ====== | | ====== | ====== | | | ====== | | ====== | ====== | ====== | ====== | ====== | | | | ====== | ====== | | 1 DC CR | 2835 | 2447 | 666 | 337 | 88 | 525 | 210 | 850 | 21 | 8 | 0 | 0 | 9 | 17 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 8016 | | 2 DC NC | 12374 | 39056 | 11505 | 11833 | 455 | 3140 | 1631 | 6356 | 161 | 84 | 3 | 0 | 337 | 529 | 0 | 0 | 132 | 3 | 0 | 0 | 0 | 0 | 0 | 87599 | | 3 MTG | 1971 | | 264935 | 14062 | 49 | 429 | 89 | 1615 | 72 | 4 | 1525 | 218 | 2926 | 1560 | 0 | 0 | 51 | 0 | 0 | 1 | 0 | 0 | 0 | 297763 | | 4 PG | 2057 | 10807 | | 174369 | 160 | 1341 | 1711 | 4668 | 62 | 57 | 1 | 1 | 3473 | 5867 | 12 | 36 | 5022 | 1 | 0 | 0 | 0 | 0 | 0 | 223373 | | 5 ARLCR | 75 | 81 | 25 | 20 | 280 | 1173 | 209 | 583 | 12 | 7 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2469 | | 6 ARNCR | 1439 | 1778 | 548 | 579 | 2258 | 31194 | 4827 | 14937 | 201 | 143 | 7 | 0 | 6 | 40 | 0 | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | 57996 | | 7 ALX | 515 | 753 | 108 | 533 | 469 | 5250 | 16688 | 11511 | 74 | 184 | 0 | 0 | 1 | 21 | 0 | 0 | 78 | 0 | 0 | 0 | 0 | 0 | 0 | 36188 | | 8 FFX | 2536 | 4175 | 2430 | 3371 | 1111 | 14131 | | 300080 | 5559 | 5294 | 122 | 0 | 76 | 313 | 0 | 0 | 636 | 49 | 2 | 3 | 28 | 0 | 0 | 352926 | | 9 LDN | 264 | 425 | 464 | 367 | 84 | 884 | 365 | 11799 | 66686 | 717 | 2599 | 49 | 36 | 69 | 0 | 0 | 72 | 107 | 0 | 1009 | 2 | 0 | 0 | 85997 | | 10 PW | 212 | 324 | 108 | 309 | 108 | 1210 | 1410 | 18862 | | 131608 | 33 | 0 | 5 | 24 | 0 | 0 | 118 | 1047 | 79 | 5 | 178 | 0 | 0 | 156609 | | 11 FRD | 4 | 13 | 4993 | 20 | 3 | 33 | 4 | 392 | 1302 | 2 | 61068 | 3218 | 818 | 73 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 | 71972 | | 12 CAR | 0 | 0 | 534 | 10 | 0 | 0 | 0 | 14 | 29 | 0 | 1243 | 51091 | 1211 | 83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54216 | | 13 HOW | 21 | 165 | 2875 | 4046 | 2 | 15 | 5 | 86 | 6 | 0 | 574 | 1290 | 74839 | 8980 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 92911 | | 14 AAR | 176 | 759 | 1207 | 8177 | 31 | 241 | 241 | 694 | 14 | 14 | 4 | 17 | 8638 | 163935 | 174 | 29 | 279 | 0 | 0 | 0 | 0 | 0 | 0 | 184630 | | 15 CAL | 72 | 279 | 139 | 2216 | 17 | 130 | 189 | 492 | 3 | 11 | 0 | 0 | 30 | 1044 | 18250 | 3225 | 981 | 0 | 0 | 0 | 0 | 0 | 0 | 27078 | | 16 STM | 0 | 2 | 1 | 110 | 1 | 9 | 25 | 56 | 0 | 0 | 0 | 0 | 0 | 2 | 178 | 28441 | 2840 | 0 | 0 | 0 | 0 | 0 | 0 | 31665 | | 17 CHS | 28 | 85 | 21 | 1022 | 12 | 102 | 215 | 601 | 8 | 12 | 0 | 0 | 2 | 9 | 116 | 589 | 43438 | 0 | 0 | 0 | 0 | 1 | 0 | 46261 | | 18 FAU | 29 | 39 | 35 | 31 | 3 | 39 | 21 | 1388 | 309 | 2244 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 13664 | 88 | 15 | 126 | 0 | 0 | 18036 | | 19 STA | 149 | 247 | 107 | 249 | 30 | 334 | 445 | 4095 | 42 | 10369 | 0 | 0 | 0 | 4 | 0 | 0 | 44 | 368 | 20058 | 0 | 6970 | 20 | 0 | 43531 | | 20 CL/JF | 1 | 1 | 501 | 0 | 1 | 6 | 1 | 470 | 3546 | 131 | 1464 | 38 | 52 | 2 | 0 | 0 | 0 | 113 | 0 | 11005 | 0 | 0 | 0 | 17330 | | 21 SP/FB | 11 | 6 | 18 | 7 | 9 | 102 | 133 | 1841 | 15 | 2846 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 90 | 1245 | 0 | 30714 | 2 | 0 | 37040 | | 22 KGEO | 1 | 1 | 0 | 31 | 1 | 9 | 25 | 277 | 0 | 504 | 0 | 0 | 0 | 0 | 2 | 131 | 1591 | 18 | 302 | 0 | 642 | 2405 | 0 | 5940 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ======= | | | | | | | | | ====== | ====== | | | | | | | | | | | | | | ====== | | TOTAL | 24770 | | 304949 | | 5168 | | 41454 | | 79091 | | 68646 | | 92459 | | 18732 | 2015- | 55333 | | 21774 | | 38662 | 0.400 | 0 | | | | | 69704 | | 221699 | | 60298 | | 381667 | | 154237 | | 55922 | | 182574 | | 32453 | | 15461 | | 12066 | | 2428 | | 1939547 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Obs Auto Driver | ORIGIN | DESTIN | ATION | 2 | 4 | - | | 7 | 8 | ٥ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | |----------|--------|--------|---------|----------------|------|---------|---------|--------------|--------------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|------|------------|---------| | ORIGIN | | | -====== | - <del>1</del> | | .====== | .====== | o<br>======= | ,<br>======= | | 11 | 12 | 13 | 14 | 13 | 10 | | | | 20 | | | <br>====== | | | 1 DC CR | 2156 | 1136 | 307 | 0 | 0 | 1592 | 92 | 515 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5797 | | 2 DC NC | 5172 | 46469 | 13943 | 11698 | 104 | 4290 | 661 | 3263 | 261 | 0 | 0 | 0 | 104 | 522 | 0 | 0 | 338 | 0 | 0 | 0 | 0 | 0 | 0 | 86824 | | 3 MTG | 1600 | 7316 | 280027 | 5307 | 615 | 528 | 205 | 2986 | 124 | 620 | 982 | 0 | 1200 | 949 | 0 | 0 | 436 | 0 | 143 | 0 | 0 | 0 | 0 | 303038 | | 4 PG | 1934 | 4689 | 11292 | 186487 | 0 | 414 | 109 | 2068 | 184 | 181 | 271 | 0 | 1866 | 10325 | 389 | 286 | 9436 | 0 | 0 | 0 | 0 | 197 | 0 | 230129 | | 5 ARLCR | 0 | 105 | 0 | 0 | 429 | 1386 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1919 | | 6 ARNCR | 1560 | 1041 | 639 | 102 | 990 | 40854 | 5631 | 12339 | 112 | 0 | 93 | 0 | 0 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 63564 | | 7 ALX | 491 | 444 | 338 | 532 | 133 | 2672 | 28771 | 8808 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42189 | | 8 FFX | 238 | 119 | 1635 | 748 | 928 | 7423 | 7150 | 309449 | 9130 | 7309 | 0 | 0 | 0 | 0 | 0 | 0 | 132 | 0 | 553 | 0 | 0 | 0 | 0 | 344814 | | 9 LDN | 240 | 0 | 382 | 0 | 0 | 777 | 0 | 14521 | 64895 | 998 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 144 | 382 | 0 | 0 | 0 | 82340 | | 10 PW | 0 | 0 | 0 | 0 | 0 | 415 | 1325 | 13342 | 211 | 125283 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1171 | 309 | 0 | 759 | 98 | 0 | 142913 | | 11 FRD | 0 | 0 | 3071 | 130 | 0 | 0 | 229 | 0 | 811 | 0 | 69153 | 3606 | 180 | 130 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 77310 | | 12 CAR | 0 | 190 | 208 | 290 | 0 | 0 | 0 | 0 | 0 | 0 | 657 | 49361 | 1579 | 380 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 52665 | | 13 HOW | 208 | 338 | 2231 | 3187 | 0 | 0 | 163 | 0 | 0 | 0 | 0 | 1201 | 81939 | 4068 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 93335 | | 14 AAR | 0 | 281 | 0 | 12696 | 0 | 72 | 0 | 228 | 0 | 203 | 0 | 1082 | 5074 | 165242 | 801 | 0 | 401 | 0 | 0 | 0 | 0 | 0 | 0 | 186079 | | 15 CAL | 0 | 0 | 375 | 3452 | 0 | 0 | 255 | 980 | 0 | 0 | 0 | 0 | 0 | 2414 | 17025 | 1002 | 1703 | 0 | 0 | 0 | 0 | 0 | 0 | 27206 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 390 | 0 | 390 | 0 | 0 | 0 | 0 | 0 | 0 | 526 | 26183 | 2054 | 0 | 0 | 0 | 0 | 0 | 0 | 29545 | | 17 CHS | 289 | 0 | 492 | 4906 | 0 | 0 | 790 | 0 | 0 | 0 | 0 | 0 | 0 | 609 | 222 | 1929 | 39822 | 0 | 0 | 0 | 0 | 0 | 0 | 49059 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1039 | 1158 | 3631 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11847 | 577 | 0 | 0 | 0 | 0 | 18253 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 268 | 0 | 363 | 0 | 1743 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27267 | 0 | 8370 | 0 | 0 | 38010 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 148 | 544 | 0 | 617 | 0 | 0 | 0 | 0 | 0 | 0 | 79 | 0 | 13435 | 0 | 0 | 0 | 14822 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1333 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3488 | 0 | 35822 | 0 | 0 | 40643 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 179 | 0 | 0 | 0 | 122 | 0 | 0 | 0 | 0 | 573 | 0 | 1002 | 1948 | 0 | 3823 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | , 0 | | TOTAL | 13887 | ====== | 314940 | | 3199 | ====== | 45381 | | 77429 | | 71773 | | 91942 | | 18963 | | 54322 | | 33053 | | 45954 | | 0 | :====== | | TOTAL | 13007 | 62126 | 311710 | 229534 | 3173 | 61081 | 13301 | 370439 | | 141481 | 11113 | 55250 | 21212 | 184966 | 10703 | 29401 | 31322 | 13097 | 33033 | 13817 | 13731 | 2243 | Ü | 1934278 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Difference (Est-Obs) Auto Driver | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|--------|--------|------|--------|--------|--------|--------|-------|-------|--------|-------|--------|------|-------|--------|------|--------|-------|-------|------|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======== | | | ====== | | | ====== | ====== | ====== | ====== | | | ====== | | ====== | | | ====== | | ====== | | | | | ====== | | 1 DC CR | 679 | 1312 | 359 | 337 | 88 | -1067 | 118 | 335 | 21 | 8 | 0 | 0 | 9 | 17 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 2219 | | 2 DC NC | 7203 | -7412 | -2438 | 134 | 351 | -1149 | 970 | 3094 | -101 | 84 | 3 | 0 | 233 | 7 | 0 | 0 | -206 | 3 | 0 | 0 | 0 | 0 | 0 | 775 | | 3 MTG | 371 | | -15092 | 8755 | -567 | -100 | -116 | -1371 | -52 | -616 | 543 | 218 | 1726 | 611 | 0 | 0 | -385 | 0 | -143 | 1 | 0 | 0 | 0 | -5275 | | 4 PG | 123 | 6118 | | -12119 | 160 | 927 | 1602 | 2600 | -122 | -124 | -270 | 1 | 1606 | -4458 | -377 | -250 | -4413 | 1 | 0 | 0 | 0 | -197 | 0 | -6756 | | 5 ARLCR | 75 | -23 | 25 | 20 | -148 | -213 | 209 | 583 | 12 | 7 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 550 | | 6 ARNCR | -120 | 738 | -91 | 477 | 1268 | -9660 | -804 | 2597 | 89 | 143 | -87 | 0 | 6 | -164 | 0 | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | -5569 | | 7 ALX | 24 | 309 | -230 | 1 | 336 | | -12083 | 2703 | 74 | 184 | 0 | 0 | 1 | 21 | 0 | 0 | 78 | 0 | 0 | 0 | 0 | 0 | 0 | -6001 | | 8 FFX | 2298 | 4056 | 796 | 2623 | 182 | 6708 | 5860 | -9370 | -3571 | -2016 | 122 | 0 | 76 | 313 | 0 | 0 | 504 | 49 | -551 | 3 | 28 | 0 | 0 | 8113 | | 9 LDN | 24 | 425 | 82 | 367 | 84 | 108 | 365 | -2722 | 1791 | -282 | 2599 | 49 | 36 | 69 | 0 | 0 | 72 | 107 | -144 | 627 | 2 | 0 | 0 | 3657 | | 10 PW | 212 | 324 | 108 | 309 | 108 | 795 | 85 | 5520 | 759 | 6325 | 33 | 0 | 5 | 24 | 0 | 0 | 118 | -124 | -230 | 5 | -581 | -98 | 0 | 13696 | | 11 FRD | 4 | 13 | 1922 | -110 | 3 | 33 | -226 | 392 | 491 | 2 | -8085 | -388 | 638 | -57 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 | -5338 | | 12 CAR | 0 | -190 | 326 | -279 | 0 | 0 | 0 | 14 | 29 | 0 | 586 | 1730 | -368 | -297 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1551 | | 13 HOW | -187 | -172 | 644 | 859 | 2 | 15 | -157 | 86 | 6 | 0 | 574 | 89 | -7100 | 4912 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | -424 | | 14 AAR | 176 | 478 | 1207 | -4518 | 31 | 169 | 241 | 466 | 14 | -190 | 4 | -1065 | 3564 | -1306 | -627 | 29 | -121 | 0 | 0 | 0 | 0 | 0 | 0 | -1449 | | 15 CAL | 72 | 279 | -236 | -1236 | 17 | 130 | -66 | -488 | 3 | 11 | 0 | 0 | 30 | -1371 | 1225 | 2223 | -722 | 0 | 0 | 0 | 0 | 0 | 0 | -128 | | 16 STM | 0 | 2 | 1 | 110 | 1 | -382 | 25 | -334 | 0 | 0 | 0 | 0 | 0 | 2 | -349 | 2258 | 785 | 0 | 0 | 0 | 0 | 0 | 0 | 2121 | | 17 CHS | -262 | 85 | -472 | -3884 | 12 | 102 | -575 | 601 | 8 | 12 | 0 | 0 | 2 | -600 | -106 | -1340 | 3616 | 0 | 0 | 0 | 0 | 1 | 0 | -2798 | | 18 FAU | 29 | 39 | 35 | 31 | 3 | 39 | 21 | 349 | -849 | -1387 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 1816 | -490 | 15 | 126 | 0 | 0 | -217 | | 19 STA | 149 | 247 | 107 | 249 | 30 | 66 | 445 | 3733 | 42 | 8626 | 0 | 0 | 0 | 4 | 0 | 0 | 44 | 368 | -7208 | 0 | -1399 | 20 | 0 j | 5522 | | 20 CL/JF | 1 | 1 | 501 | 0 | 1 | 6 | 1 | 322 | 3002 | 131 | 848 | 38 | 52 | 2 | 0 | 0 | 0 | 34 | 0 | -2430 | 0 | 0 | 0 j | 2508 | | 21 SP/FB | 11 | 6 | 18 | 7 | 9 | 102 | 133 | 1841 | 15 | 1512 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 90 | -2243 | 0 | -5108 | 2 | 0 j | -3604 | | 22 KGEO | 1 | 1 | 0 | 31 | 1 | 9 | 25 | 277 | 0 | 325 | 0 | 0 | 0 | -122 | 2 | 131 | 1591 | 18 | -271 | 0 | -360 | 457 | 0 j | 2116 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0 | | ======= | | | ====== | | | | ====== | ====== | | | | ====== | | ====== | | | | | ====== | | | | | ====== | | TOTAL | 10882 | | -9991 | | 1969 | | -3927 | | 1661 | | -3127 | | 517 | | -232 | | 1011 | | -11279 | | -7291 | | 0 | | | | | 7578 | | -7835 | | -783 | | 11228 | | 12756 | | 671 | | -2391 | | 3052 | | 2364 | | -1751 | | 185 | | 5268 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Ratio (Est/Obs) Auto Driver | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|--------|--------|--------|---------|-------|--------|---------|--------|-------|--------|------|---------|--------|--------|------|-------|-------|-------|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.31 | 2.16 | 2.17 | 337.33 | 87.51 | 0.33 | 2.28 | 1.65 | 20.56 | 8.13 | 0 | <br>0 | 8.58 | 16.85 | 0 | 0 | 3.47 | 0.32 | 0 | 0 | 0 | 0 | 0 l | 1.38 | | 2 DC NC | 2.39 | 0.84 | 0.83 | 1.01 | 4.38 | 0.73 | 2.47 | 1.95 | 0.61 | 84.03 | 2.87 | 0 | 3.25 | 1.01 | 0.02 | 0 | 0.39 | 3.41 | 0 | 0 | 0 | 0 | 0 j | 1.01 | | 3 MTG | 1.23 | 1.13 | 0.95 | 2.65 | 0.08 | 0.81 | 0.43 | 0.54 | 0.58 | 0.01 | 1.55 | 217.92 | 2.44 | 1.64 | 0 | 0 | 0.12 | 0.19 | 0 | 0.52 | 0 | 0 | 0 j | 0.98 | | 4 PG | 1.06 | 2.30 | 1.22 | 0.94 | 159.78 | 3.24 | 15.63 | 2.26 | 0.34 | 0.32 | 0.00 | 0.85 | 1.86 | 0.57 | 0.03 | 0.13 | 0.53 | 1.23 | 0 | 0 | 0 | 0 | 0 j | 0.97 | | 5 ARLCR | 74.94 | 0.78 | 25.03 | 19.70 | 0.65 | 0.85 | 209.43 | 583.43 | 12.17 | 7.42 | 0.06 | 0 | 0.12 | 1.11 | 0 | 0 | 1.03 | 0.02 | 0 | 0 | 0 | 0 | 0 j | 1.29 | | 6 ARNCR | 0.92 | 1.71 | 0.86 | 5.68 | 2.28 | 0.76 | 0.86 | 1.21 | 1.79 | 142.82 | 0.07 | 0 | 5.57 | 0.20 | 0 | 0 | 39.39 | 0.44 | 0 | 0 | 0 | 0 | 0 j | 0.91 | | 7 ALX | 1.05 | 1.70 | 0.32 | 1.00 | 3.53 | 1.96 | 0.58 | 1.31 | 73.93 | 184.06 | 0.30 | 0 | 1.36 | 21.35 | 0 | 0.14 | 78.15 | 0.28 | 0 | 0 | 0.02 | 0 | 0 | 0.86 | | 8 FFX | 10.66 | 35.11 | 1.49 | 4.51 | 1.20 | 1.90 | 1.82 | 0.97 | 0.61 | 0.72 | 121.56 | 0.25 | 76.02 | 313.47 | 0 | 0.27 | 4.83 | 49.22 | 0.00 | 2.63 | 28.46 | 0 | 0 j | 1.02 | | 9 LDN | 1.10 | 425.11 | 1.21 | 367.26 | 83.56 | 1.14 | 365.33 | 0.81 | 1.03 | 0.722 | 2598.75 | 48.58 | 36.18 | 69.43 | 0 | 0 | 71.55 | 107.12 | 0.00 | 2.64 | 1.97 | 0 | 0 | 1.04 | | 10 PW | 211.99 | 323.89 | 108.31 | 308.77 | 107.56 | 2.92 | 1.06 | 1.41 | 4.60 | 1.05 | 32.86 | 0 | 4.91 | 24.20 | 0 | 0 | 117.62 | 0.89 | 0.26 | 5.20 | 0.23 | 0 | 0 | 1.10 | | 11 FRD | 4.11 | 12.78 | 1.63 | 0.16 | 3.20 | 33.15 | 0.02 | 391.79 | 1.61 | 1.83 | 0.88 | 0.89 | 4.54 | 0.56 | 0 | 0 | 0 | 0.09 | 0 | 28.48 | 0 | 0 | 0 | 0.93 | | 12 CAR | 0 | 0.00 | 2.56 | 0.04 | 0.02 | 0.43 | 0 | 13.78 | 29.12 | 0 | 1.89 | 1.04 | 0.77 | 0.22 | 0 | 0 | 0 | 0 | 0 | 0.15 | 0 | 0 | 0 | 1.03 | | 13 HOW | 0.10 | 0.49 | 1.29 | 1.27 | 1.64 | 14.95 | 0.03 | 86.47 | 5.86 | 0.03 | 574.16 | 1.07 | 0.91 | 2.21 | 0 | 0 | 6.17 | 0 | 0 | 0.18 | 0 | 0 | 0 | 1.00 | | 14 AAR | 176.33 | | 206.58 | 0.64 | 30.63 | | | 3.05 | 13.99 | 0.07 | 3.91 | 0.02 | 1.70 | 0.99 | 0.22 | 28.59 | 0.70 | 0 | 0 | 0 | 0 | 0 | 0 | 0.99 | | 15 CAL | 71.67 | 279.47 | 0.37 | 0.64 | 16.52 | 129.91 | 0.74 | 0.50 | 3.48 | 11.06 | 0 | 0 | 30.36 | 0.43 | 1.07 | 3.22 | 0.58 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | | 16 STM | 0.46 | 1.52 | 0.70 | 109.74 | 1.23 | 0.02 | 25.45 | 0.14 | 0 | 0.41 | 0 | 0 | 0.04 | 1.82 | 0.34 | 1.09 | 1.38 | 0 | 0 | 0 | 0 | 0.18 | 0 | 1.07 | | 17 CHS | 0.10 | 85.15 | 0.04 | 0.21 | 11.91 | 102.14 | 0.27 | 601.17 | 7.58 | 11.83 | 0 | 0 | 2.12 | 0.01 | 0.52 | 0.31 | 1.09 | 0 | 0 | 0 | 0 | 0.81 | 0 | 0.94 | | 18 FAU | 29.33 | | 35.02 | | 3.14 | | | 1.34 | 0.27 | 0.62 | 4.06 | 0 | 0.08 | 0.06 | 0 | 0 | 1.21 | 1.15 | 0.15 | 14.94 | | 0 | 0 | 0.99 | | 19 STA | 149.04 | | 106.89 | | 29.84 | | | 11.30 | 41.97 | 5.95 | 0.02 | 0 | 0.24 | 4.16 | 0 | 0.43 | 43.64 | 367.77 | 0.74 | 0 | 0.83 | 20.28 | 0 | 1.15 | | 20 CL/JF | 1.01 | | 501.30 | 0.18 | 0.53 | 5.92 | 0.56 | 3.17 | | 130.56 | 2.37 | 37.89 | 52.00 | 1.76 | 0 | 0 | 0 | 1.43 | 0 | 0.82 | 0 | 0 | 0 | 1.17 | | 21 SP/FB | 10.53 | 6.08 | 17.82 | 7.33 | 8.60 | 102.41 | | 1841.49 | 14.78 | 2.13 | 0 | 0 | 0 | 0 | 0 | 0 | 0.56 | 89.98 | 0.36 | 0 | 0.86 | 2.01 | 0 | 0.91 | | 22 KGEO | 0.82 | 1.16 | 0.16 | 31.44 | 0.78 | 9.42 | 24.57 | 276.53 | 0.05 | 2.82 | 0 | 0 | 0 | 0 | 2.29 | 131.081 | 590.72 | 17.69 | 0.53 | 0 | 0.64 | 1.23 | 0 | 1.55 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.78 | | 0.97 | | 1.62 | | 0.91 | | 1.02 | | 0.96 | | 1.01 | | 0.99 | | 1.02 | | 0.66 | | 0.84 | | 0 | | | | | 1.12 | | 0.97 | | 0.99 | | 1.03 | | 1.09 | | 1.01 | | 0.99 | | 1.10 | | 1.18 | | 0.87 | | 1.08 | | 1.00 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Est Motr Psn | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|------|-------|-------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|------|----|--------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 4594 | 4182 | 1129 | 489 | 151 | 972 | 350 | 1311 | 33 | 13 | 0 | 0 | 13 | 26 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 13269 | | 2 DC NC | 20145 | 61000 | 18482 | 17565 | 723 | 5319 | 2643 | 9854 | 263 | 133 | 4 | 0 | 532 | 834 | 0 | 0 | 201 | 6 | 0 | 0 | 0 | 0 | 0 | 137703 | | 3 MTG | 2998 | | 389296 | 20507 | 77 | 626 | 127 | 2438 | 114 | 7 | 2242 | 316 | 4344 | 2313 | 0 | 0 | 73 | 0 | 0 | 1 | 0 | 0 | 0 | 437524 | | 4 PG | 3208 | 15921 | | 254593 | 250 | 2052 | 2599 | 7267 | 108 | 92 | 1 | 1 | 5261 | 8814 | 17 | 51 | 7376 | 3 | 0 | 0 | 0 | 0 | 0 | 328713 | | 5 ARLCR | 133 | 120 | 38 | 28 | 412 | 1864 | 320 | 887 | 20 | 12 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3836 | | 6 ARNCR | 2245 | 2576 | 789 | 816 | 3363 | 46262 | 7209 | 22270 | 317 | 219 | 9 | 0 | 7 | 56 | 0 | 0 | 56 | 1 | 0 | 0 | 0 | 0 | 0 | 86195 | | 7 ALX | 786 | 1090 | 153 | 762 | 695 | 7837 | 24568 | 17204 | 120 | 281 | 0 | 0 | 2 | 30 | 0 | 0 | 113 | 0 | 0 | 0 | 0 | 0 | 0 | 53641 | | 8 FFX | 3677 | 5978 | 3511 | 4834 | 1615 | 20606 | | 437661 | 8143 | 7787 | 180 | 0 | 116 | 471 | 0 | 5 | 958 | 72 | 3 | 4 | 40 | 0 | 0 | 514733 | | 9 LDN | 376 | 596 | 675 | 530 | 123 | 1306 | 543 | 17436 | 96646 | 1068 | 3848 | 72 | 55 | 108 | 0 | 0 | 110 | 157 | 0 | 1480 | 3 | 0 | 0 | 125132 | | 10 PW | 305 | 459 | 227 | 481 | 167 | 1879 | 2174 | 28956 | | 190804 | 52 | 0 | 31 | 52 | 1 | 9 | 225 | 1533 | 113 | 7 | 260 | 0 | 0 | 229248 | | 11 FRD | 6 | 18 | 7781 | 29 | 5 | 52 | 7 | 678 | 2094 | 5 | 88900 | 4733 | 1290 | 114 | 0 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | 105754 | | 12 CAR | 0 | 0 | 834 | 15 | 0 | 1 | 0 | 28 | 55 | 0 | 1867 | 73851 | 1849 | 128 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 78629 | | 13 HOW | 28 | 227 | 4253 | 5894 | 2 | 22 | 8 | 139 | 10 | 2 | 854 | 1886 | 108251 | 13139 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 134725 | | 14 AAR | 257 | 1108 | 1871 | 12124 | 47 | 376 | 383 | 1191 | 29 | 29 | 6 | 27 | 13037 | 238013 | 256 | 43 | 422 | 0 | 0 | 0 | 0 | 0 | 0 | 269220 | | 15 CAL | 105 | 417 | 224 | 3347 | 26 | 207 | 307 | 842 | 8 | 21 | 0 | 0 | 50 | 1585 | 26434 | 4777 | 1527 | 0 | 0 | 0 | 0 | 0 | 0 | 39877 | | 16 STM | 1 | 2 | 2 | 169 | 2 | 14 | 42 | 99 | 0 | 1 | 0 | 0 | 0 | 3 | 269 | 41276 | 4418 | 0 | 0 | 0 | 0 | 0 | 0 | 46299 | | 17 CHS | 39 | 117 | 33 | 1500 | 18 | 159 | 335 | 976 | 15 | 21 | 0 | 0 | 4 | 14 | 168 | 860 | 63018 | 0 | 0 | 0 | 0 | 1 | 0 | 67278 | | 18 FAU | 40 | 54 | 53 | 46 | 5 | 57 | 32 | 2218 | 481 | 3407 | 6 | 0 | 0 | 0 | 0 | 0 | 2 | 19889 | 129 | 22 | 187 | 0 | 0 | 26626 | | 19 STA | 219 | 368 | 171 | 376 | 47 | 525 | 704 | 6695 | 79 | 15683 | 0 | 0 | 0 | 7 | 0 | 1 | 67 | 570 | 28916 | 0 | 10149 | 29 | 0 | 64606 | | 20 CL/JF | 1 | 1 | 894 | 0 | 1 | 12 | 1 | 848 | 5829 | 221 | 2305 | 64 | 98 | 4 | 0 | 0 | 0 | 179 | 0 | 15940 | 0 | 0 | 0 | 26400 | | 21 SP/FB | 16 | 9 | 40 | 11 | 15 | 173 | 228 | 3362 | 33 | 4653 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 157 | 1846 | 0 | 44382 | 3 | 0 | 54928 | | 22 KGEO | 1 | 2 | 0 | 51 | 1 | 19 | 46 | 542 | 0 | 886 | 0 | 0 | 0 | 0 | 4 | 203 | 2533 | 33 | 456 | 0 | 974 | 3469 | 0 | 9221 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 0 | | TOTAL | 39181 | ====== | 451555 | | 7745 | | 61700 | | 115907 | | 100276 | ====== | 134940 | | 27149 | | 81115 | | 31463 | | 55995 | | 0 | :======<br>I | | IUIAL | | 106292 | 401000 | 324167 | //45 | 90339 | | 562903 | 113907 | 225344 | 1002/6 | 80950 | 134940 | 265713 | 2/149 | 47226 | 01112 | 22601 | 21403 | 17494 | 22335 | 3502 | U | 2853558 | | | | 100292 | | 32416/ | | 90339 | | 504903 | | 225344 | | 80950 | | ∠05/13 | | 4/226 | | ZZ001 | | 1/494 | | 3502 | | ∠003008 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Obs Motr Psn | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|-------|--------|-------|--------|-------|--------|------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | | | | | | | | | | | | | | | | | | | | | | ====== | | 1 DC CR | 3955 | 2651 | 817 | 215 | 0 | 2640 | 185 | 607 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11070 | | 2 DC NC | 21020 | 72956 | 22279 | 17991 | 295 | 6037 | 829 | 4882 | 353 | 0 | 922 | 0 | 104 | 860 | 0 | 0 | 338 | 0 | 0 | 0 | 0 | 0 | 0 | 148866 | | 3 MTG | 6400 | 10912 | 396099 | 7614 | 1231 | 528 | 314 | 4056 | 124 | 1860 | 1499 | 0 | 3666 | 2088 | 0 | 0 | 872 | 0 | 143 | 0 | 0 | 0 | 0 | 437406 | | 4 PG | 3538 | 7213 | 16667 | 268724 | 181 | 659 | 109 | 2301 | 184 | 181 | 271 | 0 | 3476 | 14329 | 389 | 286 | 14859 | 0 | 0 | 0 | 0 | 197 | 0 | 333563 | | 5 ARLCR | 420 | 105 | 204 | 0 | 653 | 2158 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3540 | | 6 ARNCR | 2549 | 1346 | 639 | 102 | 1200 | 55386 | 7768 | 17216 | 225 | 0 | 93 | 0 | 0 | 407 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 86932 | | 7 ALX | 1535 | 710 | 338 | 952 | 340 | 4473 | 36170 | 12769 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57287 | | 8 FFX | 2152 | 119 | 1872 | 748 | 928 | 11823 | 9474 | 463729 | 13969 | 14519 | 0 | 0 | 0 | 132 | 0 | 0 | 132 | 0 | 553 | 0 | 0 | 0 | 0 | 520149 | | 9 LDN | 240 | 80 | 382 | 0 | 0 | 1159 | 0 | 21997 | 99626 | 1997 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 288 | 382 | 0 | 0 | 0 | 126151 | | 10 PW | 0 | 0 | 0 | 0 | 0 | 733 | 1643 | 24819 | 211 | 200299 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3112 | 726 | 0 | 759 | 197 | 0 | 232498 | | 11 FRD | 224 | 0 | 5223 | 260 | 0 | 0 | 229 | 0 | 1133 | 0 | 93159 | 5217 | 180 | 260 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 105884 | | 12 CAR | 0 | 571 | 417 | 860 | 0 | 0 | 0 | 0 | 99 | 0 | 1779 | 74652 | 2569 | 380 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 81327 | | 13 HOW | 208 | 338 | 3044 | 3845 | 0 | 0 | 163 | 0 | 0 | 0 | 0 | | 115444 | 7336 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 132017 | | 14 AAR | 72 | 281 | 0 | 19261 | 72 | 72 | 0 | 228 | 0 | 203 | 0 | 2164 | 12826 | 233365 | 801 | 0 | 401 | 0 | 0 | 0 | 0 | 0 | 0 | 269746 | | 15 CAL | 239 | 0 | 1125 | 5156 | 0 | 0 | 255 | 3151 | 0 | 0 | 0 | 0 | 0 | 3369 | 25478 | 1734 | 2777 | 0 | 0 | 0 | 0 | 0 | 0 | 43283 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 390 | 0 | 390 | 0 | 0 | 0 | 0 | 0 | 884 | 526 | 37823 | 4538 | 0 | 0 | 0 | 0 | 0 | 0 | 44552 | | 17 CHS | 579 | 0 | 840 | 6282 | 0 | 0 | 1265 | 0 | 0 | 0 | 0 | 0 | 0 | 609 | 222 | 3427 | 57974 | 0 | 0 | 0 | 0 | 0 | 0 | 71198 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1039 | 1711 | 4503 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15448 | 577 | 0 | 0 | 0 | 0 | 23278 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 268 | 0 | 494 | 0 | 1743 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47504 | 0 | 14925 | 0 | 0 | 64933 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 148 | 1009 | 0 | 831 | 0 | 0 | 0 | 0 | 0 | 0 | 79 | 0 | 18088 | 0 | 0 | 0 | 20155 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2121 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3978 | 0 | 57282 | 0 | 0 | 63381 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 179 | 0 | 0 | 0 | 122 | 0 | 0 | 0 | 0 | 817 | 0 | 1289 | 2472 | 0 | 4878 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | ====== | ====== | | ====== | ====== | ====== | | ====== | | | ====== | | | ====== | | ====== | | ====== | | ====== | | | | | TOTAL | 43130 | | 449946 | | 4901 | | 58405 | | 118644 | | 98554 | | 138267 | | 27416 | | 81891 | | 54586 | | 74254 | | 0 | | | | | 97279 | | 332009 | | 86326 | | 557826 | | 227605 | | 83672 | | 264140 | | 43269 | | 18638 | | 18471 | | 2866 | | 2882095 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Difference (Est-Obs) Motorized Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|-------|--------|-------|-------|--------|--------|-------|-------|-------|-------|-------|-------|------|-------|-------------|-------|--------|-------|--------|--------------|----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17<br>===== | 18 | 19 | 20 | 21 | 22<br>====== | 23 | TOTAL | | 1 DC CR | 639 | 1531 | 312 | 274 | 151 | -1669 | 166 | 704 | 33 | 13 | 0 | 0 | 13 | 26 | 0 | 0 | <br>5 | 1 | 0 | 0 | 0 | 0 | 0 | 2199 | | 2 DC NC | -875 | -11956 | -3798 | -426 | 429 | -718 | 1814 | 4972 | -90 | 133 | -918 | 0 | 429 | -26 | 0 | 0 | -137 | 6 | 0 | 0 | 0 | 0 | 0 | -11162 | | 3 MTG | -3401 | 1134 | -6803 | 12893 | -1154 | 97 | -187 | -1619 | -10 | -1853 | 743 | 316 | 677 | 226 | 0 | 0 | -800 | 0 | -143 | 1 | 0 | 0 | 0 | 118 | | 4 PG | -330 | 8708 | 4434 | -14131 | 69 | 1393 | 2490 | 4966 | -76 | -89 | -270 | 1 | 1785 | -5515 | -372 | -235 | -7483 | 3 | 0 | 0 | 0 | -197 | 0 | -4851 | | 5 ARLCR | -287 | 15 | -167 | 28 | -241 | -294 | 320 | 887 | 20 | 12 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 296 | | 6 ARNCR | -304 | 1230 | 150 | 714 | 2163 | -9124 | -559 | 5054 | 92 | 219 | -84 | 0 | 7 | -351 | 0 | 0 | 56 | 1 | 0 | 0 | 0 | 0 | 0 | -736 | | 7 ALX | -749 | 380 | -185 | -190 | 355 | 3363 | -11603 | 4435 | 120 | 281 | 0 | 0 | 2 | 30 | 0 | 0 | 113 | 0 | 0 | 0 | 0 | 0 | 0 | -3646 | | 8 FFX | 1525 | 5859 | 1639 | 4087 | 686 | 8783 | 9600 | -26068 | -5826 | -6732 | 180 | 0 | 116 | 339 | 0 | 5 | 827 | 72 | -550 | 4 | 40 | 0 | 0 | -5416 | | 9 LDN | 136 | 517 | 293 | 530 | 123 | 147 | 543 | -4561 | -2981 | -929 | 3848 | 72 | 55 | 108 | 0 | 0 | 110 | 157 | -288 | 1098 | 3 | 0 | 0 | -1019 | | 10 PW | 305 | 459 | 227 | 481 | 167 | 1146 | 531 | 4137 | 1300 | -9495 | 52 | 0 | 31 | 52 | 1 | 9 | 225 | -1579 | -612 | 7 | -499 | -197 | 0 | -3250 | | 11 FRD | -218 | 18 | 2559 | -230 | 5 | 52 | -223 | 678 | 961 | 5 | -4258 | -484 | 1109 | -146 | 0 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | -130 | | 12 CAR | 0 | -570 | 417 | -845 | 0 | 1 | 0 | 28 | -45 | 0 | 88 | -801 | -720 | -252 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2698 | | 13 HOW | -181 | -111 | 1210 | 2049 | 2 | 22 | -155 | 139 | 10 | 2 | 854 | 247 | -7193 | 5803 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 2708 | | 14 AAR | 185 | 827 | 1871 | -7138 | -25 | 304 | 383 | 963 | 29 | -174 | 6 | -2137 | 211 | 4648 | -545 | 43 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | -526 | | 15 CAL | -133 | 417 | -901 | -1810 | 26 | 207 | 52 | -2309 | 8 | 21 | 0 | 0 | 50 | -1784 | 956 | 3043 | -1250 | 0 | 0 | 0 | 0 | 0 | 0 | -3407 | | 16 STM | 1 | 2 | 2 | 169 | 2 | -376 | 42 | -291 | 0 | 1 | 0 | 0 | 0 | -881 | -257 | 3454 | -120 | 0 | 0 | 0 | 0 | 0 | 0 | 1747 | | 17 CHS | -540 | 117 | -807 | -4782 | 18 | 159 | -930 | 976 | 15 | 21 | 0 | 0 | 4 | -595 | -53 | -2567 | 5044 | 0 | 0 | 0 | 0 | 1 | 0 | -3920 | | 18 FAU | 40 | 54 | 53 | 46 | 5 | 57 | 32 | 1179 | -1230 | -1096 | 6 | 0 | 0 | 0 | 0 | 0 | 2 | 4440 | -449 | 22 | 187 | 0 | 0 | 3348 | | 19 STA | 219 | 368 | 171 | 376 | 47 | 257 | 704 | 6201 | 79 | 13940 | 0 | 0 | 0 | 7 | 0 | 1 | 67 | 570 | -18587 | 0 | -4775 | 29 | 0 | -327 | | 20 CL/JF | 1 | 1 | 894 | 0 | 1 | 12 | 1 | 700 | 4821 | 221 | 1474 | 64 | 98 | 4 | 0 | 0 | 0 | 101 | 0 | -2149 | 0 | 0 | 0 | 6244 | | 21 SP/FB | 16 | 9 | 40 | 11 | 15 | 173 | 228 | 3362 | 33 | 2532 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 157 | -2132 | 0 | -12899 | 3 | 0 | -8453 | | 22 KGEO | 1 | 2 | 0 | 51 | 1 | 19 | 46 | 542 | 0 | 707 | 0 | 0 | 0 | -122 | 4 | 203 | 2533 | 33 | -361 | 0 | -314 | 997 | 0 | 4343 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | -3949 | | 1609 | | 2845 | | 3295 | | -2737 | | 1722 | | -3326 | | -267 | == | -775 | = | -23122 | === | -18259 | = | 0 | == | | | | 9013 | | -7843 | | 4013 | | 5077 | | -2261 | | -2722 | | 1572 | | 3957 | | 3962 | | -976 | | 637 | | -28537 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Ratio (Est/Obs) Motorized Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|---------|--------|--------|--------|-------------|---------|--------|--------|------|-------|-------|-------|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.16 | 1.58 | 1.38 | 2.28 | 150.80 | 0.37 | 1.90 | 2.16 | 33.36 | 12.54 | 0 | 0 | 13.02 | 26.20 | ======<br>0 | 0 | 5.15 | 0.57 | 0 | 0 | 0 | 0 | 0 l | 1.20 | | 2 DC NC | 0.96 | 0.84 | 0.83 | 0.98 | 2.45 | 0.88 | 3.19 | 2.02 | 0.74 | 132.53 | 0.00 | 0 | 5.12 | 0.97 | 0.03 | 0 | 0.59 | 6.15 | 0 | 0 | 0 | 0 | o i | 0.93 | | 3 MTG | 0.47 | 1.10 | 0.98 | 2.69 | 0.06 | 1.18 | 0.40 | 0.60 | 0.92 | 0.00 | 1.50 | 315.89 | 1.18 | 1.11 | 0 | 0 | 0.08 | 0.34 | 0 | 0.65 | 0 | 0 | 0 j | 1.00 | | 4 PG | 0.91 | 2.21 | 1.27 | 0.95 | 1.38 | 3.11 | 23.74 | 3.16 | 0.59 | 0.51 | 0.00 | 1.25 | 1.51 | 0.62 | 0.04 | 0.18 | 0.50 | 2.78 | 0 | 0 | 0 | 0 | 0 j | 0.99 | | 5 ARLCR | 0.32 | 1.15 | 0.18 | 27.90 | 0.63 | 0.86 | 320.44 | 887.10 | 19.58 | 11.58 | 0.09 | 0 | 0.13 | 1.56 | 0 | 0 | 1.43 | 0.03 | 0 | 0 | 0 | 0 | 0 j | 1.08 | | 6 ARNCR | 0.88 | 1.91 | 1.23 | 8.01 | 2.80 | 0.84 | 0.93 | 1.29 | 1.41 | 218.99 | 0.10 | 0 | 7.08 | 0.14 | 0 | 0 | 55.58 | 0.71 | 0 | 0 | 0 | 0 | 0 j | 0.99 | | 7 ALX | 0.51 | 1.54 | 0.45 | 0.80 | 2.04 | 1.75 | 0.68 | 1.35 | 120.18 | 280.77 | 0.43 | 0 | 1.59 | 30.20 | 0 | 0.16 | 113.18 | 0.48 | 0 | 0 | 0.02 | 0 | 0 | 0.94 | | 8 FFX | 1.71 | 50.26 | 1.88 | 6.47 | 1.74 | 1.74 | 2.01 | 0.94 | 0.58 | 0.54 | 179.74 | 0.37 | 116.04 | 3.57 | 0.41 | 4.95 | 7.28 | 72.04 | 0.00 | 3.51 | 39.68 | 0 | 0 j | 0.99 | | 9 LDN | 1.57 | 7.50 | 1.77 | 530.01 | 123.38 | 1.13 | 542.67 | 0.79 | 0.97 | 0.533 | 8848.35 | 71.58 | 54.55 | 107.84 | 0 | 0 | 110.02 | 156.84 | 0.00 | 3.87 | 2.94 | 0 | 0 | 0.99 | | 10 PW | 304.91 | 459.48 | 226.73 | 481.05 | 167.49 | 2.56 | 1.32 | 1.17 | 7.17 | 0.95 | 52.41 | 0 | 31.28 | 51.50 | 0.91 | 9.02 | 225.23 | 0.49 | 0.16 | 7.08 | 0.34 | 0 | 0 | 0.99 | | 11 FRD | 0.03 | 17.94 | 1.49 | 0.11 | 4.83 | 52.44 | 0.03 | 678.35 | 1.85 | 5.33 | 0.95 | 0.91 | 7.16 | 0.44 | 0 | 0 | 0 | 0.18 | 0 | 41.18 | 0 | 0 | 0 | 1.00 | | 12 CAR | 0 | 0.00 | 2.00 | 0.02 | 0.10 | 1.11 | 0 | 27.80 | 0.55 | 0.03 | 1.05 | 0.99 | 0.72 | 0.34 | 0 | 0 | 0 | 0 | 0 | 0.18 | 0 | 0 | 0 | 0.97 | | 13 HOW | 0.13 | 0.67 | 1.40 | 1.53 | 2.22 | 21.93 | 0.05 | 138.72 | 9.96 | 2.45 | 853.97 | 1.15 | 0.94 | 1.79 | 0 | 0 | 9.06 | 0 | 0 | 0.20 | 0 | 0 | 0 | 1.02 | | 14 AAR | 3.57 | 3.951 | L870.96 | 0.63 | 0.65 | 5.23 | 383.25 | 5.23 | 29.03 | 0.14 | 6.01 | 0.01 | 1.02 | 1.02 | 0.32 | 43.39 | 1.05 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | | 15 CAL | 0.44 | 416.97 | 0.20 | 0.65 | 25.64 | 206.64 | 1.21 | 0.27 | 7.77 | 21.08 | 0 | 0 | 50.29 | 0.47 | 1.04 | 2.75 | 0.55 | 0 | 0 | 0 | 0 | 0 | 0 | 0.92 | | 16 STM | 0.68 | 2.29 | 1.56 | 168.99 | 1.89 | 0.04 | 41.79 | 0.25 | 0 | 1.01 | 0 | 0 | 0.14 | 0.00 | 0.51 | 1.09 | 0.97 | 0 | 0 | 0 | 0 | 0.27 | 0 | 1.04 | | 17 CHS | 0.07 | 116.87 | 0.04 | 0.24 | | 158.78 | 0.26 | 976.11 | 15.01 | 20.73 | 0 | 0 | 3.77 | 0.02 | 0.76 | 0.25 | 1.09 | 0.02 | 0 | 0 | 0 | 1.18 | 0 | 0.94 | | 18 FAU | 40.44 | | 52.68 | 45.94 | 4.58 | 57.08 | 31.68 | 2.13 | 0.28 | 0.76 | 6.08 | 0 | 0.12 | 0.09 | 0 | 0 | 1.90 | 1.29 | 0.22 | 21.59 | | 0 | 0 | 1.14 | | 19 STA | 219.29 | | 170.95 | 375.77 | 47.05 | | 703.80 | 13.56 | 79.09 | 9.00 | 0.03 | 0 | 0.36 | 6.60 | 0 | 0.63 | 67.17 | 570.15 | 0.61 | 0 | 0.68 | 29.09 | 0 | 0.99 | | 20 CL/JF | 1.30 | 1.07 | 893.69 | 0.44 | 0.96 | 11.96 | 1.40 | 5.72 | 5.78 | 221.32 | 2.77 | 64.15 | 97.52 | 3.66 | 0 | 0 | 0 | 2.28 | 0 | 0.88 | 0 | 0 | 0 | 1.31 | | 21 SP/FB | 15.91 | 9.15 | 39.67 | 11.22 | 14.50 | 172.95 | | 3362.46 | 32.57 | 2.19 | 0 | 0 | 0 | 0 | 0 | 0 | | 156.64 | 0.46 | 0 | 0.77 | 2.82 | 0 | 0.87 | | 22 KGEO | 1.27 | 1.76 | 0.49 | 50.81 | 1.49 | 18.80 | 46.24 | 542.34 | 0.11 | 4.95 | 0 | 0 | 0 | 0.00 | 3.62 | 203.272 | 533.08 | 33.28 | 0.56 | 0 | 0.76 | 1.40 | 0 | 1.89 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 0.91 | | 1.00 | | 1.58 | | 1.06 | | 0.98 | | 1.02 | | 0.98 | | 0.99 | | 0.99 | | 0.58 | | 0.75 | | 0 | | | | | 1.09 | | 0.98 | | 1.05 | | 1.01 | | 0.99 | | 0.97 | | 1.01 | | 1.09 | | 1.21 | | 0.95 | | 1.22 | | 0.99 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Est Auto Occ. | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------------|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|--------|------|--------|------|--------------|--------|------|---------|---------|----------|--------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | | | | | | | | | | | | | | | | | | | | .====== | | | | 1 DC CR | 1.46 | 1.46 | 1.50 | 1.42 | 1.48 | 1.48 | 1.49 | 1.51 | 1.62 | 1.52 | 0 | 0 | 1.52 | 1.55 | 0 | 0 | 1.48 | 1.78 | 0 | 0 | 0 | 0 | 0 | 1.47 | | 2 DC NC | 1.46 | 1.46 | 1.49 | 1.44 | 1.50 | 1.50 | 1.52 | 1.54 | 1.64 | 1.57 | 1.31 | 0 | 1.58 | 1.58 | 1.50 | 0 | 1.52 | 1.80 | 0 | 1 05 | 0 | 0 | 0 | 1.47 | | 3 MTG | 1.41 | 1.44 | 1.45 | 1.45 | 1.43 | 1.43 | 1.43 | 1.51 | 1.58 | 1.50 | 1.47 | 1.45 | 1.48 | 1.48 | 1 40 | 1 40 | 1.42 | 1.79 | 0 | 1.25 | 0 | 0 | 0 | 1.45 | | 4 PG | 1.44 | 1.44 | 1.50 | 1.45 | 1.46 | 1.48 | 1.51 | 1.56 | 1.73 | 1.59 | 1.53 | 1.47 | 1.51 | 1.50 | 1.42 | 1.42 | 1.47 | 2.26 | 0 | 0 | 0 | 0 | 0 | 1.46 | | 5 ARLCR | 1.44 | 1.44 | 1.47 | | 1.46 | 1.46 | 1.48 | 1.50 | | 1.55 | 1.33 | 0 | 1.08 | 1.41 | 0 | 0 | 1.39 | 1.50 | 0 | 0 | 0 | 0 | 0 | 1.47 | | 6 ARNCR | 1.44 | 1.44 | 1.44 | 1.41 | 1.45 | 1.45 | 1.46 | 1.47 | 1.58 | 1.51 | 1.33 | 0 | 1.17 | 1.41 | 0 | 1 1 4 | 1.41 | 1.61<br>1.71 | 0 | 0 | 1.00 | 0 | 0 <br>0 | 1.46 | | 7 ALX<br>8 FFX | 1.44 | 1.45 | 1.41 | 1.43 | 1.46 | 1.46 | 1.45 | 1.45 | 1.03 | 1.46 | 1.45 | 1.48 | 1.17 | 1.41 | 0 | 1.14 | 1.45 | 1.46 | 1.27 | 1.33 | 1.39 | 0 | 0 1 | 1.46<br>1.45 | | | | | | | | | | | | | | | | | 0 | 1.52 | | | | 1.33 | | 0 | | | | 9 LDN<br>10 PW | 1.42 | 1.40 | 1.46 | 1.44 | 1.48 | 1.48 | 1.49 | 1.48 | 1.45 | 1.46 | 1.48 | 1.47 | 1.51 | 1.55 | 0 | 0 | 1.54 | 1.46 | 1.50 | 1.47 | 1.49 | 0 | 0 <br>0 | 1.45 | | 10 PW | 1.38 | 1.32 | 1.56 | 1.45 | 1.48 | 1.58 | 1.69 | 1.73 | 1.61 | 2.77 | 1.45 | 1.47 | 1.50 | 1.51 | 0 | 0 | 1.49 | 2.00 | 1.43 | 1.45 | 1.46 | 0 | 0 1 | 1.45 | | 12 CAR | 1.38 | 1.50 | 1.56 | 1.45 | 5.00 | 2.58 | 1.69 | 2.02 | 1.87 | 0.03 | 1.45 | 1.47 | 1.58 | 1.55 | 0 | 0 | 0 | 2.00 | 0 | 1.45 | 0 | 0 | 0 1 | 1.47 | | 13 HOW | 1.31 | 1.37 | 1.48 | 1.47 | 1.35 | 1.47 | 1.48 | 1.57 | 1.70 | 1.67 | 1.49 | 1.45 | 1.45 | 1.46 | 0 | 0 | 1.47 | 0 | 0 | 1.11 | 0 | 0 | 0 | 1.45 | | 14 AAR | 1.43 | 1.46 | 1.55 | 1.48 | 1.52 | 1.56 | 1.59 | 1.70 | 2.08 | 1.85 | 1.54 | 1.56 | 1.51 | 1.45 | 1.47 | 1.52 | 1.51 | 0 | 0 | 1.11 | 0 | 0 | 0 | 1.45 | | 15 CAL | 1.45 | 1.49 | 1.60 | 1.51 | 1.55 | 1.50 | 1.63 | 1.71 | 2.23 | 1.84 | 1.34 | 1.30 | 1.66 | 1.52 | 1.47 | 1.48 | 1.56 | 0 | 0 | 0 | 0 | 0 | 0 | 1.47 | | 16 STM | 1.48 | 1.51 | 2.23 | 1.54 | 1.54 | 1.62 | 1.64 | 1.76 | 2.23 | 2.46 | 0 | 0 | 3.50 | 1.75 | 1.52 | 1.45 | 1.56 | 0 | 0 | 0 | 0 | 1.50 | 0 | 1.46 | | 17 CHS | 1.41 | 1.37 | 1.58 | 1.47 | 1.52 | 1.55 | 1.56 | 1.62 | 1.98 | 1.69 | 0 | 0 | 1.78 | 1.60 | 1.45 | 1.46 | 1.45 | 0.02 | 0 | 0 | 0 | 1.46 | 0 1 | 1.45 | | 18 FAU | 1.38 | 1.39 | 1.50 | 1.49 | 1.46 | 1.46 | 1.51 | 1.59 | 1.56 | 1.52 | 1.50 | 0 | 1.50 | 1.50 | 1.40 | 1.40 | 1.57 | 1.46 | 1.47 | 1.45 | 1.48 | 0 | 0 1 | 1.48 | | 19 STA | 1.47 | 1.49 | 1.60 | 1.51 | 1.58 | 1.57 | 1.58 | 1.63 | 1.88 | 1.51 | 1.50 | 0 | 1.50 | 1.59 | 0 | 1.47 | 1.54 | 1.55 | 1.44 | 1.13 | 1.46 | 1.43 | 0 | 1.48 | | 20 CL/JF | 1.29 | 1.62 | 1.78 | 2.44 | 1.81 | 2.02 | 2.50 | 1.80 | 1.64 | 1.70 | 1.57 | 1.69 | 1.88 | 2.08 | 0 | 1.1/ | 1.54 | 1.59 | 0 | 1.45 | 1.40 | 1.43 | 0 1 | 1.52 | | 21 SP/FB | 1.51 | 1.50 | 2.23 | 1.53 | 1.69 | 1.69 | 1.71 | 1.79 | 2.20 | 1.63 | 1.57 | 1.00 | 0 | 2.00 | 0 | 0 | 1.77 | 1.74 | 1.48 | 1.15 | 1.45 | 1.40 | 0 1 | 1.48 | | 22 KGEO | 1.55 | 1.52 | 3.06 | 1.62 | 1.91 | 2.00 | 1.88 | 1.92 | 2.20 | 1.76 | 0 | 0 | 0 | 0.05 | 1.58 | 1.55 | 1.59 | 1.88 | 1.51 | 0 | 1.52 | 1.44 | o i | 1.55 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ======== | | | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | | ====== | | ====== | | ====== | ====== | | .====== | :===== | | ====== | | TOTAL | 1.45 | | 1.46 | | 1.46 | | 1.47 | | 1.46 | | 1.46 | | 1.46 | | 1.45 | | 1.46 | | 1.45 | | 1.45 | | 0 | | | | | 1.45 | | 1.45 | | 1.46 | | 1.47 | | 1.46 | | 1.45 | | 1.46 | | 1.45 | | 1.46 | | 1.45 | | 1.44 | | 1.46 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Obs Auto Occ. | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|------|------|------|------|------|------|-------|------|--------|------|------|--------|------|------|------|------|------|------|------|------|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.32 | 1.26 | 1.00 | 0 | 0 | 1.00 | 2.00 | 1.18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 l | 1.20 | | 2 DC NC | 1.46 | 1.27 | 1.52 | 1.27 | 1.00 | 1.22 | 1.26 | 1.50 | 1.35 | 0 | 921.84 | 0 | 1.00 | 1.65 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | o i | 1.34 | | 3 MTG | 1.09 | 1.33 | 1.40 | 1.43 | 2.00 | 1.00 | 1.00 | 1.36 | 1.00 | 3.00 | 1.53 | 0 | 3.05 | 2.20 | 0 | 0 | 2.00 | 0 | 1.00 | 0 | 0 | 0 | 0 j | 1.41 | | 4 PG | 1.06 | 1.27 | 1.46 | 1.42 | 0 | 1.00 | 1.00 | 1.11 | 1.00 | 1.00 | 1.00 | 0 | 1.86 | 1.39 | 1.00 | 1.00 | 1.57 | 0 | 0 | 0 | 0 | 1.00 | 0 j | 1.42 | | 5 ARLCR | 0 | 1.00 | 0 | 0 | 1.52 | 1.23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 1.29 | | 6 ARNCR | 1.06 | 1.10 | 1.00 | 1.00 | 1.00 | 1.29 | 1.38 | 1.36 | 2.00 | 0 | 1.00 | 0 | 0 | 2.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.30 | | 7 ALX | 1.81 | 1.60 | 1.00 | 1.79 | 1.00 | 1.59 | 1.24 | 1.45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.32 | | 8 FFX | 4.29 | 1.00 | 1.15 | 1.00 | 1.00 | 1.47 | 1.32 | 1.49 | 1.53 | 1.99 | 0 | 0 | 0 | 131.73 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 j | 1.50 | | 9 LDN | 1.00 | 0 | 1.00 | 0 | 0 | 1.25 | 0 | 1.51 | 1.53 | 2.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.00 | 1.00 | 0 | 0 | 0 | 1.53 | | 10 PW | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.24 | 1.86 | 1.00 | 1.60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.66 | 2.35 | 0 | 1.00 | 2.00 | 0 | 1.62 | | 11 FRD | 0 | 0 | 1.70 | 2.00 | 0 | 0 | 1.00 | 0 | 1.40 | 0 | 1.34 | 1.45 | 1.00 | 2.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.36 | | 12 CAR | 0 | 3.00 | 2.00 | 2.97 | 0 | 0 | 0 | 0 | 99.39 | 0 | 2.71 | 1.50 | 1.63 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.53 | | 13 HOW | 1.00 | 1.00 | 1.36 | 1.21 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.36 | 1.41 | 1.80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.41 | | 14 AAR | 0 | 1.00 | 0 | 1.52 | 0 | 1.00 | 0 | 1.00 | 0 | 1.00 | 0 | 2.00 | 2.53 | 1.41 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.44 | | 15 CAL | 0 | 0 | 3.00 | 1.49 | 0 | 0 | 1.00 | 3.22 | 0 | 0 | 0 | 0 | 0 | 1.40 | 1.50 | 1.73 | 1.63 | 0 | 0 | 0 | 0 | 0 | 0 | 1.58 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 883.86 | 1.00 | 1.42 | 2.21 | 0 | 0 | 0 | 0 | 0 | 0 | 1.49 | | 17 CHS | 2.00 | 0 | 1.71 | 1.28 | 0 | 0 | 1.60 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.78 | 1.46 | 0 | 0 | 0 | 0 | 0 | 0 | 1.45 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.48 | 1.24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.30 | 1.00 | 0 | 0 | 0 | 0 | 1.28 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.36 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.74 | 0 | 1.73 | 0 | 0 | 1.70 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.86 | 0 | 1.35 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.35 | 0 | 0 | 0 | 1.36 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.59 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.14 | 0 | 1.60 | 0 | 0 | 1.56 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.43 | 0 | 1.29 | 1.27 | 0 | 1.28 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.35 | === | 1.41 | | 1.26 | | 1.27 | | 1.53 | === | 1.37 | === | 1.50 | | 1.45 | | 1.51 | | 1.65 | === | 1.61 | | 0 | ===== | | | | 1.28 | | 1.41 | | 1.30 | | 1.50 | | 1.61 | | 1.50 | | 1.42 | | 1.45 | | 1.42 | | 1.34 | | 1.28 | | 1.45 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Est Pct. Tran | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|------|------|------|--------|------|-----|-----|------|-----|----|------|------|-------|-------|------|----|----|----|-----|----|----|-------| | ORIGIN | 1 | 2 | 3 | 4 | | 6<br>6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 10.1 | 14.5 | 11.5 | 2.3 | 14.2 | 20.1 | 10.5 | 2.0 | 0 | 1.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.2 | | 2 DC NC | 10.0 | 6.7 | 7.4 | 2.7 | 5.9 | 11.4 | 6.4 | 1.0 | 0 | 0.7 | 0 | 0 | 0.1 | 0.0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 6.4 | | 3 MTG | 7.1 | 1.3 | 1.2 | 0.4 | 9.6 | 1.7 | 0.3 | 0.0 | 0 | 21.0 | 0 | 0 | 0.1 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | | 4 PG | 7.9 | 2.1 | 2.1 | 0.7 | 6.5 | 3.2 | 0.8 | 0.1 | 0 | 1.0 | 0 | 0 | 0.2 | 0.1 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | | 5 ARLCR | 18.7 | 2.2 | 2.0 | 0 | 0.9 | 8.0 | 3.3 | 1.1 | 0 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.2 | | 6 ARNCR | 8.0 | 0.5 | 0.3 | 0 | 2.5 | 2.3 | 2.2 | 1.2 | 0 | 1.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.0 | | 7 ALX | 5.6 | 0.1 | 0.1 | 0 | 1.1 | 2.4 | 1.3 | 1.1 | 0 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.4 | | 8 FFX | 2.0 | 0.2 | 0.9 | 0.5 | 0.2 | 0.7 | 0.6 | 0.4 | 0.1 | 0.9 | 0.9 | 0 | 8.8 | 0.9 | 100.0 | 91.7 | 2.5 | 0 | 0 | 0 | 0.6 | 0 | 0 | 0.4 | | 9 LDN | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0.1 | 2.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 10 PW | 4.0 | 7.1 | 33.7 | 11.4 | 4.7 | 4.8 | 2.8 | 2.2 | 3.0 | 0.2 | 7.1 | 0 | 76.4 | 28.9 | 100.0 | 100.0 | 22.3 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0.7 | | 11 FRD | 1.4 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 5.1 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 1.0 | 0 | 0.0 | 0.1 | 0 | 0 | 0 | 1.9 | 0 | 98.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 14 AAR | 1.6 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 1.0 | 0 | 13.5 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 15 CAL | 0.7 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.1 | 0 | 3.3 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 17 CHS | 0.4 | 0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.1 | 0 | 3.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.9 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 8.4 | | 1.5 | | 2.5 | | 1.4 | | 0.1 | | 0.1 | | 0.1 | | 0.0 | | 0.2 | | 0 | | 0.0 | | 0 | | | | | 4.9 | | 0.7 | | 2.8 | | 0.5 | | 0.2 | | 0 | | 0.0 | | 0.0 | | 0 | | 0 | | 0 | | 0.9 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBS Trips MODE: Obs Pct. Tran | 00.79777 | DESTIN | ATION | 2 | | - | _ | | 0 | 9 | 1.0 | 1.1 | 1.0 | 1.2 | 1.4 | 1.5 | 1.0 | 1.0 | 10 | 10 | 0.0 | 0.1 | 0.0 | 02.1 | mom3 - | |----------|--------|--------|-------|----------|-------|--------|------|--------|-----|-----|-----|---------|-----|--------|-----|---------|-----|--------|----|-------|-----|--------|------|--------| | ORIGIN | 1 | Z | | <u>4</u> | | 6<br> | | 8 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 28.2 | 46.0 | 62.4 | 100.0 | 0 | 39.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37.1 | | 2 DC NC | 64.1 | 18.8 | 5.2 | 17.5 | 64.8 | 13.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 İ | 21.8 | | 3 MTG | 72.7 | 10.8 | 1.3 | 0 | 0 | 0 | 34.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 2.5 | | 4 PG | 42.2 | 17.6 | 1.1 | 1.5 | 100.0 | 37.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 2.2 | | 5 ARLCR | 100.0 | 0 | 100.0 | 0 | 0 | 20.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 30.3 | | 6 ARNCR | 34.9 | 15.1 | 0 | 0 | 17.5 | 4.6 | 0 | 2.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 4.9 | | 7 ALX | 42.0 | 0 | 0 | 0 | 60.9 | 5.0 | 1.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.9 | | 8 FFX | 52.5 | 0 | 0 | 0 | 0 | 7.7 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.7 | | 9 LDN | 0 | 100.0 | 0 | 0 | 0 | 16.5 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 | | 10 PW | 0 | 0 | 0 | 0 | 0 | 43.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 11 FRD | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | | 13 HOW | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 14 AAR | 100.0 | 0 | 0 | 0 | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | | 15 CAL | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | | 17 CHS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.1 | 0 | 0 | 0.7 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 56.5 | ====== | 1.6 | ====== | 17.6 | ====== | 1.2 | ====== | 0.2 | | 0.4 | :====== | 0 | ====== | 0 | :=====: | 0 | ====== | 0 | ===== | 0.6 | ====== | 0 | ====== | | | | 18.2 | | 2.2 | | 7.8 | | 0.4 | | 0 | | 0.8 | | 0.4 | | 1.2 | | 0 | | 0 | | 0 | | 2.4 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Est Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|-------------|--------|--------|--------------|-------------|--------|--------------|--------------|---------|--------|---------|--------|--------|-------------|-------------|-------------|--------|--------------|-------------|-------------|------|-------------|----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 4197 | 4014 | 525 | 68 | 470 | 774 | 178 | 220 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10447 | | 2 DC NC | 28456 | 29619 | 5665 | 1698 | 1695 | 2832 | 848 | 861 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 71687 | | 3 MTG | 5044 | 2400 | 23808 | 610 | 248 | 174 | 15 | 136 | 0 | 60 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32501 | | 4 PG | 8790 | 5554 | 3056 | 7846 | 694 | 752 | 261 | 231 | 0 | 49 | 0 | 0 | 27 | 10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 27272 | | 5 ARLCR | 580 | 55 | 15 | 1 | 65 | 477 | 55 | 68 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1317 | | 6 ARNCR | 6433 | 498 | 86 | 7 | 679 | 4209 | 682 | 895 | 0 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13510 | | 7 ALX | 2029 | 189 | 23 | 1 | 150 | 913 | 1895 | 547 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5763 | | 8 FFX | 5003 | 543 | 150 | 45 | 413 | 1910 | 1246 | 5769 | 9 | 340 | 1 | 0 | 4 | 1 | 6 | 4 | 6 | 0 | 0 | 0 | 11 | 0 | 0 | 15462 | | 9 LDN | 210 | 14 | 3 | 0 | 12 | 30 | 2 | 120 | 256 | 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 717 | | 10 PW | 250 | 132 | 165 | 90 | 42 | 165 | 142 | 1035 | 55 | 968 | 1 | 0 | 7 | 3 | 11 | 8 | 12 | 0 | 0 | 0 | 21 | 0 | 0 | 3107 | | 11 FRD | 6 | 1 | 1 | 0 | 2 | 1 | 0 | 5 | 0 | 4 | 369 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 389 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 109 | 24 | 28 | 20 | 16 | 10 | 0 | 98 | 0 | 46 | 0 | 0 | 187 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 541 | | 14 AAR | 367 | 67 | 20 | 22 | 87 | 57 | 6 | 363 | 0 | 64 | 0 | 0 | 6 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1080 | | 15 CAL | 8 | 2 | 0 | 0 | 2 | 2 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 29 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | | 17 CHS | 88 | 14 | 1 | 1 | 34 | 27 | 6 | 31 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 248 | 0 | 0 | 0 | 0 | 0 | 0 | 470 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | | 23 EXTL | U<br>====== | ====== | ====== | U<br>======= | U<br>====== | ====== | U<br>======= | U<br>======= | .====== | ====== | .====== | ====== | ====== | U<br>====== | U<br>====== | U<br>====== | ====== | U<br>======= | U<br>====== | U<br>====== | <br> | U<br>====== | 0 | .===== | | TOTAL | 61571 | | 33546 | | 4609 | | 5338 | | 321 | | 372 | | 236 | | 37 | | 271 | | 0 | | 32 | | 0 | | | | | 43126 | | 10410 | | 12332 | | 10438 | | 1672 | | 0 | | 37 | | 42 | | 0 | | 0 | | 0 | | 184390 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Obs Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |---------------------|--------|--------|--------|--------|--------|--------|--------|--------|------|--------|--------|--------|---------|--------|--------|----|--------|--------|--------|--------|----|--------|--------------------------|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 3850 | 4640 | 619 | 0 | 382 | 1050 | 0 | 0 | 191 | 0 | 0 | 0 | 0 | 215 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 l | 10946 | | 2 DC NC | 32523 | 50046 | 3518 | 4528 | 281 | 1933 | 295 | 406 | 922 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 94451 | | 3 MTG | 13185 | 3484 | 13506 | 1994 | 918 | 437 | 549 | 124 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34197 | | 4 PG | 9453 | 7084 | 1483 | 16013 | 608 | 653 | 0 | 895 | 0 | 0 | 0 | 0 | 608 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36798 | | 5 ARLCR | 1146 | 0 | 0 | 0 | 0 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1350 | | 6 ARNCR | 6581 | 1304 | 209 | 0 | 225 | 2639 | 0 | 880 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11837 | | 7 ALX | 1518 | 449 | 0 | 0 | 210 | 0 | 1573 | 178 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3928 | | 8 FFX | 7616 | 767 | 905 | 0 | 0 | 821 | 119 | 3409 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13638 | | 9 LDN | 651 | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 731 | | 10 PW | 996 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 996 | | 11 FRD | 255 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 255 | | 12 CAR | 0 | 0 | 0 | 0 | 417 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 417 | | 13 HOW | 883 | 673 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1555 | | 14 AAR | 216 | 688 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2565 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3469 | | 15 CAL | 498 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 498 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17 CHS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 412 | 0 | 0 | 0 | 0 | 0 | 0 | 412 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB<br>22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | | 23 EAID | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | | ====== | ====== | ====== | .====== | ====== | ====== | | ====== | ====== | ====== | ====== | | ====== | ا <sup>ن</sup><br>====== | ====== | | TOTAL | 79369 | | 20240 | | 3041 | | 2536 | | 1113 | | 0 | | 608 | | 0 | | 412 | | 0 | | 0 | | 0 | | | | | 69214 | | 22535 | | 7737 | | 5891 | | 0 | | 0 | | 2780 | | 0 | | 0 | | 0 | | 0 | | 215477 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Difference (Est-Obs) Transit | | DESTIN | IATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|-------|--------|------|------|------|------|------|-----|--------|----|------|-------|--------|----|------|----|----|----|----|----|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 DC CR | 348 | -626 | -94 | 68 | 88 | -277 | 178 | 220 | -191 | 1 | 0 | 0 | 0 | -215 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -499 | | 2 DC NC | -4067 | -20426 | 2146 | -2830 | 1414 | 899 | 554 | 456 | -922 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -22765 | | 3 MTG | -8140 | -1084 | 10302 | -1384 | -670 | -263 | -534 | 11 | 0 | 60 | 0 | 0 | - 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1696 | | 4 PG | -664 | -1530 | 1573 | -8167 | 86 | 99 | 261 | -664 | 0 | 49 | 0 | 0 | -581 | 10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -9526 | | 5 ARLCR | -566 | 55 | 15 | 1 | 65 | 273 | 55 | 68 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -33 | | 6 ARNCR | -148 | -806 | -123 | 7 | 455 | 1571 | 682 | 15 | 0 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1673 | | 7 ALX | 511 | -260 | 23 | 1 | -60 | 913 | 322 | 369 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1835 | | 8 FFX | -2613 | -224 | -755 | 45 | 413 | 1089 | 1127 | 2360 | 9 | 340 | 1 | 0 | 4 | 1 | 6 | 4 | 6 | 0 | 0 | 0 | 11 | 0 | 0 | 1824 | | 9 LDN | -441 | -66 | 3 | 0 | 12 | 30 | 2 | 120 | 256 | 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -14 | | 10 PW | -746 | 132 | 165 | 90 | 42 | 165 | 142 | 1035 | 55 | 968 | 1 | 0 | 7 | 3 | 11 | 8 | 12 | 0 | 0 | 0 | 21 | 0 | 0 | 2111 | | 11 FRD | -249 | 1 | 1 | 0 | 2 | 1 | 0 | 5 | 0 | 4 | 369 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 134 | | 12 CAR | 0 | 0 | 0 | 0 | -417 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -417 | | 13 HOW | -773 | -648 | 28 | 20 | 16 | 10 | 0 | 98 | 0 | 46 | 0 | 0 | 187 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1014 | | 14 AAR | 151 | -621 | 20 | 22 | 87 | 57 | 6 | 363 | 0 | 64 | 0 | 0 | 6 | -2545 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2389 | | 15 CAL | -490 | 2 | 0 | 0 | 2 | 2 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -459 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 29 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | | 17 CHS | 88 | 14 | 1 | 1 | 34 | 27 | 6 | 31 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | -163 | 0 | 0 | 0 | 0 | 0 | 0 | 58 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 İ | 4 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ======= | | | | | | | | | | | ====== | | | | ====== | | | | | | | | | | | TOTAL | -17798 | | 13306 | | 1568 | | 2802 | | -792 | | 0 | _ | -372 | | 0 | _ | -141 | _ | 0 | | 0 | _ | 0 | | | | | -26088 | | -12125 | | 4595 | | 4547 | | 0 | | 0 | | -2743 | | 0 | | 0 | | 0 | | 0 | | -31087 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Ratio (Est/Obs) Transit | ODIGIN | DESTI | NATION | 2 | 4 | - | _ | 7 | 8 | 0 | 1.0 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 1.0 | 20 | 21 | 22 | 23 | moma r | |----------|-------|--------|--------|--------------|--------|--------|---------|--------|--------|--------|--------|----|--------|------|-------|-------|-------|----|------|----|-------|----|-----|--------| | ORIGIN | | | | <del>4</del> | | | | | 9 | 10 | | | 13 | 14 | 12 | 10 | 1/ | 18 | 19 | | 21 | 22 | ∠3 | TOTAL | | 1 DC CR | 1.09 | 0.87 | 0.85 | 68.32 | 1.23 | 0.74 | 178.16 | 220.09 | 0 | 0.73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.95 | | 2 DC NC | 0.87 | 0.59 | 1.61 | 0.38 | 6.03 | 1.47 | 2.88 | 2.12 | 0 | 11.71 | 0 | 0 | 0.20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.76 | | 3 MTG | 0.38 | 0.69 | 1.76 | 0.31 | 0.27 | 0.40 | 0.03 | 1.09 | 0 | 60.44 | 0.05 | 0 | 5.28 | 0.13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.95 | | 4 PG | 0.93 | 0.78 | 2.06 | 0.49 | 1.14 | | 261.39 | 0.26 | 0 | 49.47 | 0 | 0 | 0.04 | 9.97 | 0 | 0 | 1.32 | 0 | 0 | 0 | 0 | 0 | 0 | 0.74 | | 5 ARLCR | 0.51 | 54.69 | 15.17 | 1.03 | 65.19 | 2.33 | 55.40 | 67.81 | 0 | 0.63 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.98 | | 6 ARNCR | 0.98 | 0.38 | 0.41 | 7.17 | 3.02 | | 681.70 | 1.02 | 0 | 20.55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.14 | | 7 ALX | 1.34 | 0.42 | 23.29 | 1.46 | 0.72 | 912.96 | 1.20 | 3.08 | 0 | 14.33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.47 | | 8 FFX | 0.66 | 0.71 | 0.17 | | 412.81 | 2.33 | 10.48 | 1.69 | | 340.00 | 0.78 | 0 | 3.57 | 1.23 | 5.68 | 4.30 | 6.49 | 0 | 0.06 | 0 | 10.85 | 0 | 0 | 1.13 | | 9 LDN | 0.32 | 0.17 | 3.30 | 0.02 | 11.85 | 29.69 | | | 256.27 | 70.26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.98 | | 10 PW | | | 164.78 | 89.72 | 41.50 | | 141.541 | | 55.27 | 967.87 | 1.49 | 0 | 7.39 | 3.10 | 10.77 | 7.97 | 12.46 | 0 | 0.13 | 0 | 21.13 | 0 | 0 | 3.12 | | 11 FRD | 0.02 | 0.70 | 1.38 | 0 | 1.56 | 0.82 | 0.02 | 5.28 | 0 | 3.53 | 369.18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.52 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 0.12 | 0.04 | 27.97 | 20.31 | 15.60 | 9.67 | 0.41 | 98.27 | 0 | 46.28 | 0 | | 186.93 | 2.23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.35 | | 14 AAR | 1.70 | 0.10 | 19.61 | 21.93 | 87.45 | 56.81 | | 363.16 | 0 | 64.33 | 0 | 0 | 6.22 | 0.01 | 0.21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.31 | | 15 CAL | 0.02 | 1.51 | 0.14 | 0 | 2.34 | 1.73 | 0.34 | 2.94 | 0 | 1.92 | 0 | 0 | 0 | 0 | 19.68 | 0.09 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.08 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.69 | 29.39 | 2.16 | 0 | 0 | 0 | 0 | 0 | 0 | 32.24 | | 17 CHS | 88.21 | 13.90 | 1.22 | 0.79 | 33.57 | 27.08 | 5.94 | 31.11 | 0 | 19.60 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0.60 | 0 | 0 | 0 | 0 | 0 | 0 | 1.14 | | 18 FAU | 0.41 | 0 | 0 | 0 | 0 | 0 | 0 | 17.76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18.17 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.58 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.58 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0.01 | 0.01 | 0.02 | 28.17 | 0 | 0.14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28.35 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.74 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.74 | | 23 EXTL | | | | | | | | | | | | | | | | | | | | | | | U | | | TOTAL | 0.78 | | 1.66 | | 1.52 | | 2.11 | | 0.29 | | 0 | | 0.39 | | 0 | | 0.66 | | 0 | | 0 | | 0 I | | | | | 0.62 | | 0.46 | | 1.59 | | 1.77 | | 0 | | 0 | | 0.01 | | 0 | | 0 | | 0 | | 0 | | 0.86 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Est Auto Person | | DESTIN | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------------|---------------|---------------|---------------|---------------|--------------|----------------|----------------|----------------|------------|------------|--------|---------|---------|----------|--------|-------|----------|----------|------------|-------|------------|-----------|-------|------------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | .===== | | | | | | | | | :====== | :=====: | | | | :====== | | .====== | | | | | ====== | | 1 DC CR | 14014 | 11130 | 1819 | 829 | 300 | 1313 | 747 | 2513 | 56 | 19 | 0 | 0 | 15 | 25 | 0 | 0 | 8 | 3 | 6 | 0 | 2 | 0 | 0 | 32799 | | 2 DC NC | | 187537 | 33962 | 26564 | 2585 | 9650 | 6500 | 20049 | 493 | 240 | 27 | 2 | 651 | 831 | 33 | 6 | 246 | 27 | 93 | 1 | 48 | 2 | 0 | 356376 | | 3 MTG | 15172 | | 886150 | 41834 | 918 | 3891 | 1476 | 13491 | 693 | 114 | 7260 | 1873 | 10274 | 5368 | 93 | 23 | 351 | 59 | 207 | 410 | 292 | 18 | 0 | 1038697 | | 4 PG | 18834 | 84099 | 61260 | 512589 | 1882 | 7359 | 10206 | 24870 | 461 | 408 | 20 | 28 | 10755 | 16340 | 1670 | 867 | 12078 | 38 | 261 | 0 | 138 | 123 | 0 | 764286 | | 5 ARLCR | 141 | 505 | 168 | 65 | 1547 | 3008 | 529 | 1392 | 39 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Τ | 154 | 0 | 3 | 0 | 0 | 7426 | | 6 ARNCR | 6472 | 10975 | 3493 | 1929 | 16464 | 90337 | 13784 | 37152<br>27841 | 813<br>320 | 684<br>818 | 4 | 0 | 6 | 30<br>17 | 1 | 2 | 28<br>67 | 29<br>14 | 154<br>196 | Τ | 147<br>163 | 4 | 0 | 182509<br>115173 | | 7 ALX<br>8 FFX | 3554<br>21267 | 5450<br>30868 | 1013<br>14460 | 1852<br>12447 | 3384<br>8593 | 13059<br>44750 | 57406<br>46755 | 934338 | 21637 | 21433 | 128 | 11 | 96 | 307 | 46 | | 628 | 1397 | 4390 | 283 | 4896 | 8<br>257 | 0 | 1151/3 | | 9 LDN | 1913 | 2496 | 1905 | 954 | 498 | 2263 | 1167 | | 208192 | 21433 | 2003 | 133 | 25 | | 40 | 60 | 43 | 923 | 246 | 8312 | 391 | 25 /<br>9 | 0 | 266124 | | 10 PW | | 1712 | 530 | 555 | 559 | 2505 | 3224 | 44695 | | 331725 | 2003 | 133 | 25 | 54<br>8 | 1 | 0 | | 6027 | 9721 | 135 | 6912 | _ | 0 | | | 10 PW | 1314<br>164 | 322 | 23332 | 130 | 124 | 2505<br>588 | 179 | 5465 | 7257 | | 184897 | 8699 | 3097 | 273 | T . | 0 | 30 | | 9/21 | 3130 | 0912 | 233 | 0 | 412823<br>237746 | | 12 CAR | 104 | 322 | 6224 | 108 | 124 | 60 | 179 | 536 | 391 | 71 | 4568 | 137187 | 6340 | 314 | 0 | 0 | 1 | 14 | U<br>T | 72 | 1 | 0 | 0 | 155878 | | 13 HOW | 441 | 1919 | 13950 | 10083 | 69 | 288 | 178 | 1416 | 119 | 11 | 1854 | 4997 | 227344 | 18702 | 16 | 1 | 40 | 1 | 2 | 105 | 2 | 1 | 0 | 281541 | | 14 AAR | 1975 | 6059 | 8163 | 22486 | 497 | 1818 | 1744 | 5626 | 263 | 149 | 62 | 160 | 24499 | 453257 | 3514 | 210 | 430 | 1 | 25 | 103 | 1/1 | 9 | 0 | 530966 | | 15 CAL | 216 | 515 | 302 | 1819 | 99 | 361 | 561 | 1517 | 15 | 30 | 02 | 100 | 35 | 1475 | 88650 | 2214 | 766 | 1 | 2.3 | 0 | 1 | 10 | 0 | 98589 | | 16 STM | 124 | 271 | 61 | 1498 | 81 | 286 | 702 | 1421 | 14 | 21 | 0 | 0 | 5 | 85 | 4608 | 78547 | 8150 | 0 | 14 | 0 | 20 | 254 | 0 | 96162 | | 17 CHS | 642 | 1430 | 464 | 5119 | 301 | 1205 | 2290 | 6462 | 114 | 175 | 0 | 0 | 31 | 109 | 1793 | | 112048 | 3 | 24 | 0 | 23 | 831 | 0 | 135923 | | 18 FAU | 48 | 41 | 19 | 10 | 12 | 50 | 33 | 2599 | 724 | 3175 | 2 | 0 | 0 | 202 | 1,23 | 0 | 112010 | 41673 | 1255 | 177 | 639 | 20 | 0 | 50483 | | 19 STA | 40 | 31 | 29 | 5 | 33 | 158 | 235 | 2977 | 39 | 4673 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 820 | 86608 | 1,, | 13491 | 359 | 0 | 109498 | | 20 CL/JF | 3 | 11 | 1582 | 2 | 8 | 34 | 6 | 2159 | 8311 | 315 | 1092 | 20 | 86 | 2 | 0 | 0 | 0 | 502 | 0 | 41324 | 1 | 0 | 0 | 55456 | | 21 SP/FB | 16 | 10 | 31 | 0 | 27 | 158 | 220 | 3105 | 22 | 2571 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 234 | 10092 | 0 | 97939 | 118 | 0 | 114543 | | 22 KGEO | 1 | 4 | 1 | 29 | 3 | 16 | 45 | 557 | 1 | 693 | 0 | 0 | 0 | 0 | 3 | 12 | 384 | 45 | 2225 | 0 | 1683 | 15216 | 0 | 20918 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ō | i 0 | | ======= | | | | | | | | | | | | | | | | | | | | | | | ===== | | | TOTAL | 153192 | 1 | .058915 | | 37996 | | 147999 | | 252903 | | 201925 | | 283260 | | 100431 | | 135301 | | 115525 | | 126807 | | 0 | 1 | | | | 394151 | | 640909 | | 183156 | 1 | 172667 | | 369462 | | 153111 | | 497200 | | 84810 | | 51813 | | 53953 | | 17471 | | 6232959 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Obs Auto Person | | DESTI | IATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|-------|-------|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | ====== | | | | ====== | | ====== | | ====== | | | | ====== | ====== | ====== | ====== | | | ====== | | ===== | | | 1 DC CR | 6359 | 6924 | 577 | 645 | 0 | 1000 | 713 | 928 | 0 | 0 | 0 | 0 | 382 | 349 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17876 | | 2 DC NC | | 205127 | 43700 | 12685 | 423 | 5921 | 2551 | 11689 | 2307 | 169 | 0 | 0 | 196 | 630 | 185 | 0 | 353 | 0 | 0 | 0 | 185 | 0 | 0 | 338612 | | 3 MTG | 13775 | | 921835 | 19289 | 303 | 1408 | 1310 | 15607 | 3807 | 620 | 4654 | 476 | 6388 | 3353 | 0 | 0 | 232 | 0 | 0 | 0 | 1860 | 0 | 0 | 1038960 | | 4 PG | 14408 | 57502 | | 555349 | 0 | 5275 | 5901 | 6425 | 1495 | 681 | 0 | 532 | 7921 | 23459 | 5711 | 0 | 11760 | 0 | 0 | 0 | 0 | 0 | 0 | 760585 | | 5 ARLCR | 0 | 209 | 105 | 0 | 630 | 1631 | 204 | 539 | 0 | 0 | 0 | 0 | 0 | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3544 | | 6 ARNCR | 14435 | 7302 | 2613 | 407 | 6386 | 115407 | 8868 | 27250 | 206 | 210 | 0 | 0 | 556 | 0 | 0 | 0 | 522 | 102 | 0 | 0 | 0 | 0 | 0 | 184266 | | 7 ALX | 4032 | 3769 | 946 | 709 | 1074 | 8825 | 67718 | 24992 | 399 | 0 | 0 | 0 | 0 | 1100 | 0 | 0 | 0 | 266 | 0 | 0 | 0 | 0 | 0 | 113829 | | 8 FFX | 13491 | 11056 | 11896 | 4337 | 1261 | 36090 | 340001 | | 20097 | 17297 | 980 | 0 | 236 | 383 | 0 | 0 | 0 | 0 | 1106 | 942 | 238 | 0 | 0 | 1181200 | | 9 LDN | 2082 | 464 | 2449 | 0 | 0 | 2751 | 929 | 33112 | | 549 | 1757 | 0 | 0 | 293 | 0 | 0 | 0 | 1676 | 0 | 256 | 0 | 0 | 0 | 268420 | | 10 PW | 676 | 465 | 1883 | 186 | 318 | 6288 | 3962 | 41437 | | 358818 | 0 | 0 | 0 | 0 | 0 | 197 | 0 | 1813 | 653 | 0 | 0 | 0 | 0 | 420893 | | 11 FRD | 450 | 1431 | 14174 | 505 | 322 | 0 | 360 | 627 | 701 | 0 | 200636 | 12452 | 4260 | 2912 | 0 | 0 | 0 | 0 | 0 | 395 | 0 | 0 | 0 | 239227 | | 12 CAR | 0 | 0 | 2271 | 915 | 0 | 0 | 0 | 99 | 0 | 0 | | 144267 | 5689 | 490 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 155501 | | 13 HOW | 1070 | 838 | 8149 | 9880 | 0 | 689 | 163 | 673 | 0 | 0 | 163 | 2395 | 242333 | 13234 | 0 | 0 | 138 | 570 | 0 | 0 | 0 | 0 | 0 | 280293 | | 14 AAR | 612 | 6364 | 12994 | 22934 | 72 | 448 | 72 | 2236 | 0 | 0 | 372 | 0 | 22521 | 458392 | 1930 | 0 | 679 | 0 | 0 | 0 | 0 | 0 | 0 | 529626 | | 15 CAL | 995 | 512 | 0 | 1605 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 239 | 3063 | 88837 | 2994 | 512 | 0 | 0 | 0 | 0 | 0 | 0 | 98758 | | 16 STM | 230 | 448 | 0 | 2174 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 526 | 6793 | 81100 | 5996 | 0 | 459 | 0 | 0 | 0 | 0 | 97726 | | 17 CHS | 1718 | 3254 | 289 | 13259 | 695 | 809 | 1443 | 436 | 251 | 0 | 0 | 0 | 145 | 797 | 1731 | 3076 | 108502 | 0 | 0 | 0 | 289 | 289 | 0 | 136984 | | 18 FAU | 0 | 577 | 334 | 0 | 215 | 0 | 0 | 2008 | 2764 | 3514 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38959 | 0 | 2646 | 0 | 0 | 0 | 51018 | | 19 STA | 0 | 0 | 131 | 0 | 131 | 451 | 0 | 914 | 0 | 6312 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 69227 | 0 | 33048 | 0 | 0 | 110215 | | 20 CL/JF | 0 | 0 | 157 | 0 | 0 | 0 | 0 | 732 | 5110 | 79 | 655 | 0 | 79 | 0 | 0 | 0 | 0 | 0 | 0 | 46227 | 0 | 0 | 0 | 53038 | | 21 SP/FB | 0 | 0 | 297 | 0 | 1135 | 0 | 0 | 734 | 0 | 3640 | 0 | 0 | 0 | 0 | 0 | 617 | 0 | 0 | 12776 | 617 | 83727 | 258 | 0 | 103801 | | 22 KGEO | 0 | 164 | 0 | 0 | 0 | 0 | 0 | 118 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2545 | 0 | 3339 | 14891 | 0 | 21058 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ======= | 106000 | | 000065 | | 10065 | | 100105 | | 062420 | | 010004 | | | | 105105 | | 100605 | | 06868 | | 100606 | | ===== | ====== | | TOTAL | 126823 | | .088965 | C44070 | 12965 | | 128195 | | 263438 | | 210984 | 160102 | 290942 | | 105187 | 07003 | 128695 | 43386 | 86767 | | 122686 | 15420 | U | (205420 | | | | 350450 | | 644878 | | 186994 | 1 | 198349 | | 391888 | | 160123 | | 509206 | | 87983 | | 43386 | | 51083 | | 15439 | | 6205428 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Difference (Est-Obs) Auto Person | | DESTIN | IATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|---------|--------|--------|-------|-------|------|------|-------|-------|--------|------|---------|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 DC CR | 7655 | 4206 | 1242 | 184 | 300 | 313 | 35 | 1585 | 56 | 19 | 0 | 0 | -367 | -324 | 0 | 0 | | 3 | 6 | 0 | 2 | 0 | 0 | 14923 | | 2 DC NC | | -17590 | -9738 | 13879 | 2162 | 3730 | 3949 | 8360 | -1814 | 71 | 27 | 2 | 455 | 200 | -151 | 6 | -107 | 27 | 93 | 1 | -136 | 2 | 0 | 17765 | | 3 MTG | 1397 | | -35685 | 22546 | 615 | 2482 | 166 | -2116 | -3114 | -506 | 2606 | 1397 | 3886 | 2015 | 93 | 23 | 119 | 59 | 207 | 410 | -1568 | 18 | 0 | -263 | | 4 PG | 4426 | 26597 | -2905 | -42759 | 1882 | 2084 | 4305 | 18444 | -1035 | -272 | 20 | -504 | 2834 | -7119 | -4041 | 867 | 318 | 38 | 261 | 0 | 138 | 123 | 0 | 3700 | | 5 ARLCR | 141 | 295 | 63 | 65 | 917 | 1377 | 324 | 853 | 39 | 25 | 0 | 0 | | -225 | 0 | 0 | | 1 | - 4 | 0 | | 0 | 0 | 3882 | | 6 ARNCR | -7963 | 3673 | 880 | 1522 | 10078 | -25071 | 4916 | 9901 | 606 | 474 | 4 | 0 | -550 | 30 | 1 | 2 | -494 | -73 | 154 | 1 | 147 | 4 | 0 | -1756 | | 7 ALX | -478 | 1682 | 67 | 1143 | 2310 | | -10312 | 2849 | -79 | 818 | 0 | 0 | | -1083 | 2 | 7 | 67 | -252 | 196 | 0 | 163 | 8 | 0 | 1344 | | 8 FFX | 7776 | 19813 | 2564 | 8110 | 7332 | 8659 | 12755 | -93454 | 1540 | 4136 | -852 | 11 | -140 | -76 | 46 | 60 | 628 | 1397 | 3284 | -660 | 4659 | 257 | 0 | -12155 | | 9 LDN | -169 | 2032 | -544 | 954 | 498 | -488 | 238 | | -13911 | 1560 | 246 | 133 | 25 | -239 | 1 | 0 | 43 | -753 | 246 | 8056 | 391 | 9 | 0 | -2296 | | 10 PW | 638 | 1246 | -1353 | 369 | 241 | -3783 | -738 | 3258 | | -27093 | 8 | 0 | 1 | 8 | 1 | -197 | 30 | 4214 | 9068 | 135 | 6912 | 233 | 0 | -8070 | | 11 FRD | -286 | -1110 | 9158 | -374 | -199 | 588 | -182 | 4837 | 6556 | 71 | -15738 | -3753 | -1163 | -2638 | 0 | 0 | 1 | 14 | 1 | 2735 | 1 | 0 | 0 | -1481 | | 12 CAR | 12 | 38 | 3953 | -807 | 13 | 60 | 12 | 437 | 391 | 2 | 2799 | -7080 | 651 | -176 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 378 | | 13 HOW | -629 | 1080 | 5801 | 202 | 69 | -401 | 15 | 744 | 119 | 11 | 1691 | | -14989 | 5469 | 16 | 1 | -98 | -569 | 2 | 105 | 2 | 1 | 0 | 1247 | | 14 AAR | 1363 | -305 | -4831 | -447 | 425 | 1370 | 1672 | 3390 | 263 | 149 | -310 | 160 | 1978 | -5136 | 1584 | 210 | -249 | 4 | 25 | 3 | 14 | 9 | 0 | 1340 | | 15 CAL | -779 | 2 | 302 | 214 | 99 | 361 | 561 | 1517 | 15 | 30 | 0 | 0 | -204 | -1589 | -188 | -780 | 254 | 0 | 2 | 0 | 1 | 10 | 0 | -170 | | 16 STM | -106 | -177 | 61 | -676 | 81 | 286 | 702 | 1421 | 14 | 21 | 0 | 0 | 5 | -442 | -2186 | -2553 | 2154 | 0 | -445 | 0 | 20 | 254 | 0 | -1564 | | 17 CHS | -1075 | -1824 | 174 | -8141 | -394 | 396 | 847 | 6025 | -136 | 175 | 0 | 0 | -114 | -688 | 63 | -215 | 3546 | 3 | 24 | 0 | -267 | 542 | 0 | -1060 | | 18 FAU | 48 | -536 | -315 | 10 | -204 | 50 | 33 | 591 | -2039 | -339 | 2 | 0 | 0 | 2 | 0 | 0 | 3 | 2714 | 1255 | -2469 | 639 | 20 | 0 | -535 | | 19 STA | 40 | 31 | -103 | 5 | -98 | -293 | 235 | 2063 | 39 | -1639 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 820 | 17380 | | -19557 | 359 | 0 | -717 | | 20 CL/JF | 3 | 11 | 1424 | 2 | 8 | 34 | 6 | 1427 | 3201 | 237 | 437 | 20 | 7 | 2 | 0 | 0 | 0 | 502 | 0 | -4903 | 1 | 0 | 0 | 2418 | | 21 SP/FB | 16 | 10 | -266 | 0 | -1107 | 158 | 220 | 2371 | 22 | -1069 | 0 | 0 | 0 | 0 | 0 | -617 | 0 | 234 | -2684 | -617 | 14212 | -140 | 0 | 10741 | | 22 KGEO | 1 | -160 | 1 | 29 | 3 | 16 | 45 | 439 | 1 | 693 | 0 | 0 | 0 | 0 | 3 | 12 | 384 | 45 | -319 | 0 | -1656 | 324 | 0 | -139 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 26370 | ====== | -30050 | | 25031 | | 19803 | | -10535 | | -9060 | ====== | -7682 | | -4756 | | 6606 | | 28758 | | 4121 | | <br>0 l | ====== | | TOTAL | 20370 | 43701 | -30030 | -3969 | 23031 | -3838 | | -25683 | | -22426 | - 5000 | -7012 | | -12006 | -4/50 | -3173 | 0000 | 8427 | 20/30 | 2870 | 7121 | 2033 | 0 | 27531 | | | | 70/UI | | - 5505 | | -2020 | | -23003 | | -22420 | | - / UIZ | | -12000 | | -21/2 | | 072/ | | 2070 | | 2033 | | 2/331 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Ratio (Est/Obs) Auto Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |------------------|---------------|-------|---------|-------|---------|--------|---------------|-------|--------|--------|-------|--------------|--------------|-------|-------|--------|--------|---------|------------------|--------|---------|--------|----------|--------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 2.20 | 1.61 | 3.15 | 1.29 | 300.06 | 1.31 | 1.05 | 2.71 | 55.98 | 19.09 | 0.03 | -======<br>0 | 0.04 | 0.07 | 0.18 | 0.31 | 7.51 | 2.63 | 6.47 | <br>0 | 2.12 | 0 | 0 l | 1.83 | | 2 DC NC | 1.27 | 0.91 | 0.78 | 2.09 | 6.12 | 1.63 | 2.55 | 1.72 | 0.21 | 1.42 | 26.60 | 1.86 | 3.32 | 1.32 | 0.18 | 5.97 | 0.70 | 27.17 | 92.89 | 0.78 | 0.26 | 1.52 | 0 | 1.05 | | 3 MTG | 1.10 | 1.11 | 0.96 | 2.17 | 3.03 | 2.76 | 1.13 | 0.86 | 0.18 | 0.18 | 1.56 | 3.94 | 1.61 | 1.60 | 92.96 | 22.89 | 1.51 | 59.14 | 206.55 | 409.96 | 0.16 | 17.81 | o i | 1.00 | | 4 PG | 1.31 | 1.46 | 0.95 | 0.921 | 881.77 | 1.40 | 1.73 | 3.87 | 0.31 | 0.60 | 20.11 | 0.05 | 1.36 | 0.70 | 0.29 | 867.28 | 1.03 | 37.55 | 260.56 | 0 | 137.68 | 122.96 | 0 | 1.00 | | 5 ARLCR | 141.33 | 2.41 | 1.60 | 64.61 | 2.46 | 1.84 | 2.59 | 2.58 | 38.55 | 25.07 | 0 | 0 | 0.03 | 0.00 | 0 | 0 | 0.30 | 0.61 | 4.35 | 0 | 2.86 | 0.06 | 0 j | 2.10 | | 6 ARNCR | 0.45 | 1.50 | 1.34 | 4.74 | 2.58 | 0.78 | 1.55 | 1.36 | 3.94 | 3.26 | 4.11 | 0 | 0.01 | 29.76 | 0.84 | 1.79 | 0.05 | 0.28 | 154.04 | 1.48 | 146.79 | 4.49 | 0 | 0.99 | | 7 ALX | 0.88 | 1.45 | 1.07 | 2.61 | 3.15 | 1.48 | 0.85 | 1.11 | 0.80 | 818.15 | 0 | 0 | 1.61 | 0.02 | 2.10 | 7.47 | 66.74 | 0.05 | 195.53 | 0.04 | 163.30 | 8.19 | 0 | 1.01 | | 8 FFX | 1.58 | 2.79 | 1.22 | 2.87 | 6.82 | 1.24 | 1.38 | 0.91 | 1.08 | 1.24 | 0.13 | 10.75 | 0.41 | 0.80 | 45.53 | 59.64 | 628.04 | 1397.42 | 3.97 | 0.30 | 20.59 | 256.69 | 0 | 0.99 | | 9 LDN | 0.92 | 5.38 | 0.78 | | 497.79 | 0.82 | 1.26 | 0.98 | 0.94 | 3.84 | 1.14 | 133.10 | 25.17 | 0.18 | 1.33 | 0.20 | 43.03 | 0.55 | 245.65 | | 391.25 | 9.13 | 0 | 0.99 | | 10 PW | 1.94 | 3.68 | 0.28 | 2.99 | 1.76 | 0.40 | 0.81 | 1.08 | 0.70 | 0.92 | 8.33 | 0.15 | 0.66 | 8.48 | 0.69 | 0.00 | 30.21 | 3.32 | 14.88 | | 5911.75 | 233.30 | 0 | 0.98 | | 11 FRD | 0.36 | 0.22 | 1.65 | 0.26 | 0.38 | 587.87 | 0.50 | 8.71 | 10.35 | 71.01 | 0.92 | 0.70 | 0.73 | 0.09 | 0.09 | 0 | 0.66 | 13.81 | 1.21 | 7.92 | 1.47 | 0 | 0 | 0.99 | | 12 CAR | 11.74 | 37.79 | 2.74 | 0.12 | 13.41 | 59.89 | 12.04 | | 391.43 | 1.81 | 2.58 | 0.95 | 1.11 | 0.64 | 0 | 0 | 0 | 0.25 | 0 | 72.41 | 0 | 0 | 0 | 1.00 | | 13 HOW | 0.41 | 2.29 | 1.71 | 1.02 | 69.36 | 0.42 | 1.09 | 2.11 | 119.20 | 11.20 | 11.40 | 2.09 | 0.94 | 1.41 | 16.29 | 1.48 | 0.29 | 0.00 | 1.53 | | 2.45 | 0.75 | 0 | 1.00 | | 14 AAR | 3.23 | 0.95 | 0.63 | 0.98 | 6.90 | 4.06 | 24.23 | 2.52 | | | 0.17 | 159.80 | 1.09 | 0.99 | 1.82 | 210.10 | 0.63 | 4.08 | 25.00 | 3.11 | 13.82 | 8.92 | 0 | 1.00 | | 15 CAL | 0.22 | 1.00 | 302.47 | 1.13 | 99.21 | 360.97 | 561.191 | | 15.17 | 29.82 | U | 0 | 0.15 | 0.48 | 1.00 | 0.74 | 1.49 | 0.33 | 1.72 | 0 | 0.77 | 9.93 | 0 | 1.00 | | 16 STM | 0.54 | 0.60 | 61.01 | 0.69 | 80.63 | 286.19 | | | 14.22 | 21.17 | 0 | 0 | 4.70<br>0.21 | 0.16 | 0.68 | 0.97 | 1.36 | 0.12 | 0.03 | 0 | | 254.46 | 0 | 0.98 | | 17 CHS<br>18 FAU | 0.37<br>47.65 | 0.44 | 1.60 | 10.24 | 0.43 | 1.49 | 1.59<br>32.99 | 14.81 | 0.46 | 174.68 | 1.96 | 0.03 | 0.21 | 1.77 | 0.03 | 0.93 | 2.90 | | 23.69<br>1254.96 | 0 | 0.08 | 2.87 | 0 <br>0 | 0.99<br>0.99 | | 18 FAU<br>19 STA | 40.07 | 30.72 | 0.06 | 4.93 | 0.06 | 0.35 | 234.88 | 3.26 | 38.94 | 0.90 | 1.96 | 0.03 | 0.45 | 0.18 | 0.03 | 0.14 | 1.18 | | 1.25 | 0.07 | | 358.95 | 0 | 0.99 | | 20 CL/JF | 2.67 | 10.94 | 10.06 | 1.64 | 8.09 | 34.24 | 5.65 | 2.95 | 1.63 | 4.01 | 1.67 | 20.14 | 1.09 | 2.17 | 0 | 0.14 | | 501.51 | 0.42 | 0.89 | 0.41 | 330.93 | 0 | 1.05 | | 21 SP/FB | 15.86 | 9.58 | 0.10 | 0.39 | 0.02 | 157.69 | 220.03 | 4.23 | 22.22 | 0.71 | 1.07 | 0 | 1.05 | 0.02 | 0 | 0 | | 234.00 | 0.79 | 0.00 | 1.17 | 0.46 | 0 1 | 1.10 | | 22 KGEO | 0.84 | 0.02 | 0.55 | 28.73 | 3.45 | 16.05 | 45.47 | 4.72 | | 693.33 | 0 | 0 | 0.02 | 0.19 | 2.62 | 11.62 | 383.90 | 45.47 | 0.87 | 0 | 0.50 | 1.02 | 0 1 | 0.99 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ō i | 0 | | ======= | | | .=====: | | .=====: | | | | | | | | | | | | | | | | .=====: | | ====== | ====== | | TOTAL | 1.21 | | 0.97 | | 2.93 | | 1.15 | | 0.96 | | 0.96 | | 0.97 | | 0.95 | | 1.05 | | 1.33 | | 1.03 | | 0 | | | | | 1.12 | | 0.99 | | 0.98 | | 0.98 | | 0.94 | | 0.96 | | 0.98 | | 0.96 | | 1.19 | | 1.06 | | 1.13 | | 1.00 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Est Auto Driver | | DESTIN | NATION | | | | | | | | | | | | | | | | | | | | | | | |------------------|-------------|--------------|--------------|---------------|-----------|-------------|------------|-------------|--------|----------|------------|-------|--------|---------------|---------------|-------|------------|-------|-------|-------|-------|-------|-----|-----------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 8518 | 6774 | 1089 | 517 | 182 | 781 | 439 | 1470 | 32 | 12 | 0 | 0 | 10 | 16 | 0 | 0 | 5 | 2 | 4 | 0 | 1 | 0 | 0 I | 19850 | | 2 DC NC | 40636 | 114636 | 20454 | 16392 | 1543 | 5670 | 3769 | 11569 | 277 | 145 | 17 | 1 | 384 | 494 | 21 | 4 | 151 | 15 | 57 | 1 | 30 | 1 | 0 | 216268 | | 3 MTG | 9564 | 30256 | 544183 | 25631 | 568 | 2369 | 884 | 7822 | 397 | 69 | 4374 | 1124 | 6197 | 3212 | 57 | 14 | 212 | 34 | 124 | 238 | 172 | 11 | 0 | 637513 | | 4 PG | 11556 | 51925 | 36104 | 315072 | 1130 | 4313 | 5930 | 13940 | 251 | 238 | 13 | 18 | 6415 | 9816 | 1005 | 516 | 7371 | 20 | 154 | 0 | 83 | 72 | 0 | 465941 | | 5 ARLCR | 88 | 308 | 101 | 40 | 951 | 1817 | 316 | 824 | 22 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 4487 | | 6 ARNCR | 4059 | 6752 | 2114 | 1189 | 10261 | 55415 | 8371 | 22379 | 468 | 411 | 3 | 0 | 4 | 19 | 1 | 1 | 17 | 17 | 93 | 1 | 88 | 3 | 0 | 111666 | | 7 ALX | 2216 | 3347 | 600 | 1140 | 2107 | 7999 | 34964 | 16640 | 179 | 486 | 0 | 0 | 1 | 11 | 1 | 5 | 41 | 8 | 116 | 0 | 96 | 5 | 0 | 69963 | | 8 FFX | 13311 | 19177 | 8744 | 7574 | 5391 | 27786 | | 569871 | 13112 | 13018 | 79 | 7 | 60 | 188 | 29 | 36 | 384 | 832 | 2594 | 165 | 2840 | 151 | 0 | 713882 | | 9 LDN | 1170 | 1521 | 1139 | 579 | 303 | 1368 | 692 | 19410 | 128076 | 1274 | 1214 | 80 | 16 | 32 | 1 | 0 | 26 | 555 | 144 | 4998 | 223 | 5 | 0 | 162827 | | 10 PW | 818 | 1055 | 317 | 346 | 336 | 1488 | 1878 | 26142 | | 204422 | 5 | 0 | 0 | - 5 | 0 | 0 | 19 | 3644 | 5832 | 80 | 4067 | 137 | 0 | 252312 | | 11 FRD | 96 | 185 | 12871 | 77 | 66 | 311 | 94 | 2728 | 3980 | 38 | 113598 | 5276 | 1748 | 156 | 0 | 0 | 0 | 8 | 1 | 1855 | 1 | 0 | 0 | 143086 | | 12 CAR | 7 | 21 | 3249 | 57 | -/ | 30 | 6 | 265 | 195 | 1 | 2671 | 84807 | 3566 | 171 | 10 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | 95095 | | 13 HOW | 273 | 1170<br>3583 | 8308<br>4577 | 6126<br>13386 | 41 | 166<br>1004 | 101<br>947 | 763 | 64 | 6 | 1105<br>36 | | 140155 | 11358 | 10 | 122 | 24 | 1 | 1.4 | 60 | 2 | 0 | 0 | 172771 | | 14 AAR<br>15 CAL | 1165<br>117 | 286 | 149 | 1020 | 282<br>52 | 183 | 280 | 2929<br>736 | 135 | 80<br>15 | 36 | 94 | 14456 | 278568<br>862 | 2130<br>54821 | 1326 | 254<br>437 | 0 | 14 | 0 | 0 | 5 | 0 1 | 323779<br>60316 | | 16 STM | 61 | 134 | 29 | 759 | 39 | 137 | 329 | 680 | 7 | 11 | 0 | 0 | 10 | 41 | 2676 | 48317 | 4575 | 0 | ο 1 | 0 | 11 | 148 | 0 1 | 57964 | | 17 CHS | 363 | 829 | 239 | 3060 | 166 | 646 | 1240 | 3347 | 59 | 95 | 0 | 0 | 17 | 62 | 1084 | 1729 | 69267 | 2 | 14 | 0 | 13 | 494 | 0 | 82723 | | 18 FAU | 30 | 26 | 12 | 5000 | 7 | 30 | 19 | 1384 | 411 | 1854 | 1 | 0 | 1, | 1 | 1001 | 1,25 | 2 | 25594 | 754 | 106 | 378 | 12 | 0 1 | 30626 | | 19 STA | 24 | 18 | 13 | 3 | 17 | 78 | 119 | 1515 | 19 | 2713 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 487 | 53511 | 0 | 8212 | 218 | 0 | 66948 | | 20 CL/JF | 1 | 5 | 728 | 1 | 4 | 15 | 2 | 1010 | 4360 | 159 | 598 | 11 | 40 | 1 | 0 | 0 | 0 | 280 | 0 | 25423 | 0 | 0 | 0 | 32638 | | 21 SP/FB | 5 | 3 | 9 | 0 | 12 | 65 | 98 | 1430 | 9 | 1341 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 127 | 6012 | 0 | 60419 | 71 | 0 | 69601 | | 22 KGEO | 0 | 2 | 0 | 13 | 2 | 7 | 20 | 249 | 1 | 331 | 0 | 0 | 0 | 0 | 1 | 7 | 208 | 23 | 1272 | 0 | 964 | 9403 | 0 | 12502 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 94078 | | 645030 | | 23465 | | 89029 | | 153778 | | 123713 | | 173088 | | 61839 | | 82997 | | 70706 | | 77610 | | 0 l | :===== | | | | 242012 | | 392988 | | 111678 | | 707104 | | 226735 | | 94455 | | 305014 | | 52078 | | 31651 | | 32970 | | 10743 | | 3802760 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Obs Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|------|--------|-------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|--------|-------|-------|------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | | | | | | | | | | | | | | | | | | | | | | ====== | | 1 DC CR | 3799 | 5043 | 577 | 430 | 0 | 700 | 713 | 713 | 0 | 0 | 0 | 0 | 382 | 349 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12705 | | 2 DC NC | | 117670 | 26270 | 10268 | 423 | 4076 | 1734 | 6887 | 1775 | 169 | 0 | 0 | 196 | 423 | 185 | 0 | 92 | 0 | 0 | 0 | 185 | 0 | 0 | 204337 | | 3 MTG | 10983 | 28524 | 563417 | 15426 | 303 | 1081 | 1310 | 12097 | 3337 | 0 | 2729 | 476 | 4446 | 2423 | 0 | 0 | 232 | 0 | 0 | 0 | 620 | 0 | 0 | 647404 | | 4 PG | 9285 | 38281 | | 326207 | 0 | 2721 | 2359 | 4722 | 929 | 681 | 0 | 351 | 5104 | 15367 | 3753 | 0 | 5923 | 0 | 0 | 0 | 0 | 0 | 0 | 452204 | | 5 ARLCR | 0 | 209 | 105 | 0 | 420 | 1180 | 204 | 427 | 0 | 0 | 0 | 0 | 0 | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2770 | | 6 ARNCR | 8491 | 4871 | 2205 | 204 | 3202 | 72730 | 6414 | 19143 | 206 | 210 | 0 | 0 | 556 | 0 | 0 | 0 | 522 | 102 | 0 | 0 | 0 | 0 | 0 | 118856 | | 7 ALX | 3143 | 1836 | 762 | 343 | 528 | 7513 | 43536 | 16648 | 399 | 0 | 0 | 0 | 0 | 367 | 0 | 0 | 0 | 266 | 0 | 0 | 0 | 0 | 0 | 75340 | | 8 FFX | 9777 | 7902 | 7954 | 4337 | 808 | 24462 | | 625837 | 14802 | 12689 | 980 | 0 | 236 | 383 | 0 | 0 | 0 | 0 | 553 | 471 | 119 | 0 | 0 | 733063 | | 9 LDN | 1938 | 464 | 2449 | 0 | 0 | 1675 | 929 | | 120655 | 256 | 586 | 0 | 0 | 293 | 0 | 0 | 0 | 1676 | 0 | 256 | 0 | 0 | 0 | 152678 | | 10 PW | 465 | 465 | 1461 | 186 | 318 | 4198 | 1833 | 23908 | | 212660 | 0 | 0 | 0 | 0 | 0 | 98 | 0 | 1392 | 555 | 0 | 0 | 0 | 0 | 250683 | | 11 FRD | 450 | 1208 | 7933 | 505 | 322 | 0 | 360 | 627 | 701 | 0 | 121398 | 6331 | 2524 | 1347 | 0 | 0 | 0 | 0 | 0 | 395 | 0 | 0 | 0 | 144101 | | 12 CAR | 0 | 0 | 1409 | 706 | 0 | 0 | 0 | 99 | 0 | 0 | 984 | 84806 | 3696 | 490 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 92191 | | 13 HOW | 397 | 838 | 5590 | 6337 | 0 | 413 | 163 | 673 | 0 | 0 | 163 | 1147 | 143757 | 9933 | 0 | 0 | 138 | 570 | 0 | 0 | 0 | 0 | 0 | 170119 | | 14 AAR | 409 | 3478 | 7698 | 14600 | 72 | 448 | 72 | 857 | 0 | 0 | 372 | 0 | 13902 | 291531 | 1523 | 0 | 679 | 0 | 0 | 0 | 0 | 0 | 0 | 335640 | | 15 CAL | 498 | 256 | 0 | 1366 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 239 | 1606 | 49297 | 2517 | 256 | 0 | 0 | 0 | 0 | 0 | 0 | 56035 | | 16 STM | 230 | 448 | 0 | 1648 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 263 | 2960 | 50085 | 4437 | 0 | 459 | 0 | 0 | 0 | 0 | 60529 | | 17 CHS | 1531 | 2207 | 289 | 7754 | 695 | 587 | 186 | 436 | 251 | 0 | 0 | 0 | 145 | 500 | 1731 | 2375 | 67361 | 0 | 0 | 0 | 145 | 145 | 0 | 86340 | | 18 FAU | 0 | 577 | 334 | 0 | 215 | 0 | 0 | 2008 | 1158 | 2632 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25028 | 0 | 1323 | 0 | 0 | 0 | 33276 | | 19 STA | 0 | 0 | 131 | 0 | 131 | 451 | 0 | 783 | 0 | 4422 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41803 | 0 | 18880 | 0 | 0 | 66602 | | 20 CL/JF | 0 | 0 | 157 | 0 | 0 | 0 | 0 | 732 | 3202 | 79 | 522 | 0 | 79 | 0 | 0 | 0 | 0 | 0 | 0 | 30054 | 0 | 0 | 0 | 34825 | | 21 SP/FB | 0 | 0 | 297 | 0 | 1135 | 0 | 0 | 734 | 0 | 2117 | 0 | 0 | 0 | 0 | 0 | 308 | 0 | 0 | 7705 | 308 | 52653 | 129 | 0 | 65387 | | 22 KGEO | 0 | 164 | 0 | 0 | 0 | 0 | 0 | 118 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1735 | 0 | 2366 | 9444 | 0 | 13827 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ======= | | ====== | | | | | | ====== | ====== | | | ====== | | ====== | | | | | ====== | | | | | | | TOTAL | 85380 | | 665562 | | 8572 | | 81567 | | 150559 | | 127732 | | 175260 | | 59448 | | 79640 | | 52809 | | 74968 | | 0 | | | | | 214442 | | 390316 | | 122235 | | 738953 | | 235915 | | 93111 | | 325500 | | 55383 | | 29033 | | 32808 | | 9718 | | 3808912 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Difference (Est-Obs) Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|----------------|-------|--------|--------|-------|--------|-------|--------|--------|-------|-------|-------|-----------------|--------|-------|-------|------|-------|-------|-------|--------|------|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | | | | | | | ====== | | | | | | | | | | | | | | | ====== | | 1 DC CR | 4719 | 1731 | 512 | 87 | 182 | 81 | -274 | 757 | 32 | 12 | 0 | 0 | -372 | -334 | 0 | 0 | 5 | 2 | 4 | 0 | 1 | 0 | 0 | 7144 | | 2 DC NC | 6651 | -3034 | -5816 | 6124 | 1120 | 1594 | 2034 | 4682 | -1498 | -24 | 17 | 1 | 188 | 72 | -163 | 4 | 59 | 15 | 57 | 1 | -154 | 1 | 0 | 11930 | | 3 MTG | -1419 | | -19234 | 10206 | 265 | 1288 | -426 | -4275 | -2940 | 69 | 1645 | 648 | 1750 | 789 | 57 | 14 | -20 | 34 | 124 | 238 | -448 | 11 | 0 | -9891 | | 4 PG | 2271 | 13644 | -417 | -11135 | 1130 | 1592 | 3570 | 9218 | -678 | -442 | 13 | -334 | 1311 | -5551 | -2747 | 516 | 1448 | 20 | 154 | 0 | 83 | 72 | 0 | 13737 | | 5 ARLCR | 88 | 99 | -4 | 40 | 531 | 637 | 112 | 397 | 22 | 15 | 0 | 0 | 0 | -225 | 0 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 1717 | | 6 ARNCR | -4433 | 1881 | -91 | 985 | | -17315 | 1957 | 3236 | 262 | 201 | 3 | 0 | -552 | 19 | 1 | 1 | -504 | -84 | 93 | 1 | 88 | 3 | 0 | -7190 | | 7 ALX | -927 | 1511 | -162 | 798 | 1579 | 487 | -8573 | -7 | -220 | 486 | 0 | 0 | 1 | -356 | 1 | 5 | 41 | -258 | 116 | 0 | 96 | 5 | 0 | -5376 | | 8 FFX | 3535 | 11274 | 790 | 3237 | 4583 | 3324 | | -55966 | -1690 | 329 | -901 | 7 | -175 | -194 | 29 | 36 | 384 | 832 | 2041 | -306 | 2721 | 151 | 0 | -19180 | | 9 LDN | -768 | 1058 | -1310 | 579 | 303 | -307 | -238 | -2094 | 7422 | 1019 | 629 | 80 | 16 | -260 | 1 | 0 | 26 | -1121 | 144 | 4742 | 223 | 5 | 0 | 10149 | | 10 PW | 353 | 590 | -1144 | 160 | 18 | -2710 | 45 | 2235 | -1427 | -8238 | 5 | 0 | 0 | 5 | 0 | -98 | 19 | 2252 | 5277 | 80 | 4067 | 137 | 0 | 1629 | | 11 FRD | -354 | -1023 | 4938 | -428 | -256 | 311 | -267 | 2101 | 3279 | 38 | -7800 | -1055 | -776 | -1191 | 0 | 0 | 0 | 8 | 1 | 1460 | 1 | 0 | 0 | -1015 | | 12 CAR | 7 | 21 | 1840 | -649 | 7 | 30 | 6 | 165 | 195 | 1 | 1687 | 1 | -129 | -319 | 0 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | 2905 | | 13 HOW | -124 | 332 | 2718 | -212 | 41 | -247 | -62 | 91 | 64 | 6 | 942 | 1891 | -3603 | 1425 | 10 | 1 | -114 | -569 | 1 | 60 | 2 | 0 | 0 | 2652 | | 14 AAR | 756 | 106 | -3122 | -1214 | 210 | 555 | 875 | 2072 | 135 | 80 | -336 | 94 | 554 | -12963 | 607 | 122 | -424 | 2 | 14 | 2 | 8 | 5 | 0 | -11861 | | 15 CAL | -381 | 30 | 149 | -346 | 52 | 183 | 280 | 736 | 7 | 15 | 0 | 0 | -221 | -744 | 5523 | -1191 | 181 | 0 | 1 | 0 | 0 | 6 | 0 | 4281 | | 16 STM | -169 | -314 | 29 | -889 | 39 | 137 | 329 | 680 | 7 | 11 | 0 | 0 | 2 | -222 | -284 | -1768 | 138 | 0 | -452 | 0 | 11 | 148 | 0 | -2565 | | 17 CHS | -1168 | -1379 | -50 | -4694 | -530 | 59 | 1054 | 2910 | -192 | 95 | 0 | 0 | -128 | -439 | -646 | -646 | 1905 | 2 | 14 | 0 | -131 | 349 | 0 | -3616 | | 18 FAU | 30 | -552 | -323 | 6 | -208 | 30 | 19 | -624 | -747 | -778 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 566 | 754 | -1217 | 378 | 12 | 0 | -2649 | | 19 STA | 24 | 18 | -118 | 3 | -114 | -373 | 119 | 732 | 19 | -1709 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 487 | 11708 | 0 | -10668 | 218 | 0 j | 346 | | 20 CL/JF | 1 | 5 | 571 | 1 | 4 | 15 | 2 | 278 | 1158 | 80 | 76 | 11 | -39 | 1 | 0 | 0 | 0 | 280 | 0 | -4631 | 0 | 0 | 0 j | -2187 | | 21 SP/FB | 5 | 3 | -288 | 0 | -1122 | 65 | 98 | 696 | 9 | -776 | 0 | 0 | 0 | 0 | 0 | -308 | 0 | 127 | -1694 | -308 | 7766 | -58 | 0 j | 4214 | | 22 KGEO | 0 | -162 | 0 | 13 | 2 | 7 | 20 | 131 | 1 | 331 | 0 | 0 | 0 | 0 | 1 | 7 | 208 | 23 | -463 | 0 | -1403 | -42 | 0 j | -1326 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0 | | TOTAL | ======<br>8698 | | -20532 | | 14892 | | 7462 | ====== | 3219 | | -4019 | | -=====<br>-2172 | | 2391 | | 3356 | | 17897 | | 2642 | | 0 l | ====== | | | | 27570 | | 2672 | | -10557 | | -31849 | | -9180 | | 1345 | | -20486 | | -3305 | | 2618 | | 163 | | 1025 | - 1 | -6152 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Ratio (Est/Obs) Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|---------|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 2.24 | 1.34 | 1.89 | 1.20 | 181.51 | 1.12 | 0.62 | 2.06 | 32.19 | 11.84 | 0.02 | 0 | 0.02 | 0.04 | 0.12 | 0.20 | 4.79 | 1.53 | 4.15 | 0 | 1.40 | 0 | <br> 0 | 1.56 | | 2 DC NC | 1.20 | 0.97 | 0.78 | 1.60 | 3.65 | 1.39 | 2.17 | 1.68 | 0.16 | 0.86 | 16.74 | 1.22 | 1.96 | 1.17 | 0.11 | 3.78 | 1.64 | 15.40 | 57.09 | 0.52 | 0.16 | 0.96 | o i | 1.06 | | 3 MTG | 0.87 | 1.06 | 0.97 | 1.66 | 1.87 | 2.19 | 0.67 | 0.65 | 0.12 | 69.30 | 1.60 | 2.36 | 1.39 | 1.33 | 57.44 | 14.40 | 0.92 | 33.99 | 123.99 | 238.49 | 0.28 | 11.06 | 0 | 0.98 | | 4 PG | 1.24 | 1.36 | 0.99 | 0.971 | 130.06 | 1.59 | 2.51 | 2.95 | 0.27 | 0.35 | 12.76 | 0.05 | 1.26 | 0.64 | 0.27 | 516.11 | 1.24 | 20.09 | 153.52 | 0 | 82.92 | 72.29 | 0 | 1.03 | | 5 ARLCR | 88.34 | 1.47 | 0.96 | 39.99 | 2.26 | 1.54 | 1.55 | 1.93 | 21.96 | 14.98 | 0 | 0 | 0.02 | 0.00 | 0 | 0 | 0.20 | 0.33 | 2.64 | 0 | 1.78 | 0.04 | 0 | 1.62 | | 6 ARNCR | 0.48 | 1.39 | 0.96 | 5.84 | 3.20 | 0.76 | 1.31 | 1.17 | 2.27 | 1.96 | 2.68 | 0 | 0.01 | 18.74 | 0.56 | 1.11 | 0.03 | 0.17 | 93.27 | 0.98 | 87.64 | 2.87 | 0 | 0.94 | | 7 ALX | 0.71 | 1.82 | 0.79 | 3.33 | 3.99 | 1.06 | 0.80 | 1.00 | 0.45 | 486.19 | 0 | 0 | 1.02 | 0.03 | 1.36 | 4.51 | 41.18 | 0.03 | 116.27 | 0.02 | 95.85 | 5.07 | 0 | 0.93 | | 8 FFX | 1.36 | 2.43 | 1.10 | 1.75 | 6.67 | 1.14 | 1.31 | 0.91 | 0.89 | 1.03 | 0.08 | 6.93 | 0.26 | 0.49 | 28.85 | 36.44 | 384.37 | 832.31 | 4.69 | 0.35 | 23.88 | 150.89 | 0 | 0.97 | | 9 LDN | 0.60 | 3.28 | 0.47 | 579.25 | 303.31 | 0.82 | 0.74 | 0.90 | 1.06 | 4.98 | 2.07 | 79.78 | 16.01 | 0.11 | 0.82 | 0.13 | 26.48 | 0.33 | 143.86 | 19.54 | 222.62 | 5.34 | 0 | 1.07 | | 10 PW | 1.76 | 2.27 | 0.22 | 1.86 | 1.06 | 0.35 | 1.02 | 1.09 | 0.55 | 0.96 | 5.34 | 0.10 | 0.44 | 5.32 | 0.46 | 0.00 | 19.35 | 2.62 | 10.51 | 80.204 | 067.29 | 137.29 | 0 | 1.01 | | 11 FRD | 0.21 | 0.15 | 1.62 | 0.15 | 0.20 | 310.90 | 0.26 | 4.35 | 5.68 | 37.88 | 0.94 | 0.83 | 0.69 | 0.12 | 0.06 | 0 | 0.42 | 7.52 | 0.62 | 4.70 | 0.86 | 0 | 0 | 0.99 | | 12 CAR | 7.02 | 20.93 | 2.31 | 0.08 | 7.09 | 30.17 | 6.40 | | 195.43 | 0.87 | 2.71 | 1.00 | 0.96 | 0.35 | 0 | 0 | 0 | 0.13 | 0 | 41.10 | 0 | 0 | 0 | 1.03 | | 13 HOW | 0.69 | 1.40 | 1.49 | 0.97 | 40.70 | 0.40 | 0.62 | 1.13 | 63.69 | 6.07 | 6.80 | 2.65 | 0.97 | 1.14 | 9.99 | 0.95 | 0.17 | 0.00 | 0.91 | 60.07 | 1.51 | 0.46 | 0 | 1.02 | | 14 AAR | 2.85 | 1.03 | 0.59 | 0.92 | 3.92 | 2.24 | 13.16 | | 134.51 | 80.26 | 0.10 | 93.87 | 1.04 | 0.96 | 1.40 | 122.08 | 0.37 | 2.15 | 13.66 | 1.72 | 7.66 | 5.20 | 0 | 0.96 | | 15 CAL | 0.24 | 1.12 | 148.77 | 0.75 | | 182.50 | | 735.97 | 7.35 | 15.34 | 0 | 0 | 0.07 | 0.54 | 1.11 | 0.53 | 1.71 | 0.18 | 0.98 | 0 | 0.47 | 5.86 | 0 | 1.08 | | 16 STM | 0.27 | 0.30 | 29.19 | 0.46 | | | 329.30 | | 7.21 | 10.63 | 0 | 0 | 2.45 | 0.16 | 0.90 | 0.96 | 1.03 | 0.06 | 0.02 | 0 | 10.80 | | 0 | 0.96 | | 17 CHS | 0.24 | 0.38 | 0.83 | 0.39 | 0.24 | 1.10 | 6.66 | 7.67 | 0.23 | 94.72 | 0 | 0 | 0.12 | 0.12 | 0.63 | 0.73 | 1.03 | 1.52 | 13.53 | 0 | 0.09 | 3.41 | 0 | 0.96 | | 18 FAU | 29.89 | 0.04 | 0.03 | 6.42 | 0.03 | 30.07 | 19.03 | 0.69 | 0.35 | 0.70 | 1.23 | 0.02 | 0.28 | 1.10 | 0.02 | 0 | 1.78 | 1.02 | | 0.08 | 377.81 | 12.10 | 0 | 0.92 | | 19 STA | 23.64 | 18.41 | 0.10 | 3.08 | 0.13 | 0.17 | 118.74 | 1.93 | 18.87 | 0.61 | 0 | 0 | 0 | 0.11 | 0 | 0.09 | | 487.33 | 1.28 | 0 | | 218.40 | 0 | 1.01 | | 20 CL/JF | 1.20 | 4.57 | 4.63 | 0.61 | 3.65 | 15.06 | 2.30 | 1.38 | 1.36 | 2.02 | 1.15 | 10.88 | 0.50 | 1.06 | 0 | 0 | | 279.77 | 0.25 | 0.85 | 0.48 | 0 | 0 | 0.94 | | 21 SP/FB | 5.49 | 2.85 | 0.03 | 0.09 | 0.01 | 65.27 | 97.52 | 1.95 | 9.11 | 0.63 | 0 | 0 | 0 | | | . 0 | | 126.61 | 0.78 | 0 | 1.15 | 0.55 | 0 | 1.06 | | 22 KGEO | 0.19 | 0.01 | 0.14 | 12.87 | 1.64 | 6.79 | 19.81 | 2.11 | 0.59 | 330.83 | 0 | 0 | 0 | 0.09 | 1.39 | 6.80 | 208.33 | 23.36 | 0.73 | 0 | 0.41 | 1.00 | 0 | 0.90 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0<br> | 0 | 0 | 0 | 0 | 0<br> | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.10 | | 0.97 | | 2.74 | | 1.09 | | 1.02 | | 0.97 | | 0.99 | | 1.04 | | 1.04 | | 1.34 | | 1.04 | | 0 | | | | | 1.13 | | 1.01 | | 0.91 | | 0.96 | | 0.96 | | 1.01 | | 0.94 | | 0.94 | | 1.09 | | 1.00 | | 1.11 | | 1.00 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Est Motr Psn | | DESTIN | IATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|------------|--------|--------|-------|-------|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | ====== | ====== | | | | | ====== | ====== | | | ====== | | | ====== | ====== | | | | ====== | ====== | | ===== | | | 1 DC CR | 18211 | 15144 | 2343 | 897 | 770 | 2087 | 926 | 2733 | 56 | 20 | 0 | 0 | 15 | 25 | 0 | 0 | 8 | 3 | 6 | 0 | 2 | 0 | 0 | 43246 | | 2 DC NC | | 217156 | 39627 | 28262 | 4280 | 12482 | 7348 | 20910 | 493 | 252 | 27 | 2 | 652 | 831 | 33 | 6 | 246 | 27 | 93 | 1 | 48 | 2 | 0 | 428063 | | 3 MTG | 20217 | | | | 1166 | 4065 | 1491 | 13626 | 693 | 174 | 7260 | 1873 | 10279 | 5368 | 93 | 23 | 351 | 59 | 207 | 410 | 292 | 18 | 0 | 1071198 | | 4 PG | 27624 | 89654 | 64315 | | 2576 | 8111 | 10467 | 25100 | 461 | 458 | 20 | 28 | 10782 | 16350 | 1670 | 867 | 12079 | 38 | 261 | 0 | 138 | 123 | 0 | 791557 | | 5 ARLCR | 721 | 559 | 183 | 66 | 1612 | 3485 | 584 | 1460 | 39 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 3 | 0 | 0 | 8743 | | 6 ARNCR | 12905 | 11473 | 3579 | 1937 | 17144 | 94546 | 14465 | 38046 | 813 | 705 | 4 | 0 | 6 | 30 | 1 | 2 | 28 | 29 | 154 | 1 | 147 | 4 | 0 | 196019 | | 7 ALX | 5584 | 5640 | 1036 | | 3534 | 13972 | 59301 | 28388 | 320 | 832 | 0 | 0 | 2 | 17 | 2 | 7 | 67 | 14 | 196 | 0 | 163 | 8 | 0 | 120936 | | 8 FFX | 26270 | 31412 | 14610 | 12492 | 9005 | 46660 | | 940107 | 21646 | 21773 | 129 | 11 | 100 | 308 | 51 | 64 | 635 | 1397 | 4390 | 283 | 4907 | 257 | 0 | 1184507 | | 9 LDN | 2123 | 2510 | 1908 | 954 | 510 | 2293 | 1169 | | 208448 | 2179 | 2003 | 133 | 25 | 54 | 1 | 0 | 43 | 923 | 246 | 8312 | 391 | 9 | 0 | 266841 | | 10 PW | 1564 | 1844 | 695 | 645 | 600 | 2669 | 3366 | 45730 | | 332693 | 10 | 0 | 8 | 12 | 11 | 8 | 43 | 6027 | 9722 | 135 | 6933 | 233 | 0 | 415930 | | 11 FRD | 170 | 322 | 23334 | 130 | 125 | 589 | 179 | 5470 | 7257 | 75 | 185266 | 8699 | 3097 | 273 | 0 | 0 | 1 | 14 | 1 | 3130 | 1 | 0 | 0 | 238134 | | 12 CAR | 12 | 38 | 6224 | 108 | 13 | 60 | 12 | 536 | 391 | 2 | 4568 | 137187 | 6340 | 314 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 155878 | | 13 HOW | 551 | 1943 | 13978 | | 85 | 297 | 178 | 1515 | 119 | 57 | 1854 | 4997 | 227531 | 18705 | 16 | 1 | 40 | 1 | 2 | 105 | 2 | 1 | 0 | 282082 | | 14 AAR | 2342 | 6126 | 8182 | | 584 | 1875 | 1751 | 5989 | 263 | 214 | 62 | 160 | 24505 | | 3514 | 210 | 430 | 4 | 25 | 3 | 14 | 9 | 0 | 532046 | | 15 CAL | 224 | 516 | 303 | 1819 | 102 | 363 | 562 | 1520 | 15 | 32 | 0 | 0 | 35 | 1475 | 88669 | 2214 | 766 | 0 | 2 | 0 | 1 | 10 | 0 | 98627 | | 16 STM | 124 | 271 | 61 | 1498 | 81 | 286 | 702 | 1421 | 14 | 21 | 0 | 0 | 5 | 85 | 4608 | 78576 | 8153 | 0 | 14 | 0 | 20 | 254 | 0 | 96194 | | 17 CHS | 730 | 1443 | 465 | | 334 | 1232 | 2296 | 6493 | 114 | 194 | 0 | 0 | 31 | 109 | 1793 | 2861 | 112296 | 3 | 24 | | 23 | 831 | 0 | 136393 | | 18 FAU | 48 | 41 | 19 | 10 | 12 | 50 | 33 | 2616 | 724 | 3175 | 2 | 0 | 0 | 2 | 0 | 0 | 3 | 41673 | 1255 | 177 | 639 | 20 | 0 | 50501 | | 19 STA | 40 | 31 | 29 | 5 | 33 | 158 | 235 | 2984 | 39 | 4673 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 820 | 86608 | 0 | 13491 | 359 | 0 | 109504 | | 20 CL/JF | 3 | 11 | 1582 | 2 | 8 | 34 | 6 | 2159 | 8311 | 315 | 1092 | 20 | 86 | 2 | 0 | 0 | 0 | 502 | 0 | 41324 | 1 | 0 | 0 | 55456 | | 21 SP/FB | 16 | 10 | 31 | 0 | 27 | 158 | 220 | 3133 | 22 | 2571 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 234 | 10092 | 0 | 97939 | 118 | 0 | 114571 | | 22 KGEO | 1 | 4 | 1 | 29 | 3 | 16 | 45 | 561 | 1 | 693 | 0 | 0 | 0 | 0 | 3 | 12 | 384 | 45 | 2225 | 0 | 1683 | 15216 | 0 | 20922 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | | | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 1 0 | | TOTAL | 214763 | 1 | .092461 | | 42606 | | 153337 | | 253224 | | 202296 | | 283496 | | 100468 | | 135572 | | <br>115525 | | 126839 | | 0 | <br> | | | | 437276 | | 651320 | | 195488 | | 183105 | | 371133 | | 153111 | | 497237 | | 84852 | | 51813 | | 53953 | | 17471 | | 6417348 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Obs Motr Psn | | DESTIN | NATION | | | | | | | | | | | | | | | | | | | | | | | |---------------------|---------|--------|------------|---------|--------|---------|--------|------------|--------|------------|--------|--------------|--------|--------|---------|--------|--------------|--------|------------|------------|--------|--------|-------|-----------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 10209 | 11564 | 1196 | <br>645 | 382 | 2050 | 713 | 928 | 191 | | | .======<br>0 | 382 | 564 | 0 | | .======<br>0 | 0 | 0 | 0 | 0 | 0 | 0 | 28822 | | 2 DC NC | | 255172 | 47219 | 17214 | 704 | 7854 | 2846 | 12095 | 3229 | 169 | 0 | 0 | 196 | 630 | 185 | 0 | 353 | 0 | 0 | 0 | 185 | 0 | 0 | 433063 | | 3 MTG | 26960 | | 935341 | 21283 | 1222 | 1845 | 1860 | 15731 | 3807 | 620 | 4654 | 476 | 6388 | 3353 | 0 | 0 | 232 | 0 | ō | Ō | 1860 | 0 | ō | 1073157 | | 4 PG | 23861 | 64587 | 65648 | 571362 | 608 | 5928 | 5901 | 7321 | 1495 | 681 | 0 | 532 | 8529 | 23459 | 5711 | 0 | 11760 | 0 | 0 | 0 | 0 | 0 | 0 | 797383 | | 5 ARLCR | 1146 | 209 | 105 | 0 | 630 | 1835 | 204 | 539 | 0 | 0 | 0 | 0 | 0 | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4894 | | 6 ARNCR | 21016 | 8606 | 2822 | 407 | 6611 | 118046 | 8868 | 28130 | 206 | 210 | 0 | 0 | 556 | 0 | 0 | 0 | 522 | 102 | 0 | 0 | 0 | 0 | 0 | 196102 | | 7 ALX | 5551 | 4218 | 946 | 709 | 1284 | 8825 | 69291 | 25169 | 399 | 0 | 0 | 0 | 0 | 1100 | 0 | 0 | 0 | 266 | 0 | 0 | 0 | 0 | 0 | 117758 | | 8 FFX | 21107 | 11823 | 12801 | 4337 | 1261 | 36911 | 341191 | 031201 | 20097 | 17297 | 980 | 0 | 236 | 383 | 0 | 0 | 0 | 0 | 1106 | 942 | 238 | 0 | 0 | 1194839 | | 9 LDN | 2733 | 543 | 2449 | 0 | 0 | 2751 | 929 | 33112 | 222103 | 549 | 1757 | 0 | 0 | 293 | 0 | 0 | 0 | 1676 | 0 | 256 | 0 | 0 | 0 | 269150 | | 10 PW | 1672 | 465 | 1883 | 186 | 318 | 6288 | 3962 | 41437 | 4198 | 358818 | 0 | 0 | 0 | 0 | 0 | 197 | 0 | 1813 | 653 | 0 | 0 | 0 | 0 | 421889 | | 11 FRD | 705 | 1431 | 14174 | 505 | 322 | 0 | 360 | 627 | 701 | 0 | 200636 | 12452 | 4260 | 2912 | 0 | 0 | 0 | 0 | 0 | 395 | 0 | 0 | 0 | 239481 | | 12 CAR | 0 | 0 | 2271 | 915 | 417 | 0 | 0 | 99 | 0 | 0 | 1769 | 144267 | 5689 | 490 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 155917 | | 13 HOW | 1953 | 1511 | 8149 | 9880 | 0 | 689 | 163 | 673 | 0 | 0 | 163 | 2395 | 242333 | 13234 | 0 | 0 | 138 | 570 | 0 | 0 | 0 | 0 | 0 | 281849 | | 14 AAR | 828 | 7052 | 12994 | 22934 | 72 | 448 | 72 | 2236 | 0 | 0 | 372 | 0 | 22521 | 460958 | 1930 | 0 | 679 | 0 | 0 | 0 | 0 | 0 | 0 | 533095 | | 15 CAL | 1493 | 512 | 0 | 1605 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 239 | 3063 | 88837 | 2994 | 512 | 0 | 0 | 0 | 0 | 0 | 0 | 99256 | | 16 STM | 230 | 448 | 0 | 2174 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 526 | 6793 | 81100 | 5996 | 0 | 459 | 0 | 0 | 0 | 0 | 97726 | | 17 CHS | 1718 | 3254 | 289 | 13259 | 695 | 809 | 1443 | 436 | 251 | 0 | 0 | 0 | 145 | 797 | 1731 | 3076 | 108914 | 0 | 0 | 0 | 289 | 289 | 0 | 137395 | | 18 FAU | 0 | 577 | 334 | 0 | 215 | 0 | 0 | 2008 | 2764 | 3514 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38959 | 0 | 2646 | 0 | 0 | 0 | 51018 | | 19 STA | 0 | 0 | 131 | 0 | 131 | 451 | 0 | 914 | - U | 6312 | 0 | 0 | - 0 | 0 | 0 | 0 | 0 | 0 | 69227 | 0<br>46227 | 33048 | 0 | 0 | 110215 | | 20 CL/JF | 0 | 0 | 157<br>297 | 0 | 1135 | 0 | 0 | 732<br>734 | 5110 | 79<br>3640 | 655 | 0 | 79 | 0 | 0 | 617 | 0 | 0 | 0<br>12776 | 617 | 83727 | 258 | 0 | 53038<br>103801 | | 21 SP/FB<br>22 KGEO | 0 | 164 | 297 | 0 | 1132 | 0 | 0 | 118 | 0 | 3040 | 0 | 0 | 0 | 0 | 0 | 017 | 0 | 0 | 2545 | 0<br>0 T \ | 3339 | 14891 | 0 | 21058 | | 23 EXTL | 0 | 104 | 0 | 0 | 0 | 0 | 0 | 110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2545 | 0 | 2222 | 14031 | 0 | 1 21036 | | 23 EAIL | ======= | | .====== | | .===== | .====== | ====== | .====== | .===== | | | | | | .====== | ====== | .====== | ====== | ====== | .===== | ====== | ====== | ===== | 0 | | TOTAL | 206192 | 1 | 109206 | | 16006 | | 130731 | | 264551 | | 210984 | | 291550 | | 105187 | | 129107 | | 86767 | | 122686 | | 0 | 1 | | | | 419664 | | 667414 | | 194731 | 1 | 204241 | | 391888 | | 160123 | | 511987 | | 87983 | | 43386 | | 51083 | | 15439 | | 6420904 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Difference (Est-Obs) Motorized Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |------------------|----------------|--------------|-----------|--------------|-------------|--------------|-------------|--------------|----------------|------------|--------|--------|--------|-------------|--------|--------|------------|------|-----------|--------|----------|---------|-----|---------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | ====== | ====== | ====== | .====== | ====== | :====== | ====== | | | ====== | ====== | ====== | | ====== | ====== | ====== | :=====: | | ====== | | ====== | :=====: | | | | 1 DC CR | 8002 | 3580 | 1147 | 253 | 388 | 37 | 213 | 1805 | -135 | 20 | 0 | 0 | -367 | -539 | 1.51 | 0 | 107 | 3 | 6 | 0 | 126 | 0 | 0 | 14423 | | 2 DC NC | 10271<br>-6743 | -38016 | -7592 | 11049 | 3576 | 4629 | 4502 | 8816 | -2736<br>-3114 | 83 | 27 | 2 | 455 | 200<br>2015 | -151 | 0 | -107 | 27 | 93<br>207 | 410 | -136 | 2 | 0 | -5000 | | 3 MTG | | | -25383 | 21162 | -55 | 2220 | -368 | -2104 | | -446 | 2606 | 1397 | 3891 | | 93 | 23 | 119 | 59 | | 410 | -1568 | 18 | 0 | -1959 | | 4 PG | 3763<br>-424 | 25067<br>350 | -1333 | -50926 | 1968<br>982 | 2183<br>1650 | 4566<br>380 | 17780<br>920 | -1035 | -223<br>26 | 20 | -504 | 2253 | -7109 | -4041 | 867 | 319 | 38 | 261 | 0 | 138 | 123 | 0 | -5826<br>3849 | | 5 ARLCR | | 2867 | 78<br>757 | 1520 | 10533 | -23500 | 5597 | 920 | 39<br>606 | 495 | 0 | 0 | -550 | -225<br>30 | 1 | 0 | 404 | -73 | 154 | 1 | 3<br>147 | 0 | 0 1 | -84 | | 6 ARNCR<br>7 ALX | -8110<br>33 | 1422 | 90 | 1529<br>1144 | 2250 | 5147 | -9990 | 3218 | -79 | 832 | 4 | 0 | -550 | -1083 | J. | 2 | -494<br>67 | -252 | 196 | ,<br>T | 163 | 4 | 0 1 | 3178 | | 8 FFX | 5163 | 19589 | 1809 | 8155 | 7745 | 9748 | 13882 | -91094 | 1549 | 4476 | -851 | 11 | -136 | -1083 | E 1 | 64 | 635 | 1397 | 3284 | -660 | 4669 | 257 | 0 1 | -10332 | | 9 LDN | -610 | 1967 | -541 | 954 | 510 | -458 | 240 | | -13655 | 1630 | 246 | 133 | 25 | -239 | 1 | 04 | 43 | -753 | 246 | 8056 | 391 | 237 | 0 1 | -2310 | | 10 PW | -010 | 1378 | -1188 | 459 | 283 | -3618 | -597 | 4294 | | -26125 | 10 | 133 | 25 | 12 | 11 | -189 | 43 | 4214 | 9068 | 135 | 6933 | 233 | 0 1 | -5959 | | 11 FRD | -535 | -1109 | 9159 | -374 | -197 | 589 | -182 | 4843 | 6556 | | -15369 | -3753 | -1163 | -2638 | 11 | -103 | 1 | 14 | 2000 | 2735 | 0933 | 233 | 0 1 | -1347 | | 12 CAR | 12 | 38 | 3953 | -807 | -404 | 60 | 12 | 437 | 391 | 75 | 2799 | -7080 | 651 | -176 | 0 | 0 | U | 14 | 0 | 72 | U T | 0 | 0 1 | -1347 | | 13 HOW | -1402 | 432 | 5829 | 223 | 85 | -392 | 16 | 842 | 119 | 57 | 1691 | | -14802 | 5471 | 16 | 1 | -98 | -569 | 2 | 105 | 2 | 1 | 0 1 | 233 | | 14 AAR | 1514 | -926 | -4812 | -425 | 512 | 1426 | 1679 | 3753 | 263 | 214 | -310 | 160 | 1984 | -7681 | 1584 | 210 | -249 | -309 | 25 | 103 | 1/ | 9 | 0 | -1048 | | 15 CAL | -1269 | -920 | 303 | 214 | 102 | 363 | 562 | 1520 | 15 | 32 | -210 | 100 | -204 | -1589 | -168 | -780 | 254 | T | 2.5 | ٥ | 1 | 10 | 0 1 | -629 | | 16 STM | -106 | -177 | 61 | -676 | 81 | 286 | 702 | 1421 | 14 | 21 | 0 | 0 | -201 | -442 | -2185 | -2524 | 2157 | 0 | -445 | 0 | 20 | 254 | 0 1 | -1532 | | 17 CHS | -987 | -1810 | 176 | -8140 | -361 | 423 | 853 | 6057 | -136 | 194 | 0 | n | -114 | -688 | 63 | -215 | 3382 | 3 | 24 | 0 | -267 | 542 | 0 1 | -1002 | | 18 FAU | 48 | -536 | -315 | 10 | -204 | 50 | 33 | 608 | -2039 | -339 | 2 | ٥ | 111 | 2000 | 0.5 | 213 | 3302 | 2714 | 1255 | -2469 | 639 | 20 | 0 1 | -517 | | 19 STA | 40 | 31 | -103 | 5 | -98 | -293 | 235 | 2069 | 39 | -1639 | 0 | 0 | 0 | 0 | n | 0 | 1 | 820 | 17380 | | -19557 | 359 | 0 | -711 | | 20 CL/JF | 3 | 11 | 1424 | 2 | 8 | 34 | 6 | 1427 | 3201 | 237 | 437 | 20 | 7 | 2 | n | 0 | 0 | 502 | 1,200 | -4903 | 1 | 0 | 0 1 | 2418 | | 21 SP/FB | 16 | 10 | -266 | 0 | -1107 | 158 | 220 | 2399 | 22 | -1069 | 0 | 0 | 0 | 0 | 0 | -617 | 0 | 234 | -2684 | -617 | 14212 | -140 | 0 1 | 10770 | | 22 KGEO | 1 | -160 | 1 | 29 | 3 | 16 | 45 | 443 | 1 | 693 | 0 | 0 | 0 | 0 | 3 | 12 | 384 | 45 | -319 | 0 1 7 | -1656 | 324 | 0 1 | -136 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ō | 0 | 0 | ō i | 0 | | ======== | | | ====== | .====== | ====== | .====== | | | | | | | | ====== | | | | | ====== | | | :=====: | | | | TOTAL | 8572 | | -16744 | | 26599 | | 22606 | | -11327 | | -8688 | | -8054 | | -4719 | | 6465 | | 28758 | | 4153 | | 0 | | | | | 17612 | | -16094 | | 757 | | -21136 | | -20755 | | -7012 | | -14749 | | -3131 | | 8427 | | 2870 | | 2033 | | -3556 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Ratio (Est/Obs) Motorized Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|--------|--------|--------|--------|---------|--------|--------|--------|-------|--------|-------|-------|-------|--------|--------|---------|---------|---------|--------|--------|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.78 | 1.31 | 1.96 | 1.39 | 2.02 | 1.02 | 1.30 | 2.95 | 0.29 | 19.82 | 0.03 | 0 | 0.04 | 0.04 | 0.18 | 0.31 | 7.51 | 2.63 | 6.47 | <br>0 | 2.12 | 0 | 0 | 1.50 | | 2 DC NC | 1.12 | 0.85 | 0.84 | 1.64 | 6.08 | 1.59 | 2.58 | 1.73 | 0.15 | 1.49 | 26.60 | 1.86 | 3.32 | 1.32 | 0.18 | 5.97 | 0.70 | 27.17 | 92.89 | 0.78 | 0.26 | 1.52 | 0 j | 0.99 | | 3 MTG | 0.75 | 1.08 | 0.97 | 1.99 | 0.95 | 2.20 | 0.80 | 0.87 | 0.18 | 0.28 | 1.56 | 3.94 | 1.61 | 1.60 | 92.96 | 22.89 | 1.51 | 59.14 | 206.55 | 409.96 | 0.16 | 17.81 | 0 j | 1.00 | | 4 PG | 1.16 | 1.39 | 0.98 | 0.91 | 4.24 | 1.37 | 1.77 | 3.43 | 0.31 | 0.67 | 20.11 | 0.05 | 1.26 | 0.70 | 0.29 | 867.28 | 1.03 | 37.55 | 260.56 | 0 | 137.68 | 122.96 | 0 | 0.99 | | 5 ARLCR | 0.63 | 2.67 | 1.75 | 65.64 | 2.56 | 1.90 | 2.86 | 2.71 | 38.55 | 25.70 | 0 | 0 | 0.03 | 0.00 | 0 | 0 | 0.30 | 0.61 | 4.35 | 0 | 2.86 | 0.06 | 0 | 1.79 | | 6 ARNCR | 0.61 | 1.33 | 1.27 | 4.75 | 2.59 | 0.80 | 1.63 | 1.35 | 3.94 | 3.36 | 4.11 | 0 | 0.01 | 29.76 | 0.84 | 1.79 | 0.05 | 0.28 | 154.04 | 1.48 | 146.79 | 4.49 | 0 | 1.00 | | 7 ALX | 1.01 | 1.34 | 1.10 | 2.61 | 2.75 | 1.58 | 0.86 | 1.13 | 0.80 | 832.48 | 0 | 0 | 1.61 | 0.02 | 2.10 | 7.47 | 66.74 | 0.05 | 195.53 | 0.04 | 163.30 | 8.19 | 0 | 1.03 | | 8 FFX | 1.24 | 2.66 | 1.14 | 2.88 | 7.14 | 1.26 | 1.41 | 0.91 | 1.08 | 1.26 | 0.13 | 10.75 | 0.42 | 0.81 | 51.21 | 63.94 | 634.53 | 1397.42 | 3.97 | 0.30 | 20.63 | 256.69 | 0 | 0.99 | | 9 LDN | 0.78 | 4.62 | 0.78 | 954.32 | 509.64 | 0.83 | 1.26 | 0.98 | 0.94 | 3.97 | 1.14 | 133.10 | 25.17 | 0.18 | 1.33 | 0.20 | 43.03 | 0.55 | 245.65 | 32.50 | 391.25 | 9.13 | 0 | 0.99 | | 10 PW | 0.94 | 3.96 | 0.37 | 3.47 | 1.89 | 0.42 | 0.85 | 1.10 | 0.71 | 0.93 | 9.82 | 0.15 | 8.05 | 11.58 | 11.46 | 0.04 | 42.67 | 3.32 | 14.88 | 135.036 | 932.88 | 233.30 | 0 | 0.99 | | 11 FRD | 0.24 | 0.23 | 1.65 | 0.26 | 0.39 | 588.69 | 0.50 | 8.72 | 10.35 | 74.54 | 0.92 | 0.70 | 0.73 | 0.09 | 0.09 | 0 | 0.66 | 13.81 | 1.21 | 7.92 | 1.47 | 0 | 0 | 0.99 | | 12 CAR | 11.74 | 37.79 | 2.74 | 0.12 | 0.03 | 59.89 | 12.04 | 5.40 | 391.43 | 1.81 | 2.58 | 0.95 | 1.11 | 0.64 | 0 | 0 | 0 | 0.25 | 0 | 72.41 | 0 | 0 | 0 | 1.00 | | 13 HOW | 0.28 | 1.29 | 1.72 | 1.02 | 84.96 | 0.43 | 1.10 | 2.25 | 119.20 | 57.48 | 11.40 | 2.09 | 0.94 | 1.41 | 16.29 | 1.48 | 0.29 | 0.00 | | 105.05 | 2.45 | 0.75 | 0 | 1.00 | | 14 AAR | 2.83 | 0.87 | 0.63 | 0.98 | 8.11 | 4.18 | 24.32 | | 263.05 | | 0.17 | 159.80 | 1.09 | 0.98 | | 210.10 | 0.63 | 4.08 | 25.00 | 3.11 | 13.82 | 8.92 | 0 | 1.00 | | 15 CAL | 0.15 | 1.01 | 302.61 | 1.13 | 101.55 | 362.70 | 561.531 | 520.02 | 15.17 | 31.74 | 0 | 0 | 0.15 | 0.48 | 1.00 | 0.74 | 1.49 | 0.33 | 1.72 | 0 | 0.77 | 9.93 | 0 | 0.99 | | 16 STM | 0.54 | 0.60 | 61.01 | 0.69 | 80.63 | 286.19 | 702.151 | 420.72 | 14.22 | 21.17 | 0 | 0 | 4.70 | 0.16 | 0.68 | 0.97 | 1.36 | 0.12 | 0.03 | 0 | 20.17 | 254.46 | 0 | 0.98 | | 17 CHS | 0.43 | 0.44 | 1.61 | 0.39 | 0.48 | 1.52 | 1.59 | 14.88 | | 194.28 | 0 | 0 | 0.21 | 0.14 | 1.04 | 0.93 | 1.03 | 2.78 | 23.69 | 0 | 0.08 | 2.87 | 0 | 0.99 | | 18 FAU | 48.06 | 0.07 | 0.06 | 10.24 | 0.06 | 50.31 | 32.99 | 1.30 | 0.26 | 0.90 | 1.96 | 0.03 | 0.45 | 1.77 | 0.03 | 0 | 2.90 | | 1254.96 | 0.07 | 639.42 | 20.14 | 0 | 0.99 | | 19 STA | 40.07 | 30.72 | 0.22 | 4.93 | 0.25 | | | 3.26 | 38.94 | 0.74 | 0 | 0 | 0 | 0.18 | 0 | 0.14 | 1.18 | | 1.25 | 0 | | 358.95 | 0 | 0.99 | | 20 CL/JF | 2.67 | 10.94 | 10.06 | 1.64 | 8.09 | 34.24 | 5.65 | 2.95 | 1.63 | 4.01 | 1.67 | 20.14 | 1.09 | 2.17 | 0 | 0 | | 501.51 | 0.42 | 0.89 | 0.74 | 0 | 0 | 1.05 | | 21 SP/FB | 15.86 | 9.58 | 0.10 | 0.39 | 0.02 | 157.70 | 220.05 | 4.27 | 22.22 | 0.71 | 0 | 0 | 0 | 0.02 | 0 | 0 | | 234.00 | 0.79 | 0 | 1.17 | 0.46 | 0 | 1.10 | | 22 KGEO | 0.84 | 0.02 | 0.55 | 28.73 | 3.45 | 16.05 | 45.47 | 4.75 | 1.36 | 693.33 | 0 | 0 | 0.02 | 0.19 | 2.62 | 11.62 | 383.90 | 45.47 | 0.87 | 0 | 0.50 | 1.02 | 0 | 0.99 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.04 | | 0.98 | | 2.66 | | 1.17 | | 0.96 | | 0.96 | | 0.97 | | 0.96 | | 1.05 | | 1.33 | | 1.03 | | 0 | | | | | 1.04 | | 0.98 | | 1.00 | | 0.98 | | 0.95 | | 0.96 | | 0.97 | | 0.96 | | 1.19 | | 1.06 | | 1.13 | | 1.00 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Est Auto Occ. | | DESTINA | NOITA | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.65 | 1.64 | 1.67 | 1.60 | 1.65 | 1.68 | 1.70 | 1.71 | 1.74 | 1.61 | 1.50 | 0 | 1.59 | 1.61 | 1.50 | 1.55 | 1.57 | 1.72 | 1.56 | 0 | 1.51 | 0 | 0 | 1.65 | | 2 DC NC | 1.64 | 1.64 | 1.66 | 1.62 | 1.68 | 1.70 | 1.72 | 1.73 | 1.78 | 1.66 | 1.59 | 1.52 | 1.70 | 1.68 | 1.56 | 1.58 | 1.63 | 1.76 | 1.63 | 1.50 | 1.59 | 1.58 | 0 | 1.65 | | 3 MTG | 1.59 | 1.61 | 1.63 | 1.63 | 1.62 | 1.64 | 1.67 | 1.72 | 1.74 | 1.64 | 1.66 | 1.67 | 1.66 | 1.67 | 1.62 | 1.59 | 1.65 | 1.74 | 1.67 | 1.72 | 1.70 | 1.61 | 0 | 1.63 | | 4 PG | 1.63 | 1.62 | 1.70 | 1.63 | 1.67 | 1.71 | 1.72 | 1.78 | 1.83 | 1.71 | 1.58 | 1.60 | 1.68 | 1.66 | 1.66 | 1.68 | 1.64 | 1.87 | 1.70 | 0 | 1.66 | 1.70 | 0 | 1.64 | | 5 ARLCR | 1.60 | 1.64 | 1.67 | 1.62 | 1.63 | 1.66 | 1.67 | 1.69 | 1.76 | 1.67 | 0 | 0 | 1.50 | 1.68 | 0 | 0 | 1.50 | 1.85 | 1.65 | 0 | 1.61 | 1.50 | 0 | 1.65 | | 6 ARNCR | 1.59 | 1.63 | 1.65 | 1.62 | 1.60 | 1.63 | 1.65 | 1.66 | 1.74 | 1.66 | 1.53 | 0 | 1.55 | 1.59 | 1.50 | 1.61 | 1.58 | 1.66 | 1.65 | 1.51 | 1.67 | 1.56 | 0 | 1.63 | | 7 ALX | 1.60 | 1.63 | 1.69 | 1.62 | 1.61 | 1.63 | 1.64 | 1.67 | 1.79 | 1.68 | 0 | 0 | 1.58 | 1.59 | 1.54 | 1.66 | 1.62 | 1.68 | 1.68 | 2.00 | 1.70 | 1.62 | 0 | 1.65 | | 8 FFX | 1.60 | 1.61 | 1.65 | 1.64 | 1.59 | 1.61 | 1.64 | 1.64 | 1.65 | 1.65 | 1.61 | 1.55 | 1.60 | 1.63 | 1.58 | 1.64 | 1.63 | 1.68 | 1.69 | 1.71 | 1.72 | 1.70 | 0 | 1.64 | | 9 LDN | 1.64 | 1.64 | 1.67 | 1.65 | 1.64 | 1.65 | 1.69 | 1.67 | 1.63 | 1.65 | 1.65 | 1.67 | 1.57 | 1.67 | 1.62 | 1.54 | 1.63 | 1.66 | 1.71 | 1.66 | 1.76 | 1.71 | 0 | 1.63 | | 10 PW | 1.61 | 1.62 | 1.67 | 1.61 | 1.66 | 1.68 | 1.72 | 1.71 | 1.71 | 1.62 | 1.56 | 1.50 | 1.50 | 1.59 | 1.50 | 1.50 | 1.56 | 1.65 | 1.67 | 1.68 | 1.70 | 1.70 | 0 | 1.64 | | 11 FRD | 1.72 | 1.74 | 1.81 | 1.70 | 1.88 | 1.89 | 1.90 | 2.00 | 1.82 | 1.87 | 1.63 | 1.65 | 1.77 | 1.75 | 1.50 | 0 | 1.57 | 1.84 | 1.95 | 1.69 | 1.71 | 0 | 0 | 1.66 | | 12 CAR | 1.67 | 1.81 | 1.92 | 1.89 | 1.89 | 1.99 | 1.88 | 2.03 | 2.00 | 2.08 | 1.71 | 1.62 | 1.78 | 1.84 | 0 | 0 | 0 | 1.92 | 0 | 1.76 | 0 | 0 | 0 | 1.64 | | 13 HOW | 1.62 | 1.64 | 1.68 | 1.65 | 1.70 | 1.73 | 1.77 | 1.86 | 1.87 | 1.85 | 1.68 | 1.65 | 1.62 | 1.65 | 1.63 | 1.56 | 1.66 | 1.85 | 1.68 | 1.75 | 1.62 | 1.63 | 0 | 1.63 | | 14 AAR | 1.70 | 1.69 | 1.78 | 1.68 | 1.76 | 1.81 | 1.84 | 1.92 | 1.96 | 1.86 | 1.71 | 1.70 | 1.69 | 1.63 | 1.65 | 1.72 | 1.69 | 1.90 | 1.83 | 1.81 | 1.80 | 1.72 | 0 | 1.64 | | 15 CAL | 1.85 | 1.80 | 2.03 | 1.78 | 1.92 | 1.98 | 2.00 | 2.06 | 2.06 | 1.94 | 0 | 0 | 1.96 | 1.71 | 1.62 | 1.67 | 1.75 | 1.83 | 1.76 | 0 | 1.64 | 1.69 | 0 | 1.63 | | 16 STM | 2.04 | 2.02 | 2.09 | 1.98 | 2.06 | 2.09 | 2.13 | 2.09 | 1.97 | 1.99 | 0 | 0 | 1.92 | 2.06 | 1.72 | 1.63 | 1.78 | 2.00 | 1.82 | 0 | 1.87 | 1.72 | 0 | 1.66 | | 17 CHS | 1.77 | 1.73 | 1.94 | 1.67 | 1.82 | 1.87 | 1.85 | 1.93 | 1.95 | 1.84 | 0 | 0 | 1.82 | 1.76 | 1.65 | 1.65 | 1.62 | 1.83 | 1.75 | 0 | 1.71 | 1.68 | 0 | 1.64 | | 18 FAU | 1.59 | 1.60 | 1.67 | 1.60 | 1.67 | 1.67 | 1.73 | 1.88 | 1.76 | 1.71 | 1.59 | 1.50 | 1.61 | 1.61 | 1.50 | 0 | 1.63 | 1.63 | 1.66 | 1.67 | 1.69 | 1.66 | 0 | 1.65 | | 19 STA | 1.70 | 1.67 | 2.19 | 1.60 | 1.92 | 2.03 | 1.98 | 1.96 | 2.06 | 1.72 | 0 | 0 | 0 | 1.64 | 0 | 1.56 | 1.55 | 1.68 | 1.62 | 0 | 1.64 | 1.64 | 0 | 1.64 | | 20 CL/JF | 2.23 | 2.39 | 2.17 | 2.69 | 2.22 | 2.27 | 2.46 | 2.14 | 1.91 | 1.98 | 1.83 | 1.85 | 2.16 | 2.05 | 0 | 0 | 0 | 1.79 | 1.68 | 1.63 | 1.54 | 0 | 0 | 1.70 | | 21 SP/FB | 2.89 | 3.36 | 3.61 | 4.33 | 2.22 | 2.42 | 2.26 | 2.17 | 2.44 | 1.92 | 0 | 0 | 0 | 0.02 | 0 | 0 | 0 | 1.85 | 1.68 | 0 | 1.62 | 1.65 | 0 | 1.65 | | 22 KGEO | 4.42 | 2.28 | 3.93 | 2.23 | 2.10 | 2.36 | 2.30 | 2.24 | 2.31 | 2.10 | 0 | 0 | 0.02 | 2.11 | 1.88 | 1.71 | 1.84 | 1.95 | 1.75 | 0 | 1.75 | 1.62 | 0 | 1.67 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.63 | | 1.64 | | 1.62 | | 1.66 | | 1.64 | | 1.63 | | 1.64 | | 1.62 | | 1.63 | | 1.63 | === | 1.63 | === | 0 | = | | | | 1.63 | | 1.63 | | 1.64 | | 1.66 | | 1.63 | | 1.62 | | 1.63 | | 1.63 | | 1.64 | | 1.64 | | 1.63 | | 1.64 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Obs Auto Occ. | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.67 | 1.37 | 1.00 | 1.50 | 0 | 1.43 | 1.00 | 1.30 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.41 | | 2 DC NC | 1.54 | 1.74 | 1.66 | 1.24 | 1.00 | 1.45 | 1.47 | 1.70 | 1.30 | 1.00 | 0 | 0 | 1.00 | 1.49 | 1.00 | 0 | 3.83 | 0 | 0 | 0 | 1.00 | 0 | 0 j | 1.66 | | 3 MTG | 1.25 | 1.54 | 1.64 | 1.25 | 1.00 | 1.30 | 1.00 | 1.29 | 1.14 | 620.00 | 1.71 | 1.00 | 1.44 | 1.38 | 0 | 0 | 1.00 | 0 | 0 | 0 | 3.00 | 0 | 0 j | 1.60 | | 4 PG | 1.55 | 1.50 | 1.76 | 1.70 | 0 | 1.94 | 2.50 | 1.36 | 1.61 | 1.00 | 0 | 1.52 | 1.55 | 1.53 | 1.52 | 0 | 1.99 | 0 | 0 | 0 | 0 | 0 | 0 | 1.68 | | 5 ARLCR | 0 | 1.00 | 1.00 | 0 | 1.50 | 1.38 | 1.00 | 1.26 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.28 | | 6 ARNCR | 1.70 | 1.50 | 1.18 | 2.00 | 1.99 | 1.59 | 1.38 | 1.42 | 1.00 | 1.00 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 1.55 | | 7 ALX | 1.28 | 2.05 | 1.24 | 2.07 | 2.04 | 1.17 | 1.56 | 1.50 | 1.00 | 0 | 0 | 0 | 0 | 3.00 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 1.51 | | 8 FFX | 1.38 | 1.40 | 1.50 | 1.00 | 1.56 | 1.48 | 1.56 | 1.64 | 1.36 | 1.36 | 1.00 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 2.00 | 2.00 | 2.00 | 0 | 0 | 1.61 | | 9 LDN | 1.07 | 1.00 | 1.00 | 0 | 0 | 1.64 | 1.00 | 1.54 | 1.84 | 2.14 | 3.00 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 1.76 | | 10 PW | 1.45 | 1.00 | 1.29 | 1.00 | 1.00 | 1.50 | 2.16 | 1.73 | 1.34 | 1.69 | 0 | 0 | 0 | 0 | 0 | 2.00 | 0 | 1.30 | 1.18 | 0 | 0 | 0 | 0 | 1.68 | | 11 FRD | 1.00 | 1.19 | 1.79 | 1.00 | 1.00 | 0 | 1.00 | 1.00 | 1.00 | 0 | 1.65 | 1.97 | 1.69 | 2.16 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.66 | | 12 CAR | 0 | 0 | 1.61 | 1.30 | 0 | 0 | 0 | 1.00 | 0 | 0 | 1.80 | 1.70 | 1.54 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.69 | | 13 HOW | 2.69 | 1.00 | 1.46 | 1.56 | 0 | 1.67 | 1.00 | 1.00 | 0 | 0 | 1.00 | 2.09 | 1.69 | 1.33 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 1.65 | | 14 AAR | 1.50 | 1.83 | 1.69 | 1.57 | 1.00 | 1.00 | 1.00 | 2.61 | 0 | 0 | 1.00 | 0 | 1.62 | 1.57 | 1.27 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.58 | | 15 CAL | 2.00 | 2.00 | 0 | 1.17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.91 | 1.80 | 1.19 | 2.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.76 | | 16 STM | 1.00 | 1.00 | 0 | 1.32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.00 | 2.30 | 1.62 | 1.35 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.61 | | 17 CHS | 1.12 | 1.47 | 1.00 | 1.71 | 1.00 | 1.38 | 7.75 | 1.00 | 1.00 | 0 | 0 | 0 | 1.00 | 1.59 | 1.00 | 1.30 | 1.61 | 0 | 0 | 0 | 2.00 | 2.00 | 0 | 1.59 | | 18 FAU | 0 | 1.00 | 1.00 | 0 | 1.00 | 0 | 0 | 1.00 | 2.39 | 1.34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.56 | 0 | 2.00 | 0 | 0 | 0 | 1.53 | | 19 STA | 0 | 0 | 1.00 | 0 | 1.00 | 1.00 | 0 | 1.17 | 0 | 1.43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.66 | 0 | 1.75 | 0 | 0 | 1.65 | | 20 CL/JF | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.00 | 1.60 | 1.00 | 1.25 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.54 | 0 | 0 | 0 | 1.52 | | 21 SP/FB | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 1.00 | 0 | 1.72 | 0 | 0 | 0 | 0 | 0 | 2.00 | 0 | 0 | 1.66 | 2.00 | 1.59 | 2.00 | 0 | 1.59 | | 22 KGEO | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.47 | 0 | 1.41 | 1.58 | 0 | 1.52 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.49 | | 1.64 | | 1.51 | | 1.57 | == | 1.75 | == | 1.65 | | 1.66 | | 1.77 | | 1.62 | | 1.64 | | 1.64 | = | <br>0 | == | | | | 1.63 | | 1.65 | | 1.53 | | 1.62 | | 1.66 | | 1.72 | | 1.56 | | 1.59 | | 1.49 | | 1.56 | | 1.59 | | 1.63 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Est Pct. Tran | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|--------|------|-------|------|--------|------|--------|-----|------|------|----|------|--------|------|--------|------|-------|-----|-------|-----|--------|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 DC CR | 23.0 | 26.5 | 22.4 | 7.6 | 61.0 | 37.1 | 19.2 | 8.1 | 0 | 3.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24.2 | | 2 DC NC | 29.9 | 13.6 | 14.3 | 6.0 | 39.6 | 22.7 | 11.5 | 4.1 | 0 | 4.6 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16.7 | | 3 MTG | 25.0 | 4.7 | 2.6 | 1.4 | 21.3 | 4.3 | 1.0 | 1.0 | 0 | 34.7 | 0.0 | 0 | 0.1 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.0 | | 4 PG | 31.8 | 6.2 | 4.8 | 1.5 | 27.0 | 9.3 | 2.5 | 0.9 | 0 | 10.8 | 0 | 0 | 0.2 | 0.1 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.4 | | 5 ARLCR | 80.4 | 9.8 | 8.3 | 1.6 | 4.0 | 13.7 | 9.5 | 4.6 | 0 | 2.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15.1 | | 6 ARNCR | 49.8 | 4.3 | 2.4 | 0.4 | 4.0 | 4.5 | 4.7 | 2.4 | 0 | 2.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.9 | | 7 ALX | 36.3 | 3.4 | 2.2 | 0.1 | 4.3 | 6.5 | 3.2 | 1.9 | 0 | 1.7 | 0 | 0 | 0 | - 0 | 0 | - 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.8 | | 8 FFX | 19.0 | 1.7 | 1.0 | 0.4 | 4.6 | 4.1 | 2.6 | 0.6 | 0.0 | 1.6 | 0.6 | 0 | 3.6 | 0.4 | 11.1 | 6.7 | 1.0 | 0 | 0.0 | 0 | 0.2 | 0 | 0 | 1.3 | | 9 LDN | 9.9 | 0.5 | 0.2 | 0.0 | 2.3 | 1.3 | 0.2 | 0.4 | 0.1 | 3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | | 10 PW | 16.0 | 7.2 | 23.7 | 13.9 | 6.9 | 6.2 | 4.2 | 2.3 | 1.9 | 0.3 | 15.2 | 0 | 91.8 | 26.8 | 94.0 | 97.1 | 29.2 | 0 | 0.0 | 0 | 0.3 | 0 | 0 | 0.7 | | 11 FRD | 3.6 | 0.2 | 0.0 | 0 | 1.2 | 0.1 | 0.0 | 0.1 | 0 | 4.7 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 19.8 | 1.2 | 0.2 | 0.2 | 18.4 | 3.3 | 0.2 | 6.5 | 0 | 80.5 | 0 | 0 | 0.1 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | | 14 AAR | 15.7 | 1.1 | 0.2 | 0.1 | 15.0 | 3.0 | 0.4 | 6.1 | 0 | 30.1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | | 15 CAL | 3.5 | 0.3 | 0.0 | 0 | 2.3 | 0.5 | 0.1 | 0.2 | 0 | 6.0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 17 CHS | 12.1 | 1.0 | 0.3 | 0.0 | 10.0 | 2.2 | 0.3 | 0.5 | 0 | 10.1 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | | 18 FAU | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.9 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 28.7 | ====== | 3.1 | ===== | 10.8 | ====== | 3.5 | ====== | 0.1 | | 0.2 | | 0.1 | ====== | 0.0 | ====== | 0.2 | ===== | 0.0 | ===== | 0.0 | ====== | 0 l | :===== | | | | 9.9 | | 1.6 | | 6.3 | | 0.9 | | 0.5 | | 0 | | 0.0 | | 0.0 | | 0 | | 0 | | 0 | | 2.9 | Year: 2007 Estimate/Observed Trips Purpose: Internal HBO Trips MODE: Obs Pct. Tran | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|------|------|-------|------|------|------|-------|----|----|----|-----|------|----|----|-----|----|----|----|----|----|----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 37.7 | 40.1 | 51.8 | 0 | 100.0 | 51.2 | 0 | 0 | 100.0 | 0 | 0 | 0 | 0 | 38.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38.0 | | 2 DC NC | 38.3 | 19.6 | 7.5 | 26.3 | 40.0 | 24.6 | 10.4 | 3.4 | 28.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21.8 | | 3 MTG | 48.9 | 7.3 | 1.4 | 9.4 | 75.2 | 23.7 | 29.5 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.2 | | 4 PG | 39.6 | 11.0 | 2.3 | 2.8 | 100.0 | 11.0 | 0 | 12.2 | 0 | 0 | 0 | 0 | 7.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.6 | | 5 ARLCR | 100.0 | 0 | 0 | 0 | 0 | 11.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27.6 | | 6 ARNCR | 31.3 | 15.2 | 7.4 | 0 | 3.4 | 2.2 | 0 | 3.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.0 | | 7 ALX | 27.4 | 10.7 | 0 | 0 | 16.3 | 0 | 2.3 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.3 | | 8 FFX | 36.1 | 6.5 | 7.1 | 0 | 0 | 2.2 | 0.3 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.1 | | 9 LDN | 23.8 | 14.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | | 10 PW | 59.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | | 11 FRD | 36.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 12 CAR | 0 | 0 | 0 | 0 | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | | 13 HOW | 45.2 | 44.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | | 14 AAR | 26.1 | 9.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7 | | 15 CAL | 33.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17 CHS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 38.5 | | 1.8 | | 19.0 | | 1.9 | | 0.4 | | 0 | | 0.2 | | 0 | | 0.3 | | 0 | | 0 | | 0 | | | | | 16.5 | | 3.4 | | 4.0 | | 0.5 | | 0 | | 0 | | 0.5 | | 0 | | 0 | | 0 | | 0 | | 3.4 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Est Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |--------------------|-------------|--------|--------------|--------------|--------|--------------|--------------|--------------|------------|--------|---------|--------|--------------|-------|-------------|--------------|-------------|--------------|-------------|--------------|----|-------------|---------------|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 17057 | 10293 | 2155 | 1225 | 1812 | 2893 | 1167 | 893 | 0 | 23 | ·====== | 0 | 2 | <br>2 | 1 | n | 1 | ·===== | .=====<br>0 | <br>n | 1 | 0 | <br> 0 | 37524 | | 2 DC NC | 12727 | 7492 | 2688 | 1158 | 964 | 1450 | 545 | 399 | 0 | 13 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27437 | | 3 MTG | 3299 | 991 | 7967 | 169 | 284 | 220 | 73 | 116 | 0 | 16 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o i | 13138 | | 4 PG | 2710 | 602 | 262 | 883 | 159 | 131 | 53 | 59 | 0 | 14 | 0 | ō | 0 | 1 | Ō | 0 | 0 | 0 | Ō | 0 | 0 | 0 | ō i | 4873 | | 5 ARLCR | 1768 | 326 | 119 | 25 | 381 | 1044 | 315 | 153 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o i | 4134 | | 6 ARNCR | 3024 | 532 | 208 | 37 | 1503 | 1779 | 673 | 499 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8263 | | 7 ALX | 1212 | 154 | 73 | 16 | 276 | 546 | 960 | 201 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 3445 | | 8 FFX | 2087 | 175 | 138 | 50 | 340 | 629 | 391 | 1820 | 3 | 69 | 2 | 0 | 8 | 2 | 3 | 2 | 8 | 0 | 0 | 0 | 2 | 0 | 0 | 5729 | | 9 LDN | 173 | 4 | 4 | 0 | 28 | 30 | 5 | 21 | 28 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 297 | | 10 PW | 282 | 17 | 21 | 13 | 39 | 48 | 36 | 89 | 2 | 60 | 1 | 0 | 2 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 613 | | 11 FRD | 8 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 161 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 174 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 191 | 25 | 22 | 5 | 14 | 12 | 4 | 14 | 0 | 3 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 294 | | 14 AAR | 372 | 39 | 21 | 7 | 22 | 16 | 7 | 38 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 525 | | 15 CAL | 8 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | | 17 CHS | 147 | 24 | 8 | 0 | 9 | 7 | 1 | 6 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 266 | | 18 FAU | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | | 22 KGEO<br>23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 <br>0 | 0 | | 23 EAIL | U<br>====== | ====== | U<br>======= | U<br>======= | ====== | U<br>======= | U<br>======= | U<br>======= | <br>====== | ====== | .====== | ====== | U<br>======= | <br> | U<br>====== | U<br>======= | U<br>====== | U<br>======= | U<br>====== | U<br>======= | | U<br>====== | ا U<br>====== | ====== | | TOTAL | 45067 | | 13689 | | 5832 | | 4231 | | 33 | | 164 | | 20 | | 5 | | 73 | | 0 | | 3 | | 0 | | | | | 20674 | | 3588 | | 8805 | | 4351 | | 227 | | 0 | | 6 | | 15 | | 0 | | 0 | | 0 | | 106783 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Obs Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|-------------|-------|-------|-------|------|------|------|-------|-----|------|-----|----|-----|--------|-----|----|------|-----|-----|------------|-----|-------------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 20489 | 10258 | 8777 | 8295 | 531 | 4109 | 2045 | 4804 | 332 | 1233 | 234 | 0 | 533 | 203 | 495 | 0 | 1514 | 215 | 253 | 0 | 308 | 0 | 0 | 64627 | | 2 DC NC | 10416 | 2822 | 833 | 1582 | 250 | 523 | 113 | 1742 | 0 | 396 | 0 | 0 | 0 | 0 | 239 | 0 | 0 | 0 | 268 | 0 | 0 | 0 | 0 | 19185 | | 3 MTG | 6150 | 2309 | 2989 | 808 | 0 | 296 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 283 | 0 | 0 | 0 | 12835 | | 4 PG | 3344 | 1795 | 793 | 2036 | 614 | 496 | 0 | 279 | 0 | 417 | 0 | 0 | 0 | 0 | 0 | 0 | 348 | 0 | 0 | 0 | 0 | 0 | 0 | 10122 | | 5 ARLCR | 280 | 909 | 0 | 614 | 355 | 1649 | 359 | 856 | 256 | 147 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5425 | | 6 ARNCR | 4914 | 1386 | 703 | 688 | 426 | 608 | 418 | 1056 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10199 | | 7 ALX | 1388 | 0 | 0 | 0 | 285 | 0 | 583 | 184 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2440 | | 8 FFX | 4830 | 988 | 0 | 0 | 238 | 504 | 215 | 970 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7744 | | 9 LDN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10 PW | 0 | 751 | 0 | 0 | 240 | 417 | 0 | 403 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1810 | | 11 FRD | 0 | 0 | 130 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 382 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 512 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 232 | 0 | 0 | 0 | 181 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 285 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 698 | | 14 AAR | 1988 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1988 | | 15 CAL | 0 | 0 | 0 | 0 | 0 | 366 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 366 | | 16 STM | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17 CHS | 148 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 148 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 19 STA | 582 | 499 | 0 | 0 | 0 | 402 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1484 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 23 EXTL | U<br>====== | U | | U | U | <br> | <br> | U | 0 | U | 0 | U | | .===== | 0 | u | U | 0 | | U<br>===== | | U<br>====== | 0 | .====== | | TOTAL | 54763 | | 14225 | | 3121 | | 3732 | | 588 | | 616 | | 818 | | 733 | | 1861 | | 521 | | 308 | | 0 | | | | | 21718 | | 14023 | | 9368 | | 10294 | | 2193 | | 0 | | 203 | | 0 | | 215 | | 283 | | 0 | | 139584 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Difference (Est-Obs) Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|-------|--------|------|-------|------|-------|------|-------|------|--------|------|------|------|----|-------|------|------|------|------|--------------|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22<br>====== | 23 | TOTAL | | 1 DC CR | -3432 | 34 | -6622 | -7069 | 1281 | -1216 | -878 | -3911 | -332 | -1210 | -234 | 0 | -530 | -201 | -494 | 0 | -1513 | -215 | -253 | 0 | -308 | 0 | 0 | -27103 | | 2 DC NC | 2310 | 4670 | 1854 | -425 | 714 | 927 | 433 | -1343 | 0 | -383 | 0 | 0 | 1 | 0 | -238 | 0 | 0 | 0 | -268 | 0 | 0 | 0 | 0 | 8251 | | 3 MTG | -2852 | -1318 | 4978 | -639 | 284 | -75 | 73 | 116 | 0 | 16 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -283 | 0 | 0 | 0 | 302 | | 4 PG | -635 | -1193 | -531 | -1154 | -455 | -365 | 53 | -220 | 0 | -402 | 0 | 0 | 0 | 1 | 0 | 0 | -348 | 0 | 0 | 0 | 0 | 0 | 0 | -5248 | | 5 ARLCR | 1487 | -583 | 119 | -589 | 26 | -604 | -44 | -703 | -256 | -145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1291 | | 6 ARNCR | -1890 | -854 | -494 | -650 | 1077 | 1171 | 255 | -558 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1936 | | 7 ALX | -176 | 154 | 73 | 16 | -9 | 546 | 377 | 17 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1005 | | 8 FFX | -2743 | -813 | 138 | 50 | 102 | 126 | 176 | 850 | 3 | 69 | 2 | 0 | 8 | 2 | 3 | 2 | 8 | 0 | 0 | 0 | 2 | 0 | 0 | -2015 | | 9 LDN | 173 | 4 | 4 | 0 | 28 | 30 | 5 | 21 | 28 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 297 | | 10 PW | 282 | -733 | 21 | 13 | -201 | -369 | 36 | -314 | 2 | 60 | 1 | 0 | 2 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | -1197 | | 11 FRD | 8 | 1 | -128 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | -221 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -338 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | -41 | 25 | 22 | 5 | -167 | 12 | 4 | 14 | 0 | 3 | 0 | 0 | -280 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | -404 | | 14 AAR | -1617 | 39 | 21 | 7 | 22 | 16 | 7 | 38 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1463 | | 15 CAL | 8 | 1 | 0 | 0 | 1 | -366 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -354 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | | 17 CHS | -1 | 24 | 8 | 0 | 9 | 7 | 1 | 6 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 118 | | 18 FAU | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | | 19 STA | -582 | -499 | 0 | 0 | 0 | -402 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | -1473 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | .===== | | | | | | | | | | | | ====== | | TOTAL | -9696 | | -536 | | 2711 | | 498 | | -555 | | -452 | | -797 | | -728 | | -1788 | | -521 | | -306 | | 0 | | | | | -1043 | | -10435 | | -564 | | -5943 | | -1967 | | 0 | | -197 | | 0 | | -215 | | -283 | | 0 | | -32801 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Ratio (Est/Obs) Transit | | DESTIN | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|-------|--------|--------|-------|--------|-------|-------|------|----|------|------|------|-------|-------|----|------|----|------|----|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 0.83 | 1.00 | 0.25 | 0.15 | 3.41 | 0.70 | 0.57 | 0.19 | 0 | 0.02 | 0 | 0 | 0.00 | 0.01 | 0.00 | 0.03 | 0.00 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0.58 | | 2 DC NC | 1.22 | 2.65 | 3.23 | 0.73 | 3.85 | 2.77 | 4.84 | 0.23 | 0 | 0.03 | 0 | 0 | 1.13 | 0.20 | 0.00 | 0 | 0.11 | 0 | 0 | 0 | 0.10 | 0 | 0 | 1.43 | | 3 MTG | 0.54 | 0.43 | 2.67 | 0.21 | 284.25 | 0.74 | 73.39 | 116.01 | 0 | 15.62 | 0.05 | 0 | 1.82 | 0.02 | 0.05 | 0 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 | 1.02 | | 4 PG | 0.81 | 0.34 | 0.33 | 0.43 | 0.26 | 0.26 | 53.39 | 0.21 | 0 | 0.03 | 0 | 0 | 0.31 | 0.50 | 0.01 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0.48 | | 5 ARLCR | 6.31 | 0.36 | 119.17 | 0.04 | 1.07 | 0.63 | 0.88 | 0.18 | 0 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.76 | | 6 ARNCR | 0.62 | 0.38 | 0.30 | 0.05 | 3.53 | 2.92 | 1.61 | 0.47 | 0 | 7.67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.81 | | 7 ALX | 0.87 | 153.56 | 72.76 | 15.83 | 0.97 | 545.77 | 1.65 | 1.09 | 0 | 8.34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.41 | | 8 FFX | 0.43 | 0.18 | 138.40 | 49.89 | 1.43 | 1.25 | 1.82 | 1.88 | 2.96 | 68.96 | 2.30 | 0 | 7.51 | 2.47 | 2.71 | 1.52 | 7.77 | 0 | 0.01 | 0 | 1.65 | 0 | 0 j | 0.74 | | 9 LDN | 173.33 | 4.20 | 4.10 | 0.02 | 27.62 | 29.58 | 4.62 | 20.58 | 27.87 | 5.42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 297.34 | | 10 PW | 281.50 | 0.02 | 20.80 | 13.02 | 0.16 | 0.11 | 36.24 | 0.22 | 1.87 | 59.52 | 0.68 | 0 | 2.09 | 0.92 | 0.71 | 0.43 | 2.20 | 0 | 0 | 0 | 0.53 | 0 | 0 j | 0.34 | | 11 FRD | 8.29 | 0.68 | 0.01 | 0 | 0.74 | 0.48 | 0.09 | 0.38 | 0 | 0.11 | 0.42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.34 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0 | | 13 HOW | 0.82 | 24.68 | 21.69 | 4.57 | 0.08 | 11.78 | 3.78 | 14.39 | 0 | 3.03 | 0 | 0 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.42 | | 14 AAR | 0.19 | 39.13 | 21.26 | 7.28 | 21.65 | 16.17 | 6.61 | 37.92 | 0 | 3.44 | 0 | 0 | 0 | 0.21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.26 | | 15 CAL | 8.17 | 1.32 | 0.40 | 0.01 | 0.51 | 0.00 | 0.10 | 0.30 | 0 | 0.08 | 0 | 0 | 0 | 0 | 0.56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.03 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12.29 | 0.88 | 0 | 0 | 0 | 0 | 0 | 0 | 13.17 | | 17 CHS | 0.99 | 23.68 | 7.96 | 0.38 | 8.87 | 6.90 | 1.30 | 6.11 | 0 | 1.75 | 0 | 0 | 0 | 0 | 0 | 0.64 | 61.67 | 0 | 0 | 0 | 0 | 0 | 0 j | 1.79 | | 18 FAU | 1.87 | 0 | 0.01 | 0 | 0.02 | 0.03 | 0.13 | 8.74 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 10.80 | | 19 STA | 0.00 | 0 | 0 | 0 | 0 | 0 | 0.01 | 10.07 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.01 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0 | | 21 SP/FB | 0.67 | 0 | 0 | 0 | 0 | 0 | 0 | 22.81 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23.48 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.48 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0 | | ======= | | | | | | | | | | | | | | | | | | | | | | | | ====== | | TOTAL | 0.82 | | 0.96 | | 1.87 | | 1.13 | | 0.06 | | 0.27 | | 0.02 | | 0.01 | | 0.04 | | 0.00 | | 0.01 | | 0 | | | | | 0.95 | | 0.26 | | 0.94 | | 0.42 | | 0.10 | | 0 | | 0.03 | | 0 | | 0 | | 0 | | 0 | | 0.77 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Est Auto Person | | DESTIN | IATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|-------|--------|-------|--------|--------|--------|-------|--------|--------|--------|--------|------|--------|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | ====== | | | | | ====== | | | | | ====== | | ====== | ====== | | | ====== | ====== | | ====== | | ====== | | | 1 DC CR | 32536 | 17933 | 4235 | 7920 | 1382 | 2762 | 2266 | 5274 | 447 | 799 | 362 | 84 | 537 | 1544 | 173 | 112 | 611 | 127 | 232 | 52 | 167 | 14 | 0 | 79570 | | 2 DC NC | 15614 | 27574 | 7802 | 12350 | 927 | 2327 | 2098 | 5027 | 432 | 710 | 422 | 107 | 871 | 2045 | 199 | 119 | 684 | 120 | 209 | 57 | 154 | 13 | 0 | 79862 | | 3 MTG | 3185 | 9758 | 147642 | 12070 | 654 | 2174 | 1274 | 8486 | 1015 | 903 | 3241 | 655 | 3160 | 3047 | 171 | 103 | 414 | 227 | 219 | 257 | 179 | 13 | 0 | 198847 | | 4 PG | 6744 | 13225 | | 104993 | 729 | 1895 | 2595 | 4783 | 386 | 764 | 534 | 242 | 3959 | 8825 | 774 | 390 | 2623 | 129 | 247 | 74 | 193 | 34 | 0 | 166199 | | 5 ARLCR | 1277 | 1528 | 774 | 835 | 3732 | 4873 | 1620 | 3091 | 208 | 386 | 46 | 10 | 45 | 132 | 16 | 11 | 56 | 34 | 61 | 13 | 44 | 3 | 0 | 18794 | | 6 ARNCR | 2538 | 3185 | 2105 | 1958 | 4445 | 17373 | 3899 | 10281 | 680 | 1105 | 120 | 23 | 121 | 330 | 38 | 25 | 140 | 105 | 164 | 37 | 117 | 7 | 0 | 48798 | | 7 ALX | 2113 | 2402 | 1245 | 2524 | 1567 | 4051 | 16861 | 10107 | 429 | 1353 | 86 | 19 | 106 | 324 | 55 | 40 | 240 | 87 | 227 | 29 | 155 | 12 | 0 | 44029 | | 8 FFX | 3554 | 4865 | 7593 | 4592 | 2771 | 10081 | | 217243 | 10283 | 9812 | 463 | 90 | 411 | 801 | 112 | 86 | 464 | 924 | 910 | 242 | 615 | 33 | 0 | 285709 | | 9 LDN | 211 | 356 | 826 | 326 | 167 | 611 | 380 | 10203 | 35818 | 1294 | 311 | 36 | 66 | 95 | 8 | 8 | 36 | 269 | 66 | 364 | 55 | 3 | 0 | 51507 | | 10 PW | 461 | 640 | 793 | 695 | 330 | 1040 | 1255 | 9465 | 1225 | 51464 | 68 | 13 | 61 | 151 | 23 | 20 | 94 | 915 | 1528 | 71 | 750 | 29 | 0 | 71094 | | 11 FRD | 317 | 391 | 3250 | 533 | 45 | 118 | 84 | 530 | 383 | 87 | 42311 | 1435 | 866 | 514 | 19 | 14 | 48 | 41 | 31 | 639 | 27 | 2 | 0 | 51686 | | 12 CAR | 79 | 103 | 693 | 251 | 10 | 24 | 19 | 109 | 47 | 19 | 1441 | 24862 | 791 | 400 | 9 | 6 | 19 | 9 | 8 | 78 | 7 | 1 | 0 | 28983 | | 13 HOW | 436 | 944 | 3423 | 4198 | 39 | 127 | 117 | 501 | 84 | 75 | 795 | 748 | 28298 | 6536 | 59 | 38 | 122 | 29 | 29 | 71 | 25 | 4 | 0 | 46695 | | 14 AAR | 1214 | 2042 | 3296 | 9097 | 113 | 318 | 329 | 932 | 131 | 185 | 507 | 400 | 6838 | 81823 | 475 | 145 | 424 | 53 | 84 | 67 | 74 | 13 | 0 | 108558 | | 15 CAL | 151 | 186 | 174 | 779 | 15 | 37 | 53 | 117 | 11 | 28 | 19 | 9 | 62 | 472 | 12716 | 1229 | 430 | 7 | 15 | 4 | 15 | 14 | 0 | 16543 | | 16 STM | 94 | 104 | 95 | 365 | 10 | 22 | 35 | 81 | 9 | 21 | 12 | 5 | 37 | 138 | 1205 | 36025 | 885 | 7 | 22 | 3 | 38 | 59 | 0 | 39273 | | 17 CHS | 468 | 671 | 427 | 2632 | 49 | 137 | 228 | 456 | 40 | 101 | 45 | 18 | 125 | 423 | 429 | 906 | 24390 | 25 | 57 | 9 | 61 | 132 | 0 | 31829 | | 18 FAU | 98 | 95 | 184 | 108 | 28 | 88 | 74 | 890 | 273 | 949 | 34 | 7 | 24 | 44 | 7 | 7 | 23 | 7219 | 184 | 56 | 145 | 7 | 0 | 10545 | | 19 STA | 177 | 163 | 179 | 204 | 47 | 133 | 177 | 801 | 66 | 1503 | 25 | - 6 | 24 | 70 | 13 | 19 | 51 | 181 | 10751 | - 7 | 2762 | 69 | 0 | 17428 | | 20 CL/JF | 41 | 45 | 225 | 63 | 11 | 31 | 24 | 236 | 371 | 74 | 539 | 65 | 67 | 57 | 3 | 3 | 8 | 56 | 7 | 9353 | 7 | 0 | 0 | 11284 | | 21 SP/FB | 123 | 115 | 138 | 151 | 33 | 91 | 117 | 523 | 52 | 713 | 21 | 5 | 20 | 59 | 12 | 32 | 51 | 134 | 2617 | 6 | 18703 | 100 | 0 | 23816 | | 22 KGEO | 11 | 10 | 10 | 28 | 3 | 6 | 9 | 29 | 3 | 31 | 1 | 0 | 3 | 11 | 12 | 53 | 115 | 7 | 71 | 0 | 105 | 1783 | 0 | 2303 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 71440 | ====== | 197170 | | 17105 | ====== | 43279 | ====== | 52392 | ====== | 51404 | ====== | 46492 | ====== | 16527 | ====== | 31930 | ====== | 17739 | ====== | 24398 | | 0 I | :====== | | IOIAL | , 1110 | 86335 | 12.110 | 166671 | 1,105 | 48319 | | 289165 | 52552 | 72378 | 51101 | 28839 | | 107841 | 10327 | 39390 | 32330 | 10702 | 1.755 | 11487 | 21330 | 2345 | ١ | 1433349 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Obs Auto Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |---------------------|----------|--------|--------|--------|---------|--------|--------|--------|--------|----------|--------|---------|--------|--------|--------|--------|--------|--------|-----------|--------|--------------|---------------|---------|---------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 23314 | 19425 | 7405 | 8717 | 999 | 7006 | 4446 | 9518 | 2108 | 1619 | | .===== | 325 | 1899 | 0 | 263 | 1456 | | 735 | | 0 | ======<br>164 | <br>0 l | 89400 | | 2 DC NC | 12463 | 31539 | 10983 | 13981 | 799 | 2534 | 957 | 6541 | 520 | 204 | 0 | 0 | 268 | 1442 | 477 | 203 | 979 | 0 | 420 | 0 | 439 | 104 | 0 1 | 84546 | | 3 MTG | 4974 | | | 14785 | 0 | 2363 | 807 | 6768 | 1132 | 186 | 5283 | 457 | 2367 | 2536 | 4// | 0 | 268 | 0 | 332 | 0 | -123 | 0 | 0 1 | 210790 | | 4 PG | 4867 | 8294 | | 104237 | 236 | 1182 | 505 | 4376 | 660 | 280 | 0 | 137 | 4499 | 11419 | 375 | 230 | 3324 | 0 | 0 | 0 | 0 | 0 | 0 1 | 157883 | | 5 ARLCR | 1211 | 1106 | 645 | 546 | 1190 | 1639 | 1267 | 4844 | 0 | 1551 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1204 | 0 | 0 | 0 | 0 | 15202 | | 6 ARNCR | 3781 | 1687 | 1565 | 1308 | 2579 | 21229 | 4569 | 15016 | 226 | 1484 | 0 | 0 | ō | 178 | 0 | 0 | 145 | 0 | 863 | 0 | 0 | 0 | ō i | 54627 | | 7 ALX | 2162 | 1515 | 584 | 1006 | 988 | 3999 | 18562 | 6910 | 798 | 796 | 0 | 0 | 706 | 371 | 0 | 0 | 366 | 0 | 298 | 0 | 0 | 0 | 0 i | 39060 | | 8 FFX | 10793 | 7853 | 11499 | 3598 | 3620 | 11614 | 7305 | 216786 | 11043 | 15599 | 611 | 0 | 54 | 281 | 239 | 236 | 1390 | 701 | 1401 | 522 | 1347 | 0 | 0 j | 306489 | | 9 LDN | 1725 | 339 | 671 | 986 | 0 | 694 | 285 | 9504 | 36892 | 1149 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 261 | 79 | 0 | 0 | 0 | 52585 | | 10 PW | 965 | 349 | 738 | 193 | 932 | 1549 | 971 | 15410 | 806 | 48415 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 593 | 1272 | 0 | 374 | 164 | 0 | 72732 | | 11 FRD | 0 | 0 | 3147 | 950 | 0 | 0 | 0 | 0 | 0 | 298 | 46248 | 1140 | 1200 | 0 | 0 | 0 | 0 | 0 | 0 | 538 | 0 | 0 | 0 | 53520 | | 12 CAR | 0 | 0 | 678 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1523 | 21085 | 1070 | 1313 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25669 | | 13 HOW | 163 | 847 | 1566 | 2109 | 0 | 0 | 540 | 210 | 0 | 0 | 705 | 1627 | 32455 | 8277 | 0 | 0 | 391 | 0 | 0 | 0 | 0 | 0 | 0 | 48890 | | 14 AAR | 942 | 604 | 2043 | 8490 | 169 | 578 | 0 | 191 | 0 | 362 | 0 | 1257 | 5932 | 87657 | 764 | 263 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 109252 | | 15 CAL | 617 | 0 | 0 | 512 | 0 | 0 | 0 | 673 | 0 | 0 | 0 | 0 | 239 | 624 | 12369 | 758 | 249 | 0 | 0 | 0 | 0 | 0 | 0 | 16040 | | 16 STM | 263 | 0 | 0 | 689 | 0 | 0 | 0 | 522 | 0 | 0 | 0 | 0 | 0 | 0 | 1340 | 38847 | 1134 | 0 | 0 | 0 | 0 | 0 | 0 | 42795 | | 17 CHS | 596 | 492 | 268 | 3852 | 0 | 265 | 679 | 0 | 0 | 0 | 0 | 0 | 0 | 401 | 0 | 1401 | 22353 | 0 | 0 | 0 | 0 | 0 | 0 | 30305 | | 18 FAU | 275 | 0 | 0 | 0 | 0 | 0 | 0 | 686 | 352 | 287 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3946 | 118 | 0 | 0 | 0 | 0 | 5664 | | 19 STA | 1308 | 804 | 0 | 0 | 1204 | 131 | 0 | 1962 | 400 | 1231 | 5.4.6 | 0 | 0 | 0 | 0 | 0 | 0 | 118 | 8932 | 0 | 3066 | 118 | 0 | 18875 | | 20 CL/JF | 0 | 561 | 0 | 0 | 567 | 541 | 546 | 337 | 489 | 0<br>131 | 546 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0<br>2791 | 2272 | 541<br>21072 | 1009 | 0 | 3848<br>27556 | | 21 SP/FB<br>22 KGEO | 0<br>286 | 164 | 0 | 0 | 207 | 241 | 246 | 33/ | 0 | 164 | 0 | 0 | 0 | 0 | 0 | 0 | 597 | 0 | 2/91 | 0 | 1322 | 3265 | 0 | 27556<br>5799 | | 23 EXTL | 200 | 104 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 104 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 1322 | 3203<br>N | 0 1 | 3799 | | 23 EAID | ======= | ====== | ====== | ====== | :====== | ====== | ====== | ====== | ====== | ====== | ====== | :====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | • | | TOTAL | 70704 | | 217511 | | 13283 | | 41439 | | 55026 | | 54916 | | 49115 | | 15564 | | 32652 | | 18628 | | 28161 | | 0 | | | | | 81789 | | 165958 | | 55324 | | 300253 | | 73757 | | 25565 | | 116398 | | 41997 | | 5358 | | 3410 | | 4721 | | 1471529 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Difference (Est-Obs) Auto Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |------------------|-------------|------------|--------------|-------------|-----------|-------------|-----------|------------|------------|------------|--------------|--------------|--------------|----------------|-------------|------------|-------------|----------|----------|----------|----------|----------|--------|-------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | | ====== | ====== | | | | | ====== | | | ====== | ====== | | | 1 DC CR | 9222 | -1492 | -3171 | -797 | 383 | -4243 | -2180 | -4243 | -1661 | -820 | 362 | 84 | 212 | -355 | 173 | -151 | -845 | 127 | -503 | 52 | 167 | -150 | 0 | -9830 | | 2 DC NC | 3151 | -3965 | -3180 | -1631 | 128 | -207 | 1141 | -1514 | -88 | 506 | 422 | 107 | 604 | 602 | -278 | 119 | -296 | 120 | -211 | 57 | -285 | 13 | 0 | -4685 | | 3 MTG | -1789 | | -14680 | -2715 | 654 | -189 | 467 | 1718 | -117 | 717 | -2042 | 199 | 793 | 510 | 171 | 103 | 146 | 227 | -113 | 257 | 179 | 13 | 0 | -11942 | | 4 PG | 1877 | 4931 | -1338 | 756 | 493 | 712 | 2090 | 407 | -273 | 484 | 534 | 242 | -540 | -2594 | 399 | 160 | -702 | 129 | 247 | 74 | 193 | 34 | 0 | 8316 | | 5 ARLCR | 66 | 422 | 129 | 289 | 2542 | 3234 | 353 | -1753 | 208 | -1165 | 46 | 10 | 45 | 132 | 16 | 11 | 56 | 34 | -1143 | 13 | 44 | 3 | 0 | 3592 | | 6 ARNCR | -1244 | 1499 | 541 | 650 | 1866 | -3856 | -669 | -4735 | 454 | -378 | 120 | 23 | 121 | 152 | 38 | 25 | -4 | 105 | -699 | 37 | 117 | -7 | 0 | -5829 | | 7 ALX | -49 | 886 | 661 | 1519 | 579 | 52 | -1701 | 3196 | -369 | 557 | 86 | 19 | -600 | -46 | 55 | 40 | -126 | 87 | -71 | 29 | 155 | 12 | 0 | 4969 | | 8 FFX | -7239 | -2987 | -3905 | 994 | -849 | -1533 | 2458 | 457 | -760 | -5786 | -148 | 90 | 357 | 520 | -126 | -150 | -926 | 223 | -492 | -279 | -732 | 33 | 0 | -20780 | | 9 LDN | -1514 | 17 | 155 | -660 | 167 | -83 | 95 | 699 | -1074 | 144 | 311 | 36 | 66 | 95 | 8 | 8 | 36 | 269 | -195 | 285 | 55 | 125 | 0 | -1079 | | 10 PW | -503 | 291 | 56 | 502 | -602 | -509 | 283 | -5945 | 419 | 3049 | 68 | 13 | 61 | 151 | 23 | 20 | 94 | 322 | 256 | 71 | 376 | -135 | 0 | -1638 | | 11 FRD | 317 | 391 | 103 | -417 | 45 | 118 | 84 | 530 | 383 | -210 | -3938<br>-82 | 295<br>3777 | -334<br>-279 | 514 | 19 | 14 | 48 | 41 | 31 | 102 | 27 | 2 | 0 | -1835 | | 12 CAR | 79 | 103 | 15 | 251 | 10 | 24 | 19 | 109 | 47 | 19 | | | | -914 | _ | 20 | 19 | - | 8 | 78 | 7 | 1 | 0 | 3314 | | 13 HOW | 274 | 96<br>1437 | 1857<br>1253 | 2089<br>607 | 39<br>-56 | 127<br>-261 | -424 | 291<br>741 | 84<br>131 | 75<br>-177 | 90<br>507 | -879<br>-857 | -4158 | -1741<br>-5834 | 59 | 38<br>-118 | -269<br>424 | 29<br>53 | 29<br>84 | 71<br>67 | 25<br>74 | 12 | 0 | -2195 | | 14 AAR<br>15 CAL | 272<br>-466 | 186 | 174 | 267 | -56<br>15 | 37 | 329<br>53 | -555 | 131 | 28 | 19 | -857 | 906<br>-177 | -153 | -289<br>347 | 471 | 181 | 23 | 15 | 0/ | 15 | 13<br>14 | 0 | -695<br>503 | | 16 STM | -170 | 104 | 95 | -324 | 10 | 22 | 35 | -555 | 9 | 28 | 12 | 9 | 37 | 138 | -135 | -2823 | -249 | 7 | 22 | 2 | 38 | 59 | 0 | -3523 | | 17 CHS | -127 | 178 | 159 | -1220 | 49 | -127 | -451 | 456 | 40 | 101 | 45 | 18 | 125 | 22 | 429 | -494 | 2037 | 25 | 57 | 0 | 61 | 132 | 0 | 1523 | | 18 FAU | -127 | 95 | 184 | 108 | 28 | 88 | 74 | 204 | -79 | 662 | 34 | 10 | 24 | 44 | 427 | -424 | 2037 | 3273 | 66 | 56 | 145 | 132 | 0 | 4881 | | 18 FAU | -1131 | -641 | 179 | 204 | -1157 | 88 | 177 | -1161 | - 79<br>66 | 272 | 25 | 6 | 24 | 70 | 13 | 19 | 51 | | 1819 | 20 | -304 | -49 | 0 | -1448 | | 20 CL/JF | -1131<br>41 | 45 | 225 | 63 | 11 | 31 | 24 | 236 | -119 | 74 | -7 | 65 | 67 | 57 | 1.5 | 19 | 2.1 | 62<br>56 | 1819 | 7081 | -534 | -49<br>0 | 0 | 7436 | | 21 SP/FB | 123 | -446 | 138 | 151 | -535 | -449 | -429 | 185 | 52 | 582 | 21 | 65 | 20 | 59 | 12 | 32 | 51 | 134 | -174 | 7001 | -2369 | -909 | 0 | -3740 | | 22 KGEO | -275 | -154 | 10 | 28 | -555 | -445 | -429 | 29 | 32 | -133 | 1 | 0 | 20 | 11 | 12 | 53 | -482 | 134 | 71 | 0 | -1216 | -1482 | 0 | -3496 | | 23 EXTL | -2/3 | -134 | Τ0 | ۵٥ | 0 | 0 | 0 | 29 | 0 | -133 | U | 0 | 0 | 11 | 12 | 0.0 | -402 | , | 7 1 | 0 | -1210 | -1402 | 0 | -3490 | | 23 EAIL | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | | TOTAL | 737 | | -20341 | | 3822 | | 1840 | | -2634 | | -3512 | | -2623 | | 963 | | -722 | | -889 | | -3762 | | 0 | | | | | 4545 | | 714 | | -7004 | | -11088 | | -1379 | | 3274 | | -8557 | | -2608 | | 5344 | | 8077 | | -2376 | | -38181 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Ratio (Est/Obs) Auto Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|-------------|--------|-------------|--------------|--------|--------------|--------------|--------------|--------|--------|--------------|--------------|-------------|--------------|-------------|---------|--------|-------------|-------------|--------|---------|-------------|-------------|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.40 | 0.92 | 0.57 | 0.91 | 1.38 | 0.39 | 0.51 | 0.55 | 0.21 | 0.49 | 362.19 | 83.74 | 1.65 | 0.81 | 172.64 | 0.43 | 0.42 | 126.55 | 0.32 | 51.68 | 167.49 | 0.09 | <br> 0 | 0.89 | | 2 DC NC | 1.25 | 0.87 | 0.71 | 0.88 | 1.16 | 0.92 | 2.19 | 0.77 | 0.83 | 3.48 | 422.11 | 106.92 | 3.26 | 1.42 | 0.42 | 119.13 | 0.70 | 119.66 | 0.50 | 56.96 | 0.35 | 13.17 | 0 | 0.94 | | 3 MTG | 0.64 | 1.57 | 0.91 | 0.82 | 653.94 | 0.92 | 1.58 | 1.25 | 0.90 | 4.86 | 0.61 | 1.44 | 1.33 | 1.20 | 170.91 | 103.29 | 1.55 | 226.94 | 0.66 | 257.43 | 179.00 | 13.11 | 0 | 0.94 | | 4 PG | 1.39 | 1.59 | 0.90 | 1.01 | 3.09 | 1.60 | 5.14 | 1.09 | 0.59 | 2.73 | 534.19 | 242.32 | 0.88 | 0.77 | 2.06 | 1.70 | 0.79 | 128.54 | 246.93 | 73.96 | 193.43 | 33.66 | 0 | 1.05 | | 5 ARLCR | 1.05 | 1.38 | 1.20 | 1.53 | 3.14 | 2.97 | 1.28 | 0.64 | 208.18 | 0.25 | 46.09 | 9.63 | 45.02 | 131.76 | 16.24 | 10.87 | 56.25 | 33.71 | 0.05 | 12.75 | 43.63 | 3.21 | 0 | 1.24 | | 6 ARNCR | 0.67 | 1.89 | 1.35 | 1.50 | 1.72 | 0.82 | 0.85 | 0.68 | 3.01 | 0.74 | 120.28 | 23.28 | 121.28 | 1.86 | 38.21 | 24.90 | 0.97 | 104.87 | 0.19 | 37.03 | 116.97 | 7.39 | 0 | 0.89 | | 7 ALX | 0.98 | 1.59 | 2.13 | 2.51 | 1.59 | 1.01 | 0.91 | 1.46 | 0.54 | 1.70 | 85.52 | 18.51 | 0.15 | 0.87 | 54.60 | 39.97 | 0.66 | 86.61 | 0.76 | 28.55 | 154.83 | 11.50 | 0 | 1.13 | | 8 FFX | 0.33 | 0.62 | 0.66 | 1.28 | 0.77 | 0.87 | 1.34 | 1.00 | 0.93 | 0.63 | 0.76 | 89.58 | 7.65 | 2.85 | 0.47 | 0.36 | 0.33 | 1.32 | 0.65 | 0.46 | 0.46 | 32.62 | 0 | 0.93 | | 9 LDN | 0.12 | | 1.23 | | 166.63 | 0.88 | 1.33 | 1.07 | 0.97 | | 310.80 | 35.51 | 65.68 | 95.00 | 8.42 | 7.64 | 35.93 | 268.83 | 0.25 | 4.63 | 54.66 | 2.73 | 0 | 0.98 | | 10 PW | 0.48 | | 1.08 | 3.60 | 0.35 | 0.67 | 1.29 | 0.61 | 1.52 | 1.06 | 68.22 | 13.39 | 61.23 | | 23.16 | 19.57 | 94.13 | 1.54 | 1.20 | 71.00 | 2.00 | 0.18 | 0 | 0.98 | | 11 FRD | | 391.04 | 1.03 | 0.56 | 44.66 | 118.45 | 84.32 | 530.33 | | 0.29 | 0.91 | 1.26 | 0.72 | | 19.23 | 13.81 | 47.67 | 40.60 | 31.22 | 1.19 | 27.44 | 1.74 | 0 | 0.97 | | 12 CAR | | 103.13 | 1.02 | 251.02 | 9.65 | 23.59 | 19.29 | 108.55 | 46.92 | 18.81 | 0.95 | 1.18 | 0.74 | | 9.17 | 6.31 | 19.40 | 9.33 | 7.56 | 77.65 | 7.17 | 0.54 | 0 | 1.13 | | 13 HOW | 2.68 | | 2.19 | 1.99 | 38.70 | 126.58 | 0.22 | 2.39 | 83.80 | 75.45 | 1.13 | 0.46 | 0.87 | 0.79 | 58.55 | 37.62 | 0.31 | 28.83 | 28.68 | 70.88 | 25.45 | 3.66 | 0 | 0.96 | | 14 AAR | 1.29 | | 1.61 | 1.07 | 0.67 | | | | 130.67 | | | 0.32 | 1.15 | 0.93 | 0.62 | | 424.37 | 53.49 | 83.60 | 66.60 | 73.59 | 12.61 | 0 | 0.99 | | 15 CAL | | 185.59 | 174.19 | 1.52 | 15.05 | 36.55 | 52.96 | 0.17 | 10.92 | 27.82 | 19.32 | 8.94 | 0.26 | 0.76 | 1.03 | 1.62 | 1.73 | 7.39 | 14.81 | 3.76 | 14.80 | 14.06 | 0 | 1.03 | | 16 STM | | 103.79 | 95.11 | 0.53 | 9.83 | 22.29 | 35.06 | 0.16 | 8.76 | 21.26 | 12.28 | 5.47 | 36.65 | | 0.90 | 0.93 | 0.78 | 7.35 | 22.42 | 2.80 | 37.70 | 59.36 | 0 | 0.92 | | 17 CHS | 0.79 | | 1.60 | 0.68 | 49.32 | 0.52 | 0.34 | 455.78 | 40.21 | 100.99 | 44.88 | 17.94 | 124.50 | 1.06 | 428.75 | 0.65 | 1.09 | 24.58 | 56.85 | 9.02 | | 132.12 | 0 | 1.05 | | 18 FAU | 0.36 | | 184.18 | | 27.68 | 88.22 | 73.76 | 1.30 | 0.77 | 3.31 | 33.95 | 7.23 | | 44.29 | 6.54 | 7.07 | 23.44 | 1.83 | 1.56 | | 145.16 | 6.96 | 0 | 1.86 | | 19 STA | 0.14 | | | | 0.04 | 1.01 | 176.56 | 0.41 | 66.09 | 1.22 | 24.97 | 5.85 | 24.18 | 70.46 | 12.50 | 19.32 | 51.47 | 1.53 | 1.20 | 7.28 | 0.90 | 0.59 | 0 | 0.92 | | 20 CL/JF | 40.64 | | 224.92 | | 10.76 | 31.04 | 23.98 | 236.05 | 0.76 | 73.53 | 0.99 | 65.27 | 66.52 | 57.31 | 3.07 | 2.67 | 8.24 | 55.54 | 7.46 | 4.12 | 0.01 | 0.33 | 0 | 2.93 | | 21 SP/FB | 122.92 | | | 150.56 | 0.06 | 0.17 | 0.21 | 1.55 | 51.99 | 5.44 | 20.80 | 4.92 | 20.39 | 59.21 | 11.69 | 31.56 | 51.46 | 134.03 | 0.94 | 6.29 | 0.89 | 0.10 | 0 | 0.86 | | 22 KGEO | 0.04 | 0.06 | 10.26 | 27.93 | 2.66 | 6.12 | 9.30 | 29.25 | 2.77 | 0.19 | 1.29 | 0.41 | 3.18 | 10.57 | 11.88 | 52.68 | 0.19 | 6.92 | 71.43 | 0.34 | 0.08 | 0.55 | 0 | 0.40 | | 23 EXTL | U<br>====== | ====== | U<br>====== | U<br>======= | .===== | U<br>======= | U<br>======= | U<br>======= | <br> | .===== | U<br>======= | U<br>:====== | U<br>====== | U<br>======= | U<br>====== | .====== | .===== | U<br>====== | U<br>====== | <br> | .====== | U<br>====== | 0<br>====== | ====== | | TOTAL | 1.01 | | 0.91 | | 1.29 | | 1.04 | | 0.95 | | 0.94 | | 0.95 | | 1.06 | | 0.98 | | 0.95 | | 0.87 | | 0 | | | | | 1.06 | | 1.00 | | 0.87 | | 0.96 | | 0.98 | | 1.13 | | 0.93 | | 0.94 | | 2.00 | | 3.37 | | 0.50 | | 0.97 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Est Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|--------------|-------------|-------------|-----------|---------|-----------|------------|-------|----------|------------|----------|------------|----------|----------|------|-----|-----------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | ====== | | ====== | | | ====== | | ====== | | ====== | ====== | ====== | ====== | | ====== | ====== | | ====== | ====== | ====== | | | | | 1 DC CR | 29589 | 16192 | 3756 | 7586 | 1291 | 2492 | 1936 | 4698 | 318 | 699 | 207 | 45 | 461 | 1261 | 131 | 57 | 529 | 73 | 155 | 21 | 86 | 5 | 0 | 71588 | | 2 DC NC | 13947 | 25334 | 7092 | 11913 | 839 | 2066 | 1741 | 4424 | 292 | 615 | 248 | 59 | 756 | 1697 | 149 | 56 | 604 | 61 | 125 | 20 | 66 | 4 | 0 | 72107 | | 3 MTG | 2938 | | 133445 | 10528 | 535 | 1857 | 905 | 6192 | 610 | 534 | 2434 | 476 | 2664 | 2160 | 83 | 33 | 222 | 106 | 96 | 125 | 65 | 3 | 0 | 174943 | | 4 PG | 6462 | 12453 | 10090 | 99141 | 671 | 1685 | 2089 | 3281 | 157 | 421 | 235 | 118 | 3323 | 7282 | 588 | 210 | 2229 | 45 | 105 | 22 | 64 | 12 | 0 | 150685 | | 5 ARLCR | 1168 | 1385 | 672 | 785 | 3377 | 4390 | 1415 | 2750 | 155 | 335 | 28 | 5 | 35 | 101 | 12 | 10 | 47 | 21 | 44 | 5 | 24 | 1 | 0 | 16761 | | 6 ARNCR | 2327 | 2907<br>2192 | 1832 | 1856 | 4076 | 16067<br>3743 | 3441 | 9248<br>9075 | 519 | 985<br>1184 | 64 | 10 | 89 | 246 | 25 | 10 | 118 | 63<br>47 | 114 | 14<br>11 | 58<br>86 | 2 | 0 | 44069 | | 7 ALX<br>8 FFX | 1926<br>3410 | 4713 | 1003<br>6131 | 2366<br>3743 | 1437<br>2607 | 9700 | 15149<br>8691 | 9075 | 285<br>9057 | 8813 | 39<br>212 | 6<br>30 | 67<br>220 | 224<br>400 | 38 | 21<br>23 | 214<br>304 | 649 | 166<br>612 | 107 | 315 | 5 | 0 | 39285<br>253936 | | 9 LDN | 140 | 276 | 485 | 139 | 126 | 489 | 233 | 8144 | 34495 | 1042 | 212 | 12 | 220 | 31 | 43 | 2.5 | 11 | 192 | 26 | 287 | 17 | 9 | 0 1 | 46387 | | 10 PW | 399 | 578 | 458 | 415 | 281 | 928 | 985 | 7756 | 969 | 49871 | 21 / | 3 | 20 | 54 | 1 | 1 | 42 | 796 | 1371 | 31 | 547 | 13 | 0 1 | 65549 | | 10 PW | 160 | 220 | 2264 | 232 | 37 | 928<br>67 | 34 | 209 | 258 | 27 | 39678 | 1212 | 559 | 241 | 0 | - 4 | 14 | 15 | 13/1 | 479 | 547 | 1.3 | 0 1 | 45729 | | 12 CAR | 35 | 48 | 442 | 114 | 7 | 10 | 6 | 30 | 15 | 4 | 1161 | 23960 | 622 | 241 | 2 | 1 | 1.4 | 2 | 2 | 39 | 1 | 0 | 0 1 | 26734 | | 13 HOW | 373 | 794 | 2752 | 3523 | 37 | 91 | 62 | 229 | 30 | 25 | 511 | 622 | 26682 | 5750 | 26 | 12 | 55 | 10 | 9 | 32 | 7 | 1 | 0 | 41631 | | 14 AAR | 969 | 1614 | 2208 | 7475 | 105 | 229 | 189 | 408 | 44 | 66 | 239 | 244 | 5958 | 76316 | 352 | 59 | 238 | 17 | 28 | 24 | 22 | 4 | 0 | 96811 | | 15 CAL | 103 | 124 | 74 | 572 | 13 | 22 | 28 | 37 | 2 | 8 | 233 | 211 | 26 | 339 | 12225 | 1059 | 335 | 2 | 4 | 1 | 4 | 6 | 0 | 14991 | | 16 STM | 39 | 45 | 27 | 194 | 7 | 10 | 14 | 18 | 1 | 5 | 3 | 1 | 11 | 55 | 1051 | 34357 | 709 | 2 | 6 | 0 | 12 | 33 | 0 1 | 36600 | | 17 CHS | 384 | 542 | 208 | 2219 | 47 | 106 | 160 | 234 | 11 | 42 | 13 | 5 | 55 | 236 | 336 | 727 | 23379 | 8 | 21 | 2 | 22 | 93 | 0 1 | 28848 | | 18 FAU | 54 | 59 | 83 | 40 | 19 | 60 | 38 | 548 | 194 | 821 | 12 | 2 | 8 | 14 | 2 | 2 | 7 | 6971 | 148 | 36 | 102 | 3 | 0 1 | 9223 | | 19 STA | 109 | 114 | 76 | 89 | 34 | 96 | 114 | 476 | 24 | 1329 | 7 | 1 | 7 | 24 | 3 | 5 | 20 | 145 | 10462 | 2 | 2613 | 62 | 0 | 15811 | | 20 CL/JF | 18 | 17 | 105 | 19 | 5 | 12 | 9 | 93 | 283 | 31 | 396 | 34 | 30 | 21 | 1 | 0 | 2 | 35 | 2 | 9086 | 2 | 0 | 0 | 10200 | | 21 SP/FB | 64 | 59 | 48 | 51 | 21 | 51 | 63 | 245 | 16 | 524 | 5 | 1 | 5 | 17 | 3 | 10 | 19 | 96 | 2495 | 1 | 18169 | 90 | 0 j | 22054 | | 22 KGEO | 4 | 4 | 3 | 10 | 1 | 2 | 3 | 7 | 0 | 13 | 0 | 0 | 1 | 3 | 5 | 30 | 84 | 3 | 63 | 0 | 91 | 1745 | 0 | 2074 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | TOTAL | 64618 | | 173254 | | 15575 | | 37305 | | 47735 | | 45734 | | 41624 | | 15088 | | 29186 | | 16061 | | 22379 | | 0 | | | | | 78602 | | 153010 | | 44174 | | 252251 | | 67393 | | 26847 | | 96699 | | 36684 | | 9359 | | 10345 | | 2092 | | 1286017 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Obs Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|------|-------|--------|--------|-------|--------|--------|--------|--------|--------|--------|-------|--------|------|--------|------|--------|------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | | | | | | | | | | | | | | | | | ====== | | | | | ====== | | 1 DC CR | 19279 | 14717 | 6825 | 8432 | 659 | 5906 | 3933 | 8302 | 1221 | 478 | 0 | 0 | 0 | 1485 | 0 | 0 | 970 | 0 | 131 | 0 | 0 | 164 | 0 | 72503 | | 2 DC NC | 10238 | 28866 | 10535 | 13000 | 799 | 2534 | 957 | 6145 | 520 | 204 | 0 | 0 | 130 | 1442 | 477 | 0 | 979 | 0 | 122 | 0 | 131 | 0 | 0 | 77080 | | 3 MTG | 4842 | 5903 | 150383 | 13746 | 0 | 2363 | 807 | 5998 | 1132 | 186 | 5059 | 457 | 2367 | 2536 | 0 | 0 | 0 | 0 | 332 | 0 | 0 | 0 | 0 | 196111 | | 4 PG | 4676 | 7685 | 12914 | 95023 | 236 | 878 | 505 | 4376 | 660 | 280 | 0 | 0 | 3913 | 10168 | 375 | 0 | 2014 | 0 | 0 | 0 | 0 | 0 | 0 | 143704 | | 5 ARLCR | 765 | 1106 | 645 | 546 | 1190 | 1639 | 1267 | 3475 | 0 | 619 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11251 | | 6 ARNCR | 3566 | 1574 | 1565 | 905 | 1951 | 18578 | 3874 | 14375 | 226 | 638 | 0 | 0 | 0 | 178 | 0 | 0 | 145 | 0 | 863 | 0 | 0 | 0 | 0 | 48438 | | 7 ALX | 1861 | 1515 | 584 | 1006 | 869 | 3122 | 17940 | 6642 | 588 | 796 | 0 | 0 | 706 | 371 | 0 | 0 | 366 | 0 | 298 | 0 | 0 | 0 | 0 | 36664 | | 8 FFX | 8845 | 7186 | 10852 | 3598 | 2134 | 11143 | | 196971 | 9401 | 14508 | 611 | 0 | 54 | 281 | 239 | 236 | 1390 | 701 | 1039 | 327 | 1347 | 0 | 0 | 277485 | | 9 LDN | 1275 | 339 | 461 | 986 | 0 | 694 | 285 | 8126 | 32178 | 1149 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 261 | 79 | 0 | 0 | 0 | 45833 | | 10 PW | 0 | 349 | 738 | 193 | 0 | 1070 | 971 | 14146 | 806 | 46103 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 593 | 799 | 0 | 129 | 164 | 0 | 66062 | | 11 FRD | 0 | 0 | 2661 | 950 | 0 | 0 | 0 | 0 | 0 | 298 | 44478 | 974 | 882 | 0 | 0 | 0 | 0 | 0 | 0 | 538 | 0 | 0 | 0 | 50781 | | 12 CAR | 0 | 0 | 678 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1134 | 18976 | 1070 | 1024 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22881 | | 13 HOW | 163 | 709 | 1566 | 1763 | 0 | 0 | 540 | 210 | 0 | 0 | 386 | 1627 | 31766 | 8277 | 0 | 0 | 391 | 0 | 0 | 0 | 0 | 0 | 0 | 47398 | | 14 AAR | 661 | 604 | 2043 | 6800 | 169 | 578 | 0 | 191 | 0 | 362 | 0 | 967 | 5932 | 80814 | 764 | 263 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100149 | | 15 CAL | 617 | 0 | 0 | 512 | 0 | 0 | 0 | 673 | 0 | 0 | 0 | 0 | 239 | 624 | 12369 | 758 | 249 | 0 | 0 | 0 | 0 | 0 | 0 | 16040 | | 16 STM | 0 | 0 | 0 | 459 | 0 | 0 | 0 | 522 | 0 | 0 | 0 | 0 | 0 | 0 | 1340 | 34552 | 1134 | 0 | 0 | 0 | 0 | 0 | 0 | 38007 | | 17 CHS | 109 | 492 | 0 | 2965 | 0 | 265 | 679 | 0 | 0 | 0 | 0 | 0 | 0 | 401 | 0 | 1401 | 19875 | 0 | 0 | 0 | 0 | 0 | 0 | 26187 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 686 | 352 | 287 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3397 | 0 | 0 | 0 | 0 | 0 | 4722 | | 19 STA | 0 | 384 | 0 | 0 | 0 | 0 | 0 | 858 | 0 | 1231 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6958 | 0 | 2161 | 118 | 0 | 11710 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 489 | 0 | 546 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2272 | 541 | 0 | 0 | 3848 | | 21 SP/FB | 0 | 253 | 0 | 0 | 567 | 541 | 0 | 337 | 0 | 131 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2493 | 0 | 18908 | 594 | 0 | 23825 | | 22 KGEO | 286 | 164 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 164 | 0 | 0 | 0 | 0 | 0 | 0 | 597 | 0 | 0 | 0 | 903 | 3265 | 0 | 5380 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | ====== | ====== | | ====== | | | ====== | ====== | | ====== | ====== | ====== | ====== | | ====== | | ====== | | ====== | | ====== | | | ====== | | TOTAL | 57185 | | 202449 | | 8574 | | 38382 | | 47572 | | 52215 | | 47059 | | 15564 | | 28111 | | 13296 | | 24119 | | 0 | | | | | 71849 | | 150884 | | 49312 | | 272033 | | 67435 | | 23001 | | 107600 | | 37210 | | 4691 | | 3215 | | 4306 | | 1326060 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Difference (Est-Obs) Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|------|--------|--------|--------|------|-------|-------|--------|--------|--------|------|------|-------|--------|------|------|--------|--------|--------|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | ====== | ====== | ====== | | | ====== | ====== | | | | ====== | ====== | ====== | | | | | | | ====== | | ====== | ====== | | 1 DC CR | 10310 | 1475 | -3068 | -847 | 632 | -3414 | -1997 | -3604 | -903 | 221 | 207 | 45 | 461 | -224 | 131 | 57 | -441 | 73 | 24 | 21 | 86 | -159 | 0 | -915 | | 2 DC NC | 3709 | -3532 | -3443 | -1087 | 40 | -469 | 784 | -1721 | -228 | 411 | 248 | 59 | 626 | 254 | -328 | 56 | -375 | 61 | 3 | 20 | -65 | 4 | 0 | -4973 | | 3 MTG | -1904 | | -16938 | -3218 | 535 | -506 | 98 | 194 | -522 | 348 | -2626 | 19 | 297 | -376 | 83 | 33 | 222 | 106 | -236 | 125 | 65 | 3 | 0 | -21168 | | 4 PG | 1786 | 4768 | -2824 | 4118 | 435 | 807 | 1584 | -1095 | -502 | 141 | 235 | 118 | -590 | -2886 | 213 | 210 | 214 | 45 | 105 | 22 | 64 | 12 | 0 | 6982 | | 5 ARLCR | 403 | 279 | 27 | 239 | 2187 | 2752 | 148 | -725 | 155 | -284 | 28 | 5 | 35 | 101 | 12 | 5 | 47 | 21 | 44 | 5 | 24 | 1 | 0 | 5510 | | 6 ARNCR | -1239 | 1333 | 267 | 951 | 2125 | -2511 | -433 | -5127 | 293 | 346 | 64 | 10 | 89 | 68 | 25 | 10 | -27 | 63 | -749 | 14 | 58 | 2 | 0 | -4369 | | 7 ALX | 64 | 677 | 419 | 1360 | 568 | 621 | -2791 | 2433 | -303 | 388 | 39 | 6 | -639 | -146 | 38 | 21 | -152 | 47 | -132 | 11 | 86 | 5 | 0 | 2621 | | 8 FFX | -5435 | -2473 | -4721 | 145 | 473 | -1443 | 2067 | -2822 | -344 | -5695 | -400 | 30 | 166 | 119 | -196 | -213 | -1086 | -51 | -427 | -220 | -1032 | 9 | 0 | -23549 | | 9 LDN | -1135 | -63 | 23 | -847 | 126 | -205 | -53 | 18 | 2317 | -107 | 217 | 12 | 23 | 31 | 1 | 1 | 11 | 192 | -235 | 209 | 17 | 0 | 0 | 554 | | 10 PW | 399 | 229 | -279 | 223 | 281 | -142 | 14 | -6391 | 163 | 3768 | 21 | 3 | 20 | 54 | 6 | 4 | 42 | 203 | 572 | 31 | 418 | -151 | 0 | -512 | | 11 FRD | 160 | 220 | -398 | -718 | 37 | 67 | 34 | 209 | 258 | -271 | -4800 | 238 | -322 | 241 | 5 | 3 | 14 | 15 | 9 | -59 | 7 | 0 | 0 | -5052 | | 12 CAR | 35 | 48 | -236 | 114 | 7 | 10 | 6 | 30 | 15 | 4 | 28 | 4984 | -448 | -796 | 2 | 1 | 5 | 2 | 2 | 39 | 1 | 0 | 0 | 3853 | | 13 HOW | 210 | 84 | 1185 | 1761 | 37 | 91 | -478 | 19 | 30 | 25 | 125 | -1005 | -5083 | -2527 | 26 | 12 | -336 | 10 | 9 | 32 | 7 | 1 | 0 | -5767 | | 14 AAR | 308 | 1010 | 166 | 675 | -64 | -349 | 189 | 217 | 44 | -296 | 239 | -723 | 26 | -4498 | -412 | -204 | 238 | 17 | 28 | 24 | 22 | 4 | 0 | -3339 | | 15 CAL | -513 | 124 | 74 | 60 | 13 | 22 | 28 | -636 | 2 | 8 | 5 | 2 | -212 | -285 | -144 | 301 | 86 | 2 | 4 | 1 | 4 | 6 | 0 | -1050 | | 16 STM | 39 | 45 | 27 | -265 | 7 | 10 | 14 | -503 | 1 | 5 | 3 | 1 | 11 | 55 | -289 | -195 | -425 | 2 | 6 | 0 | 12 | 33 | 0 | -1407 | | 17 CHS | 274 | 50 | 208 | -746 | 47 | -159 | -519 | 234 | 11 | 42 | 13 | 5 | 55 | -165 | 336 | -673 | 3503 | 8 | 21 | 2 | 22 | 93 | 0 | 2661 | | 18 FAU | 54 | 59 | 83 | 40 | 19 | 60 | 38 | -138 | -158 | 534 | 12 | 2 | 8 | 14 | 2 | 2 | 7 | 3573 | 148 | 36 | 102 | 3 | 0 | 4500 | | 19 STA | 109 | -270 | 76 | 89 | 34 | 96 | 114 | -382 | 24 | 98 | 7 | 1 | 7 | 24 | 3 | 5 | 20 | 145 | 3504 | 2 | 452 | -56 | 0 | 4101 | | 20 CL/JF | 18 | 17 | 105 | 19 | 5 | 12 | 9 | 93 | -206 | 31 | -150 | 34 | 30 | 21 | 1 | 0 | 2 | 35 | 2 | 6814 | -539 | 0 | 0 | 6352 | | 21 SP/FB | 64 | -194 | 48 | 51 | -546 | -489 | 63 | -93 | 16 | 393 | 5 | 1 | 5 | 17 | 3 | 10 | 19 | 96 | 1 | 1 | -738 | -505 | 0 | -1771 | | 22 KGEO | -283 | -160 | 3 | 10 | 1 | 2 | 3 | 7 | 0 | -151 | 0 | 0 | 1 | 3 | 5 | 30 | -513 | 3 | 63 | 0 | -812 | -1520 | 0 | -3306 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 7433 | ====== | -29195 | ====== | 7001 | ====== | -1078 | ====== | 162 | ===== | -6481 | ====== | -5435 | ====== | -476 | | 1075 | .===== | 2766 | | -1740 | ====== | 0 l | ====== | | | | 6753 | | 2126 | | -5137 | , | -19782 | | -41 | | 3847 | | -10901 | | -525 | | 4668 | | 7130 | | -2214 | - ' | -40043 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Ratio (Est/Obs) Auto Driver | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------------|---------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|---------|---------|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.53 | 1.10 | 0.55 | 0.90 | 1.96 | 0.42 | 0.49 | 0.57 | 0.26 | 1.46 | 206.90 | 45.24 | 460.59 | 0.85 | 131.06 | 57.22 | 0.55 | 72.94 | 1.18 | 20.59 | 86.05 | 0.03 | <br>0 l | 0.99 | | 2 DC NC | 1.36 | 0.88 | 0.67 | 0.92 | 1.05 | 0.82 | 1.82 | 0.72 | 0.56 | 3.01 | 247.72 | 59.43 | 5.83 | 1.18 | 0.31 | 55.77 | 0.62 | 60.81 | 1.02 | 20.03 | 0.50 | 4.01 | ō | 0.94 | | 3 MTG | 0.61 | 1.51 | 0.89 | 0.77 | 534.53 | 0.79 | 1.12 | 1.03 | 0.54 | 2.88 | 0.48 | 1.04 | 1.13 | 0.85 | 82.65 | 32.84 | 222.26 | 105.70 | 0.29 | 125.48 | 65.04 | 3.43 | 0 | 0.89 | | 4 PG | 1.38 | 1.62 | 0.78 | 1.04 | 2.85 | 1.92 | 4.14 | 0.75 | 0.24 | 1.50 | 235.32 | 117.78 | 0.85 | 0.72 | 1.57 | 209.70 | 1.11 | 45.22 | 105.15 | 22.32 | 64.02 | 11.99 | 0 j | 1.05 | | 5 ARLCR | 1.53 | 1.25 | 1.04 | 1.44 | 2.84 | 2.68 | 1.12 | 0.79 | 154.84 | 0.54 | 27.74 | 5.06 | 35.43 | 100.84 | 11.73 | 5.47 | 47.02 | 21.24 | 43.61 | 5.34 | 23.95 | 1.34 | 0 | 1.49 | | 6 ARNCR | 0.65 | 1.85 | 1.17 | 2.05 | 2.09 | 0.86 | 0.89 | 0.64 | 2.30 | 1.54 | 64.01 | 9.59 | 88.99 | 1.38 | 24.96 | 9.63 | 0.82 | 63.20 | 0.13 | 13.52 | 57.70 | 2.24 | 0 | 0.91 | | 7 ALX | 1.03 | 1.45 | 1.72 | 2.35 | 1.65 | 1.20 | 0.84 | 1.37 | 0.48 | 1.49 | 39.07 | 6.36 | 0.09 | 0.61 | 38.45 | 20.57 | 0.58 | 47.11 | 0.56 | 10.58 | 86.27 | 4.58 | 0 | 1.07 | | 8 FFX | 0.39 | 0.66 | 0.56 | 1.04 | 1.22 | 0.87 | 1.31 | 0.99 | 0.96 | 0.61 | 0.35 | 29.57 | 4.09 | 1.42 | 0.18 | 0.10 | 0.22 | 0.93 | 0.59 | 0.33 | 0.23 | 8.51 | 0 | 0.92 | | 9 LDN | 0.11 | 0.81 | 1.05 | 0.14 | 126.32 | 0.70 | 0.82 | 1.00 | 1.07 | 0.91 | 216.70 | 11.58 | 22.61 | 30.88 | 1.47 | 1.17 | 10.74 | 192.48 | 0.10 | 3.65 | 16.99 | 0.48 | 0 | 1.01 | | 10 PW | 399.07 | 1.66 | 0.62 | 2.16 | 281.14 | 0.87 | 1.01 | 0.55 | 1.20 | 1.08 | 20.80 | 2.79 | 20.23 | 53.89 | 6.45 | 4.47 | 42.06 | 1.34 | 1.72 | 30.63 | 4.24 | 0.08 | 0 | 0.99 | | 11 FRD | 160.36 | | 0.85 | 0.24 | 36.72 | 66.61 | 34.02 | 208.64 | 258.11 | 0.09 | 0.89 | 1.24 | 0.63 | 241.22 | 4.85 | 2.89 | 14.06 | 14.84 | 8.93 | 0.89 | 6.68 | 0.27 | 0 | 0.90 | | 12 CAR | 34.84 | 48.49 | | 114.07 | 6.86 | 9.90 | 5.93 | 30.09 | 14.58 | 4.23 | 1.02 | 1.26 | 0.58 | 0.22 | 1.95 | 1.19 | 5.12 | 2.30 | 1.66 | 39.39 | 1.31 | 0.09 | 0 | 1.17 | | 13 HOW | 2.29 | 1.12 | 1.76 | 2.00 | 37.32 | 90.66 | 0.11 | 1.09 | 30.24 | 25.14 | 1.32 | 0.38 | 0.84 | 0.69 | 26.27 | 11.55 | 0.14 | 9.86 | 8.66 | 31.55 | 6.80 | 0.90 | 0 | 0.88 | | 14 AAR | 1.47 | 2.67 | 1.08 | 1.10 | 0.62 | 0.40 | 188.51 | 2.14 | 44.19 | | 239.05 | 0.25 | 1.00 | 0.94 | 0.46 | 0.23 | 237.84 | 17.46 | 28.43 | 24.15 | 21.74 | 3.81 | 0 | 0.97 | | 15 CAL | 0.17 | | 74.31 | 1.12 | 13.31 | 22.26 | 27.71 | 0.06 | 2.07 | 7.54 | 4.87 | 1.88 | 0.11 | 0.54 | 0.99 | 1.40 | 1.34 | 1.78 | 4.12 | 0.69 | 3.93 | 6.10 | 0 | 0.93 | | 16 STM | 38.78 | | 27.46 | 0.42 | 6.91 | 9.56 | 13.52 | 0.04 | 1.36 | 4.85 | 2.61 | 0.95 | 11.05 | 55.26 | 0.78 | 0.99 | 0.63 | 1.59 | 5.68 | 0.30 | 12.05 | 33.06 | 0 | 0.96 | | 17 CHS | 3.50 | | 207.56 | 0.75 | 47.07 | 0.40 | 0.24 | 234.41 | 11.30 | 41.61 | 12.67 | 4.69 | 55.07 | 0.59 | 336.19 | 0.52 | 1.18 | 7.59 | 20.76 | 2.20 | 22.35 | 92.84 | 0 | 1.10 | | 18 FAU | 54.38 | 58.57 | 82.99 | 39.70 | 18.76 | 60.04 | 38.35 | 0.80 | 0.55 | 2.86 | 12.40 | 1.86 | 8.08 | 14.08 | 1.60 | 1.60 | 7.35 | | | | 101.64 | 3.34 | 0 | 1.95 | | 19 STA | 108.86 | 0.30 | 75.69 | 88.80 | 34.38 | 96.43 | 114.10 | 0.55 | 23.60 | 1.08 | 6.92 | 1.25 | 7.15 | 23.62 | 3.35 | 4.73 | 19.65 | 145.18 | 1.50 | 1.95 | 1.21 | 0.53 | 0 | 1.35 | | 20 CL/JF | 17.73 | 17.43 | 104.82 | 18.86 | 5.27 | 12.48 | 8.66 | 92.74 | 0.58 | 30.53 | 0.73 | 34.32 | 29.51 | 20.50 | 0.50 | 0.30 | 1.91 | 35.31 | 1.95 | 4.00 | 0.00 | 0.03 | 0 | 2.65 | | 21 SP/FB | 63.78 | 0.23 | 48.40 | 51.28 | 0.04 | 0.10 | 63.18 | 0.72 | 15.51 | 4.00 | 4.88 | 0.69 | 5.09 | 17.19 | 3.03 | 10.06 | 19.47 | 95.52 | 1.00 | 1.43 | 0.96 | 0.15 | 0 | 0.93 | | 22 KGEO | 0.01 | 0.02 | 2.51 | 9.92 | 1.39 | 2.10 | 3.41 | 6.87 | 0.48 | 0.08 | 0.19 | 0.06 | 0.73 | 3.11 | 5.29 | 30.28 | 0.14 | 3.24 | 62.98 | 0.03 | 0.10 | 0.53 | 0 | 0.39 | | 23 EXTL | .===== | | U<br>======= | .====== | u | .===== | | U<br>======= | U | .===== | | <br> | | <br> | U<br> | U<br>======= | | U<br> | | U | U | .====== | 0 | | | TOTAL | 1.13 | | 0.86 | | 1.82 | | 0.97 | | 1.00 | | 0.88 | | 0.88 | | 0.97 | | 1.04 | | 1.21 | | 0.93 | | 0 | | | | | 1.09 | | 1.01 | | 0.90 | | 0.93 | | 1.00 | | 1.17 | | 0.90 | | 0.99 | | 2.00 | | 3.22 | | 0.49 | | 0.97 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Est Motr Psn | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|-------|-------|--------|--------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|------|--------|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 49593 | 28226 | 6390 | 9146 | 3195 | 5655 | 3434 | 6167 | 447 | 821 | 362 | 84 | 539 | 1546 | 174 | 112 | 611 | 127 | 232 | 52 | 168 | 14 | 0 | 117094 | | 2 DC NC | 28340 | 35066 | 10490 | 13508 | 1891 | 3777 | 2643 | 5426 | 432 | 723 | 422 | 107 | 872 | 2045 | 199 | 119 | 684 | 120 | 209 | 57 | 154 | 13 | 0 | 107299 | | 3 MTG | 6484 | | 155608 | 12239 | 938 | 2394 | 1348 | 8602 | 1015 | 919 | 3241 | 655 | 3162 | 3047 | 171 | 103 | 414 | 227 | 219 | 257 | 179 | 13 | 0 | 211985 | | 4 PG | 9454 | 13827 | | 105876 | 887 | 2026 | 2648 | 4842 | 386 | 778 | 534 | 242 | 3959 | 8825 | 774 | 390 | 2623 | 129 | 247 | 74 | 193 | 34 | 0 | 171072 | | 5 ARLCR | 3045 | 1854 | 893 | 860 | 4113 | 5917 | 1935 | 3244 | 208 | 389 | 46 | 10 | 45 | 132 | 16 | 11 | 56 | 34 | 61 | 13 | 44 | 3 | 0 | 22928 | | 6 ARNCR | 5561 | 3718 | 2314 | 1995 | 5948 | 19151 | 4572 | 10780 | 680 | 1113 | 120 | 23 | 121 | 330 | 38 | 25 | 140 | 105 | 164 | 37 | 117 | 7 | 0 | 57062 | | 7 ALX | 3324 | 2555 | 1318 | 2540 | 1844 | 4597 | 17821 | 10308 | 429 | 1361 | 86 | 19 | 106 | 324 | 55 | 40 | 240 | 87 | 227 | 29 | 155 | 12 | 0 | 47474 | | 8 FFX | 5641 | 5040 | 7732 | 4641 | 3111 | 10711 | 10155 | 219063 | 10286 | 9881 | 466 | 90 | 419 | 804 | 115 | 87 | 472 | 924 | 910 | 242 | 617 | 33 | 0 | 291437 | | 9 LDN | 384 | 360 | 830 | 326 | 194 | 640 | 385 | 10224 | 35846 | 1299 | 311 | 36 | 66 | 95 | 8 | 8 | 36 | 269 | 66 | 364 | 55 | 3 | 0 | 51804 | | 10 PW | 743 | 657 | 814 | 708 | 368 | 1088 | 1291 | 9554 | 1227 | 51524 | 69 | 13 | 63 | 152 | 24 | 20 | 96 | 915 | 1528 | 71 | 750 | 29 | 0 | 71707 | | 11 FRD | 325 | 392 | 3252 | 533 | 45 | 119 | 84 | 531 | 383 | 88 | 42472 | 1435 | 866 | 514 | 19 | 14 | 48 | 41 | 31 | 639 | 27 | 2 | 0 | 51860 | | 12 CAR | 79 | 103 | 693 | 251 | 10 | 24 | 19 | 109 | 47 | 19 | 1441 | 24862 | 791 | 400 | 9 | 6 | 19 | 9 | 8 | 78 | 7 | 1 | 0 | 28983 | | 13 HOW | 627 | 968 | 3445 | 4203 | 53 | 138 | 120 | 515 | 84 | 78 | 795 | 748 | 28303 | 6536 | 59 | 38 | 122 | 29 | 29 | 71 | 25 | 4 | 0 | 46989 | | 14 AAR | 1586 | 2081 | 3317 | 9104 | 134 | 334 | 336 | 970 | 131 | 189 | 507 | 400 | 6838 | 81823 | 475 | 145 | 424 | 53 | 84 | 67 | 74 | 13 | 0 | 109083 | | 15 CAL | 159 | 187 | 175 | 779 | 16 | 37 | 53 | 118 | 11 | 28 | 19 | 9 | 62 | 472 | 12717 | 1229 | 430 | 7 | 15 | 4 | 15 | 14 | 0 | 16555 | | 16 STM | 94 | 104 | 95 | 365 | 10 | 22 | 35 | 81 | 9 | 21 | 12 | 5 | 37 | 138 | 1205 | 36037 | 886 | 7 | 22 | 3 | 38 | 59 | 0 | 39286 | | 17 CHS | 615 | 694 | 435 | 2632 | 58 | 144 | 229 | 462 | 40 | 103 | 45 | 18 | 125 | 423 | 429 | 907 | 24452 | 25 | 57 | 9 | 61 | 132 | 0 | 32095 | | 18 FAU | 100 | 95 | 184 | 108 | 28 | 88 | 74 | 899 | 273 | 949 | 34 | 7 | 24 | 44 | 7 | 7 | 23 | 7219 | 184 | 56 | 145 | 7 | 0 j | 10556 | | 19 STA | 178 | 163 | 179 | 204 | 47 | 133 | 177 | 811 | 66 | 1503 | 25 | 6 | 24 | 70 | 13 | 19 | 51 | 181 | 10751 | 7 | 2762 | 69 | o i | 17438 | | 20 CL/JF | 41 | 45 | 225 | 63 | 11 | 31 | 24 | 236 | 371 | 74 | 539 | 65 | 67 | 57 | 3 | 3 | 8 | 56 | 7 | 9353 | 7 | 0 | o i | 11284 | | 21 SP/FB | 124 | 115 | 138 | 151 | 33 | 91 | 117 | 546 | 52 | 713 | 21 | 5 | 20 | 59 | 12 | 32 | 51 | 134 | 2617 | 6 | 18703 | 100 | o i | 23839 | | 22 KGEO | 11 | 10 | 10 | 28 | 3 | 6 | 9 | 30 | 3 | 31 | 1 | 0 | 3 | 11 | 12 | 53 | 115 | 7 | 71 | 0 | 105 | 1783 | o i | 2303 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ======= | | ====== | | | | | | | ====== | | | | | | | | | | | | | | -====: | | | TOTAL | 116507 | | 210859 | | 22937 | | 47509 | | 52425 | | 51568 | | 46512 | | 16532 | | 32004 | | 17739 | | 24401 | | 0 | I | | | | 107009 | | 170260 | | 57124 | | 293516 | | 72604 | | 28839 | | 107847 | | 39404 | | 10702 | | 11487 | | 2345 | | 1540132 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Obs Motr Psn | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|--------|-------|-------|-------|------|-------|------|-------|-------|-----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1.2 | 1.3 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 43803 | 29683 | 16183 | 17012 | 1531 | 11114 | 6491 | 14321 | 2440 | 2852 | 234 | 0 | 858 | 2101 | 495 | 263 | 2970 | 215 | 988 | 0 | 308 | 164 | 0 l | 154028 | | 2 DC NC | 22879 | 34361 | 11816 | 15564 | 1049 | 3058 | 1069 | 8283 | 520 | 601 | 0 | 0 | 268 | 1442 | 716 | 0 | 979 | 0 | 688 | 0 | 439 | 0 | 0 i | 103732 | | 3 MTG | 11125 | 8519 | 165311 | 15593 | 0 | 2659 | 807 | 6768 | 1132 | 186 | 5283 | 457 | 2367 | 2536 | 0 | 0 | 268 | 0 | 332 | 283 | 0 | 0 | 0 j | 223625 | | 4 PG | 8211 | 10089 | 14193 | 106273 | 850 | 1678 | 505 | 4655 | 660 | 697 | 0 | 0 | 4499 | 11419 | 375 | 230 | 3672 | 0 | 0 | 0 | 0 | 0 | 0 | 168005 | | 5 ARLCR | 1491 | 2015 | 645 | 1160 | 1545 | 3287 | 1626 | 5700 | 256 | 1698 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1204 | 0 | 0 | 0 | 0 | 20627 | | 6 ARNCR | 8695 | 3073 | 2267 | 1995 | 3005 | 21837 | 4987 | 16073 | 226 | 1484 | 0 | 0 | 0 | 178 | 0 | 0 | 145 | 0 | 863 | 0 | 0 | 0 | 0 | 64827 | | 7 ALX | 3550 | 1515 | 584 | 1006 | 1273 | 3999 | 19145 | 7094 | 798 | 796 | 0 | 0 | 706 | 371 | 0 | 0 | 366 | 0 | 298 | 0 | 0 | 0 | 0 | 41499 | | 8 FFX | 15622 | 8840 | 11499 | 3598 | 3857 | 12118 | 7520 | 217755 | 11043 | 15599 | 611 | 0 | 54 | 281 | 239 | 236 | 1390 | 701 | 1401 | 522 | 1347 | 0 | 0 | 314233 | | 9 LDN | 1725 | 339 | 671 | 986 | 0 | 694 | 285 | 9504 | 36892 | 1149 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 261 | 79 | 0 | 0 | 0 | 52585 | | 10 PW | 965 | 1100 | 738 | 193 | 1172 | 1966 | 971 | 15813 | 806 | 48415 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 593 | 1272 | 0 | 374 | 164 | 0 | 74542 | | 11 FRD | 0 | 0 | 3277 | 950 | 0 | 0 | 0 | 0 | 0 | 298 | 46631 | 1140 | 1200 | 0 | 0 | 0 | 0 | 0 | 0 | 538 | 0 | 0 | 0 | 54032 | | 12 CAR | 0 | 0 | 678 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1523 | 21085 | 1070 | 1313 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25669 | | 13 HOW | 395 | 847 | 1566 | 2109 | 181 | 0 | 540 | 210 | 0 | 0 | 705 | 1627 | 32740 | 8277 | 0 | 0 | 391 | 0 | 0 | 0 | 0 | 0 | 0 | 49588 | | 14 AAR | 2930 | 604 | 2043 | 8490 | 169 | 578 | 0 | 191 | 0 | 362 | 0 | 1257 | 5932 | 87657 | 764 | 263 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 111241 | | 15 CAL | 617 | 0 | 0 | 512 | 0 | 366 | 0 | 673 | 0 | 0 | 0 | 0 | 239 | 624 | 12369 | 758 | 249 | 0 | 0 | 0 | 0 | 0 | 0 | 16406 | | 16 STM | 263 | 0 | 0 | 689 | 0 | 0 | 0 | 522 | 0 | 0 | 0 | 0 | 0 | 0 | 1340 | 38847 | 1134 | 0 | 0 | 0 | 0 | 0 | 0 | 42795 | | 17 CHS | 744 | 492 | 268 | 3852 | 0 | 265 | 679 | 0 | 0 | 0 | 0 | 0 | 0 | 401 | 0 | 1401 | 22353 | 0 | 0 | 0 | 0 | 0 | 0 | 30454 | | 18 FAU | 275 | 0 | 0 | 0 | 0 | 0 | 0 | 686 | 352 | 287 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3946 | 118 | 0 | 0 | 0 | 0 | 5664 | | 19 STA | 1891 | 1303 | 0 | 0 | 1204 | 533 | 0 | 1962 | 0 | 1231 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 118 | 8932 | 0 | 3066 | 118 | 0 | 20359 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 489 | 0 | 546 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2272 | 541 | 0 | 0 | 3848 | | 21 SP/FB | 0 | 561 | 0 | 0 | 567 | 541 | 546 | 337 | 0 | 131 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2791 | 0 | 21072 | 1009 | 0 | 27556 | | 22 KGEO | 286 | 164 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 164 | 0 | 0 | 0 | 0 | 0 | 0 | 597 | 0 | 0 | 0 | 1322 | 3265 | 0 | 5799 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | <br> | 0 | 0 | 0 | 0<br> | 0 | 0 | | TOTAL | 125467 | | 231736 | | 16404 | | 45171 | | 55614 | | 55532 | | 49932 | | 16298 | | 34513 | | 19149 | | 28469 | | 0 | | | | | 103507 | | 179981 | | 64692 | | 310547 | | 75950 | | 25565 | | 116601 | | 41997 | | 5574 | | 3693 | | 4721 | | 1611114 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Difference (Est-Obs) Motorized Person | | DESTIN. | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|--------|--------|--------|------|-------|--------|------|--------|------|-------|-------|--------|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | ====== | ====== | ====== | ====== | ====== | | ====== | ====== | ====== | | ====== | ====== | ====== | ====== | | | ====== | | ====== | | | | ====== | ====== | | 1 DC CR | 5790 | -1458 | -9793 | -7866 | 1664 | -5459 | -3058 | -8154 | -1993 | -2031 | 128 | 84 | -318 | -555 | -321 | -151 | -2358 | -89 | -756 | 52 | -140 | -150 | 0 | -36934 | | 2 DC NC | 5461 | 705 | -1326 | -2056 | 842 | 719 | 1574 | -2857 | -88 | 123 | 422 | 107 | 605 | 602 | -517 | 119 | -295 | 120 | -479 | 57 | -285 | 13 | 0 | 3567 | | 3 MTG | -4641 | 2230 | -9702 | -3354 | 938 | -264 | 541 | 1834 | -117 | 733 | -2042 | 199 | 795 | 510 | 171 | 103 | 146 | 227 | -113 | -26 | 179 | 13 | 0 | -11640 | | 4 PG | 1242 | 3738 | -1869 | -397 | 38 | 348 | 2143 | 187 | -273 | 81 | 534 | 242 | -539 | -2594 | 399 | 160 | -1050 | 129 | 247 | 74 | 193 | 34 | 0 | 3068 | | 5 ARLCR | 1554 | -161 | 248 | -300 | 2568 | 2630 | 309 | -2456 | -48 | -1310 | 46 | 10 | 45 | 132 | 16 | 11 | 56 | 34 | -1143 | 13 | 44 | 3 | 0 | 2301 | | 6 ARNCR | -3133 | 645 | 46 | -0 | 2943 | -2686 | -414 | -5292 | 454 | -371 | 120 | 23 | 121 | 152 | 38 | 25 | -4 | 105 | -699 | 37 | 117 | 7 | 0 | -7765 | | 7 ALX | -225 | 1040 | 734 | 1535 | 571 | 598 | -1324 | 3214 | -369 | 565 | 86 | 19 | -600 | -46 | 55 | 40 | -126 | 87 | -71 | 29 | 155 | 12 | 0 | 5974 | | 8 FFX | -9981 | -3800 | -3767 | 1044 | -746 | -1407 | 2634 | 1308 | -757 | -5717 | -146 | 90 | 365 | 523 | -124 | -149 | -918 | 223 | -492 | -279 | -730 | 33 | 0 | -22795 | | 9 LDN | -1341 | 21 | 159 | -660 | 194 | -53 | 100 | 720 | -1046 | 150 | 311 | 36 | 66 | 95 | 8 | 8 | 36 | 269 | -195 | 285 | 55 | 3 | 0 | -781 | | 10 PW | -222 | -442 | 77 | 515 | -803 | -878 | 320 | -6259 | 421 | 3109 | 69 | 13 | 63 | 152 | 24 | 20 | 96 | 322 | 256 | 71 | 376 | -135 | 0 | -2835 | | 11 FRD | 325 | 392 | -25 | -417 | 45 | 119 | 84 | 531 | 383 | -210 | -4158 | 295 | -334 | 514 | 19 | 14 | 48 | 41 | 31 | 102 | 27 | 2 | 0 | -2173 | | 12 CAR | 79 | 103 | 15 | 251 | 10 | 24 | 19 | 109 | 47 | 19 | -82 | 3777 | -279 | -914 | 9 | 6 | 19 | 9 | 8 | 78 | 7 | 1 | 0 | 3314 | | 13 HOW | 232 | 121 | 1878 | 2094 | -128 | 138 | -420 | 305 | 84 | 78 | 90 | -879 | -4437 | -1741 | 59 | 38 | -269 | 29 | 29 | 71 | 25 | 4 | 0 | -2599 | | 14 AAR | -1345 | 1476 | 1274 | 614 | -35 | -244 | 336 | 779 | 131 | -173 | 507 | -857 | 906 | -5834 | -289 | -118 | 424 | 53 | 84 | 67 | 74 | 13 | 0 | -2158 | | 15 CAL | -457 | 187 | 175 | 267 | 16 | -329 | 53 | -555 | 11 | 28 | 19 | 9 | -177 | -153 | 348 | 471 | 181 | 7 | 15 | 4 | 15 | 14 | 0 | 148 | | 16 STM | -170 | 104 | 95 | -324 | 10 | 22 | 35 | -441 | 9 | 21 | 12 | 5 | 37 | 138 | -135 | -2810 | -249 | 7 | 22 | 3 | 38 | 59 | 0 | -3509 | | 17 CHS | -129 | 202 | 167 | -1220 | 58 | -120 | -450 | 462 | 40 | 103 | 45 | 18 | 125 | 22 | 429 | -494 | 2099 | 25 | 57 | 9 | 61 | 132 | 0 | 1641 | | 18 FAU | -175 | 95 | 184 | 108 | 28 | 88 | 74 | 213 | -79 | 662 | 34 | 7 | 24 | 44 | 7 | 7 | 23 | 3273 | 66 | 56 | 145 | 7 | 0 | 4891 | | 19 STA | -1713 | -1141 | 179 | 204 | -1157 | -401 | 177 | -1151 | 66 | 272 | 25 | 6 | 24 | 70 | 13 | 19 | 51 | 62 | 1819 | 7 | -304 | -49 | 0 | -2921 | | 20 CL/JF | 41 | 45 | 225 | 63 | 11 | 31 | 24 | 236 | -119 | 74 | -7 | 65 | 67 | 57 | 3 | 3 | 8 | 56 | 7 | 7081 | -534 | 0 | 0 | 7436 | | 21 SP/FB | 124 | -446 | 138 | 151 | -535 | -449 | -429 | 208 | 52 | 582 | 21 | 5 | 20 | 59 | 12 | 32 | 51 | 134 | -174 | 6 | -2369 | -909 | 0 | -3717 | | 22 KGEO | -275 | -154 | 10 | 28 | 3 | 6 | 9 | 30 | 3 | -133 | 1 | 0 | 3 | 11 | 12 | 53 | -482 | 7 | 71 | 0 | -1216 | -1482 | 0 | -3496 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | -8960 | | -20877 | | 6534 | | 2338 | | -3190 | | -3964 | === | -3420 | | 235 | | -2510 | | -1410 | | -4068 | === | 0 | == | | | | 3502 | | -9721 | | -7568 | | -17032 | | -3346 | | 3274 | | -8753 | | -2593 | | 5129 | | 7794 | | -2376 | | -70982 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Ratio (Est/Obs) Motorized Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|-------------|--------|--------------|---------|--------|--------|--------|--------|--------------|--------|-------------|--------------|-------------|--------------|--------|--------|--------|--------------|---------|---------|--------|--------|---------|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.13 | 0.95 | 0.39 | 0.54 | 2.09 | 0.51 | 0.53 | 0.43 | 0.18 | 0.29 | 1.55 | 83.74 | 0.63 | 0.74 | 0.35 | 0.43 | 0.21 | 0.59 | 0.23 | 51.68 | 0.55 | 0.09 | <br>0 l | 0.76 | | 2 DC NC | 1.24 | 1.02 | 0.89 | 0.87 | 1.80 | 1.24 | 2.47 | 0.66 | 0.83 | 1.20 | 422.11 | 106.92 | 3.26 | 1.42 | 0.28 | 119.13 | 0.70 | 119.66 | 0.30 | 56.96 | 0.35 | 13.17 | 0 | 1.03 | | 3 MTG | 0.58 | 1.26 | 0.94 | 0.78 | 938.19 | 0.90 | 1.67 | 1.27 | 0.90 | 4.95 | 0.61 | 1.44 | 1.34 | 1.20 | 170.96 | 103.29 | 1.55 | 226.94 | 0.66 | 0.91 | 179.00 | 13.11 | 0 j | 0.95 | | 4 PG | 1.15 | 1.37 | 0.87 | 1.00 | 1.04 | 1.21 | 5.24 | 1.04 | 0.59 | 1.12 | 534.19 | 242.32 | 0.88 | 0.77 | 2.06 | 1.70 | 0.71 | 128.54 | 246.93 | 73.96 | 193.43 | 33.66 | 0 | 1.02 | | 5 ARLCR | 2.04 | 0.92 | 1.39 | 0.74 | 2.66 | 1.80 | 1.19 | 0.57 | 0.81 | 0.23 | 46.09 | 9.63 | 45.02 | 131.76 | 16.24 | 10.87 | 56.25 | 33.71 | 0.05 | 12.75 | 43.63 | 3.21 | 0 | 1.11 | | 6 ARNCR | 0.64 | 1.21 | 1.02 | 1.00 | 1.98 | 0.88 | 0.92 | 0.67 | 3.01 | 0.75 | 120.28 | 23.28 | 121.28 | 1.86 | 38.21 | 24.90 | 0.97 | 104.87 | 0.19 | 37.03 | 116.97 | 7.39 | 0 | 0.88 | | 7 ALX | 0.94 | 1.69 | 2.26 | 2.53 | 1.45 | 1.15 | 0.93 | 1.45 | 0.54 | 1.71 | 85.52 | 18.51 | 0.15 | 0.87 | 54.60 | 39.97 | 0.66 | 86.61 | 0.76 | 28.55 | 154.83 | 11.50 | 0 | 1.14 | | 8 FFX | 0.36 | 0.57 | 0.67 | 1.29 | 0.81 | 0.88 | 1.35 | 1.01 | 0.93 | 0.63 | 0.76 | 89.58 | 7.79 | 2.86 | 0.48 | 0.37 | 0.34 | 1.32 | 0.65 | 0.46 | 0.46 | 32.62 | 0 | 0.93 | | 9 LDN | 0.22 | 1.06 | 1.24 | 0.33 | 194.25 | 0.92 | 1.35 | 1.08 | 0.97 | 1.13 | 310.80 | 35.51 | 65.68 | 95.00 | 8.42 | 7.64 | 35.93 | 268.83 | 0.25 | 4.63 | 54.66 | 2.73 | 0 | 0.99 | | 10 PW | 0.77 | 0.60 | 1.10 | 3.67 | 0.31 | 0.55 | 1.33 | 0.60 | 1.52 | 1.06 | 68.90 | 13.39 | 63.32 | 152.40 | 23.87 | 20.00 | 96.33 | 1.54 | 1.20 | 71.00 | 2.00 | 0.18 | 0 | 0.96 | | 11 FRD | | 391.72 | 0.99 | 0.56 | 45.40 | 118.93 | 84.41 | 530.71 | 382.61 | 0.29 | 0.91 | 1.26 | 0.72 | | 19.23 | 13.81 | 47.67 | 40.60 | 31.22 | 1.19 | 27.44 | 1.74 | 0 | 0.96 | | 12 CAR | | 103.13 | | 251.02 | 9.65 | 23.59 | 19.29 | 108.55 | 46.92 | 18.81 | 0.95 | 1.18 | 0.74 | 0.30 | 9.17 | 6.31 | 19.40 | 9.33 | 7.56 | 77.65 | 7.17 | 0.54 | 0 | 1.13 | | 13 HOW | 1.59 | | 2.20 | 1.99 | 0.29 | 138.36 | 0.22 | 2.45 | 83.80 | 78.48 | 1.13 | 0.46 | 0.86 | 0.79 | 58.55 | 37.62 | 0.31 | 28.83 | 28.68 | 70.88 | 25.45 | 3.66 | 0 | 0.95 | | 14 AAR | 0.54 | | 1.62 | 1.07 | 0.80 | | | | 130.67 | | 506.78 | 0.32 | 1.15 | 0.93 | 0.62 | | 424.37 | 53.49 | 83.60 | 66.60 | 73.59 | 12.61 | 0 | 0.98 | | 15 CAL | | | 174.59 | 1.52 | 15.56 | 0.10 | 53.06 | 0.17 | 10.92 | 27.90 | 19.32 | 8.94 | 0.26 | 0.76 | 1.03 | 1.62 | 1.73 | 7.39 | 14.81 | 3.76 | 14.80 | 14.06 | 0 | 1.01 | | 16 STM | | 103.79 | | 0.53 | 9.83 | 22.29 | 35.06 | 0.16 | 8.76 | 21.26 | 12.28 | 5.47 | 36.65 | | 0.90 | 0.93 | 0.78 | 7.35 | 22.42 | 2.80 | 37.70 | 59.36 | 0 | 0.92 | | 17 CHS | 0.83 | | 1.63 | 0.68 | 58.19 | 0.55 | 0.34 | 461.89 | 40.21 | 102.74 | 44.88 | 17.94 | 124.50 | 1.06 | 428.75 | 0.65 | 1.09 | 24.58 | 56.85 | 9.02 | | 132.12 | 0 | 1.05 | | 18 FAU | 0.36 | | 184.19 | | 27.70 | 88.25 | 73.89 | 1.31 | 0.77 | 3.31 | 33.95 | 7.23 | | 44.29 | 6.54 | 7.07 | 23.44 | 1.83 | 1.56 | 55.52 | | 6.96 | 0 | 1.86 | | 19 STA | 0.09 | | 178.63 | | 0.04 | | 176.57 | 0.41 | 66.09 | 1.22 | 24.97 | 5.85 | 24.18 | 70.46 | 12.50 | 19.32 | 51.47 | 1.53 | 1.20 | 7.28 | 0.90 | 0.59 | 0 | 0.86 | | 20 CL/JF | 40.64 | | 224.92 | | 10.76 | 31.04 | 23.98 | 236.05 | 0.76 | 73.53 | 0.99 | 65.27 | 66.52 | | 3.07 | 2.67 | 8.24 | 55.54 | 7.46 | 4.12 | 0.01 | 0.33 | 0 | 2.93 | | 21 SP/FB | 123.59 | | 137.69 | | 0.06 | 0.17 | 0.21 | 1.62 | 51.99 | 5.44 | 20.80 | 4.92 | 20.39 | 59.21 | 11.69 | 31.56 | | 134.03 | 0.94 | 6.29 | 0.89 | 0.10 | 0 | 0.87 | | 22 KGEO | 0.04 | 0.06 | 10.26 | 27.93 | 2.66 | 6.12 | 9.30 | 29.73 | 2.77 | 0.19 | 1.29 | 0.41 | 3.18 | 10.57 | 11.88 | 52.68 | 0.19 | 6.92 | 71.43 | 0.34 | 0.08 | 0.55 | 0 | 0.40 | | 23 EXTL | U<br>====== | | U<br>======= | .====== | .===== | | U<br> | | U<br>======= | .===== | U<br>====== | U<br>======= | U<br>====== | U<br>======= | | u | .===== | U<br>======= | .====== | .====== | | 0 | 0 | ====== | | TOTAL | 0.93 | | 0.91 | | 1.40 | | 1.05 | | 0.94 | | 0.93 | | 0.93 | | 1.01 | | 0.93 | | 0.93 | | 0.86 | | 0 | | | | | 1.03 | | 0.95 | | 0.88 | | 0.95 | | 0.96 | | 1.13 | | 0.92 | | 0.94 | | 1.92 | | 3.11 | | 0.50 | | 0.96 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Est Auto Occ. | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|-------|----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 DC CR | 1.10 | 1.11 | 1.13 | 1.04 | 1.07 | 1.11 | 1.17 | 1.12 | 1.41 | 1.14 | 1.75 | 1.85 | 1.17 | 1.22 | 1.32 | 1.96 | 1.15 | 1.73 | 1.50 | 2.51 | 1.95 | 2.92 | 0 | 1.11 | | 2 DC NC | 1.12 | 1.09 | 1.10 | 1.04 | 1.10 | 1.13 | 1.21 | 1.14 | 1.48 | 1.16 | 1.70 | 1.80 | 1.15 | 1.21 | 1.34 | 2.14 | 1.13 | 1.97 | 1.67 | 2.84 | 2.34 | 3.28 | 0 | 1.11 | | 3 MTG | 1.08 | 1.09 | 1.11 | 1.15 | 1.22 | 1.17 | 1.41 | 1.37 | 1.66 | 1.69 | 1.33 | 1.38 | 1.19 | 1.41 | 2.07 | 3.15 | 1.86 | 2.15 | 2.27 | 2.05 | 2.75 | 3.82 | 0 | 1.14 | | 4 PG | 1.04 | 1.06 | 1.20 | 1.06 | 1.09 | 1.12 | 1.24 | 1.46 | 2.45 | 1.82 | 2.27 | 2.06 | 1.19 | 1.21 | 1.32 | 1.86 | 1.18 | 2.84 | 2.35 | 3.31 | 3.02 | 2.81 | 0 | 1.10 | | 5 ARLCR | 1.09 | 1.10 | 1.15 | 1.06 | 1.11 | 1.11 | 1.15 | 1.12 | 1.34 | 1.15 | 1.66 | 1.90 | 1.27 | 1.31 | 1.38 | 1.99 | 1.20 | 1.59 | 1.40 | 2.39 | 1.82 | 2.40 | 0 | 1.12 | | 6 ARNCR | 1.09 | 1.10 | 1.15 | 1.06 | 1.09 | 1.08 | 1.13 | 1.11 | 1.31 | 1.12 | 1.88 | 2.43 | 1.36 | 1.34 | 1.53 | 2.59 | 1.19 | 1.66 | 1.44 | 2.74 | 2.03 | 3.30 | 0 | 1.11 | | 7 ALX | 1.10 | 1.10 | 1.24 | 1.07 | 1.09 | 1.08 | 1.11 | 1.11 | 1.51 | 1.14 | 2.19 | 2.91 | 1.58 | 1.45 | 1.42 | 1.94 | 1.12 | 1.84 | 1.37 | 2.70 | 1.79 | 2.51 | 0 | 1.12 | | 8 FFX | 1.04 | 1.03 | 1.24 | 1.23 | 1.06 | 1.04 | 1.12 | 1.12 | 1.14 | 1.11 | 2.19 | 3.03 | 1.87 | 2.00 | 2.61 | 3.80 | 1.53 | 1.42 | 1.49 | 2.26 | 1.96 | 3.83 | 0 | 1.13 | | 9 LDN | 1.50 | 1.29 | 1.70 | 2.34 | 1.32 | 1.25 | 1.63 | 1.25 | 1.04 | 1.24 | 1.43 | 3.07 | 2.90 | 3.08 | 5.73 | 6.53 | 3.35 | 1.40 | 2.59 | 1.27 | 3.22 | 5.69 | 0 | 1.11 | | 10 PW | 1.16 | 1.11 | 1.73 | 1.67 | 1.17 | 1.12 | 1.27 | 1.22 | 1.26 | 1.03 | 3.28 | 4.80 | 3.03 | 2.81 | 3.59 | 4.38 | 2.24 | 1.15 | 1.11 | 2.32 | 1.37 | 2.17 | 0 | 1.08 | | 11 FRD | 1.98 | 1.78 | 1.44 | 2.29 | 1.22 | 1.78 | 2.48 | 2.54 | 1.48 | 3.30 | 1.07 | 1.18 | 1.55 | 2.13 | 3.96 | 4.78 | 3.39 | 2.74 | 3.50 | 1.33 | 4.11 | 6.44 | 0 | 1.13 | | 12 CAR | 2.26 | 2.13 | 1.57 | 2.20 | 1.41 | 2.38 | 3.25 | 3.61 | 3.22 | 4.45 | 1.24 | 1.04 | 1.27 | 1.76 | 4.70 | 5.30 | 3.79 | 4.06 | 4.55 | 1.97 | 5.47 | 6.00 | 0 | 1.08 | | 13 HOW | 1.17 | 1.19 | 1.24 | 1.19 | 1.04 | 1.40 | 1.88 | 2.19 | 2.77 | 3.00 | 1.56 | 1.20 | 1.06 | 1.14 | 2.23 | 3.26 | 2.24 | 2.92 | 3.31 | 2.25 | 3.74 | 4.07 | 0 | 1.12 | | 14 AAR | 1.25 | 1.26 | 1.49 | 1.22 | 1.07 | 1.39 | 1.75 | 2.28 | 2.96 | 2.80 | 2.12 | 1.64 | 1.15 | 1.07 | 1.35 | 2.45 | 1.78 | 3.06 | 2.94 | 2.76 | 3.39 | 3.31 | 0 | 1.12 | | 15 CAL | 1.46 | 1.50 | 2.34 | 1.36 | 1.13 | 1.64 | 1.91 | 3.16 | 5.28 | 3.69 | 3.97 | 4.76 | 2.36 | 1.39 | 1.04 | 1.16 | 1.29 | 4.15 | 3.59 | 5.45 | 3.77 | 2.30 | 0 | 1.10 | | 16 STM | 2.41 | 2.30 | 3.46 | 1.88 | 1.42 | 2.33 | 2.59 | 4.44 | 6.44 | 4.38 | 4.70 | 5.76 | 3.32 | 2.50 | 1.15 | 1.05 | 1.25 | 4.62 | 3.95 | 9.33 | 3.13 | 1.80 | 0 | 1.07 | | 17 CHS | 1.22 | 1.24 | 2.06 | 1.19 | 1.05 | 1.29 | 1.43 | 1.94 | 3.56 | 2.43 | 3.54 | 3.83 | 2.26 | 1.80 | 1.28 | 1.25 | 1.04 | 3.24 | 2.74 | 4.10 | 2.73 | 1.42 | 0 | 1.10 | | 18 FAU | 1.80 | 1.63 | 2.22 | 2.73 | 1.48 | 1.47 | 1.92 | 1.62 | 1.40 | 1.16 | 2.74 | 3.89 | 2.97 | 3.15 | 4.09 | 4.42 | 3.19 | 1.04 | 1.24 | 1.53 | 1.43 | 2.08 | 0 | 1.14 | | 19 STA | 1.63 | 1.43 | 2.36 | 2.30 | 1.38 | 1.38 | 1.55 | 1.68 | 2.80 | 1.13 | 3.61 | 4.68 | 3.38 | 2.98 | 3.73 | 4.08 | 2.62 | 1.24 | 1.03 | 3.73 | 1.06 | 1.12 | 0 | 1.10 | | 20 CL/JF | 2.29 | 2.57 | 2.15 | 3.33 | 2.04 | 2.49 | 2.77 | 2.55 | 1.31 | 2.41 | 1.36 | 1.90 | 2.25 | 2.80 | 6.14 | 8.90 | 4.31 | 1.57 | 3.83 | 1.03 | 4.25 | 11.00 | 0 | 1.11 | | 21 SP/FB | 1.93 | 1.94 | 2.84 | 2.94 | 1.56 | 1.78 | 1.86 | 2.14 | 3.35 | 1.36 | 4.26 | 7.13 | 4.01 | 3.44 | 3.86 | 3.14 | 2.64 | 1.40 | 1.05 | 4.40 | 1.03 | 1.12 | 0 | 1.08 | | 22 KGEO | 2.92 | 2.70 | 4.09 | 2.82 | 1.91 | 2.91 | 2.73 | 4.26 | 5.77 | 2.29 | 6.79 | 6.83 | 4.36 | 3.40 | 2.25 | 1.74 | 1.37 | 2.14 | 1.13 | 11.33 | 1.16 | 1.02 | 0 | 1.11 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.11 | | 1.14 | | 1.10 | | 1.16 | | 1.10 | | 1.12 | | 1.12 | | 1.10 | | 1.09 | | 1.10 | | 1.09 | | 0 | | | | | 1.10 | | 1.09 | | 1.09 | | 1.15 | | 1.07 | | 1.07 | | 1.12 | | 1.07 | | 1.14 | | 1.11 | | 1.12 | | 1.11 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Obs Auto Occ. | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|--------|--------|--------|--------|--------|------|--------|--------|------|------|--------|------|--------|--------|--------|--------|--------|------|------|------|--------|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | | ====== | | | ====== | | ====== | ====== | | | ====== | | | | | | ====== | | | | ====== | | | 1 DC CR | 1.21 | 1.32 | 1.09 | 1.03 | 1.52 | | 1.13 | 1.15 | 1.73 | 3.39 | 0 | 0 | 325.14 | 1.28 | | 263.16 | 1.50 | 0 | 5.61 | 0 | 0 | 1.00 | 0 | 1.23 | | 2 DC NC | 1.22 | 1.09 | 1.04 | 1.08 | 1.00 | 1.00 | 1.00 | 1.06 | 1.00 | 1.00 | 0 | 0 | 2.06 | 1.00 | 1.00 | 0 | 1.00 | 0 | 3.44 | 0 | 3.35 | 0 | 0 | 1.10 | | 3 MTG | 1.03 | 1.05 | 1.08 | 1.08 | 0 | 1.00 | 1.00 | 1.13 | 1.00 | 1.00 | 1.04 | 1.00 | 1.00 | 1.00 | 0 | | 267.61 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.07 | | 4 PG | 1.04 | 1.08 | 1.04 | 1.10 | 1.00 | 1.35 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 0 | 1.15 | 1.12 | 1.00 2 | 229.55 | 1.65 | 0 | 0 | 0 | 0 | 0 | 0 | 1.10 | | 5 ARLCR | 1.58 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.39 | 0 | 2.51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 01 | 204.46 | 0 | 0 | 0 | 0 | 1.35 | | 6 ARNCR | 1.06 | 1.07 | 1.00 | 1.44 | 1.32 | 1.14 | 1.18 | 1.04 | 1.00 | 2.32 | 0 | 0 | 0 | 1.00 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.13 | | 7 ALX | 1.16 | 1.00 | 1.00 | 1.00 | 1.14 | 1.28 | 1.03 | 1.04 | 1.36 | 1.00 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.07 | | 8 FFX | 1.22 | 1.09 | 1.06 | 1.00 | 1.70 | 1.04 | 1.10 | 1.10 | 1.17 | 1.08 | 1.00 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.35 | 1.59 | 1.00 | 0 | 0 | 1.10 | | 9 LDN | 1.35 | 1.00 | 1.46 | 1.00 | 0 | 1.00 | 1.00 | 1.17 | 1.15 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 1.15 | | 10 PW | 964.57 | 1.00 | 1.00 | 1.00 | 932.02 | 1.45 | 1.00 | 1.09 | 1.00 | 1.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.59 | 0 | 2.90 | 1.00 | 0 | 1.10 | | 11 FRD | 0 | 0 | 1.18 | 1.00 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.04 | 1.17 | 1.36 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.05 | | 12 CAR | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.34 | 1.11 | 1.00 | 1.28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.12 | | 13 HOW | 1.00 | 1.19 | 1.00 | 1.20 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 1.82 | 1.00 | 1.02 | 1.00 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.03 | | 14 AAR | 1.42 | 1.00 | 1.00 | 1.25 | 1.00 | 1.00 | 0 | 1.00 | 0 | 1.00 | 0 | 1.30 | 1.00 | 1.08 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.09 | | 15 CAL | 1.00 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | | 16 STM | 263.16 | 0 | 0 | 1.50 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.12 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.13 | | 17 CHS | 5.44 | 1.00 | 267.61 | 1.30 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 1.12 | 0 | 0 | 0 | 0 | 0 | 0 | 1.16 | | 18 FAU | 274.56 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.16 | 118.04 | 0 | 0 | 0 | 0 | 1.20 | | 19 STA | 1308.48 | 2.09 | 0 | 01 | 204.46 | 131.09 | 0 | 2.29 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 118.04 | 1.28 | 0 | 1.42 | 1.00 | 0 | 1.61 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 1.00 | | 21 SP/FB | 0 | 2.22 | 0 | 0 | 1.00 | 1.00 | 546.17 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.12 | 0 | 1.11 | 1.70 | 0 | 1.16 | | 22 KGEO | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 1.46 | 1.00 | 0 | 1.08 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.24 | | 1.07 | | 1.55 | ====== | 1.08 | | 1.16 | | 1.05 | | 1.04 | | 1.00 | | 1.16 | | 1.40 | | 1.17 | | 0 | | | | | 1.14 | | 1.10 | | 1.12 | | 1.10 | | 1.09 | | 1.11 | | 1.08 | | 1.13 | | 1.14 | | 1.06 | | 1.10 | | 1.11 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Est Pct. Tran | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |--------------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|-------------|--------|------------|--------|--------|-----|---------|-----|--------|-----|-------|-----|-------|-----|--------|----------|--------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DG GD | 24.4 | 26 5 | 22 7 | 12 4 | | | 24.0 | 14 5 | _===== | 2 0 | -===== | 0 | 0 4 | 0 1 | О Г | 0 0 | 0 1 | | 0 | | 0 4 | <br>U | | 22.0 | | 1 DC CR<br>2 DC NC | 34.4<br>44.9 | 36.5<br>21.4 | 33.7<br>25.6 | 13.4<br>8.6 | 56.7<br>51.0 | 51.2<br>38.4 | 34.0<br>20.6 | 14.5<br>7.4 | 0 | 2.8<br>1.8 | 0 | 0 | 0.4 | 0.1 | 0.5 | 0.0 | 0.1 | 0 | 0 | 0 | 0.4 | 0 | 0 <br>0 | 32.0<br>25.6 | | 3 MTG | 50.9 | 9.2 | 5.1 | 1.4 | 30.3 | 9.2 | 5.4 | 1.3 | 0 | 1.7 | 0.0 | 0 | 0.1 | 0.0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0.1 | 0 | 0 1 | 6.2 | | 4 PG | 28.7 | 4.4 | 2.1 | 0.8 | 17.9 | 6.5 | 2.0 | 1.2 | 0 | 1.8 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.8 | | 5 ARLCR | 58.1 | 17.6 | 13.3 | 2.9 | 9.3 | 17.6 | 16.3 | 4.7 | 0 | 0.7 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 18.0 | | 6 ARNCR | 54.4 | 14.3 | 9.0 | 1.9 | 25.3 | 9.3 | 14.7 | 4.6 | 0 | 0.7 | ٥ | 0 | 0 | ٥ | ٥ | ń | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | 14.5 | | 7 ALX | 36.4 | 6.0 | 5.5 | 0.6 | 15.0 | 11.9 | 5.4 | 1.9 | 0 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.3 | | 8 FFX | 37.0 | 3.5 | 1.8 | 1.1 | 10.9 | 5.9 | 3.9 | 0.8 | 0.0 | 0.7 | 0.5 | 0 | 1.8 | 0.3 | 2.4 | 1.7 | 1.6 | 0 | 0.0 | 0 | 0.3 | 0 | 0 1 | 2.0 | | 9 LDN | 45.1 | 1.2 | 0.5 | 0.0 | 14.2 | 4.6 | 1.2 | 0.2 | 0.1 | 0.4 | 0.5 | 0 | 0 | 0.5 | 2.1 | 1.7 | 1.0 | 0 | 0.0 | 0 | 0.5 | 0 | 0 1 | 0.6 | | 10 PW | 37.9 | 2.6 | 2.6 | 1.8 | 10.5 | 4.4 | 2.8 | 0.9 | 0.2 | 0.1 | 1.0 | 0 | 3.3 | 0.6 | 3.0 | 2.1 | 2.3 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0.9 | | 11 FRD | 2.5 | 0.2 | 0.1 | 0 | 1.6 | 0.4 | 0.1 | 0.1 | 0.2 | 0.1 | 0.4 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 1 | 0.3 | | 12 CAR | 0 | 0.2 | 0.1 | 0 | 0 | 0.1 | 0.1 | 0.1 | 0 | 0.1 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o i | 0.5 | | 13 HOW | 30.4 | 2.5 | 0.6 | 0.1 | 26.5 | 8.5 | 3.1 | 2.8 | 0 | 3.9 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ōi | 0.6 | | 14 AAR | 23.4 | 1.9 | 0.6 | 0.1 | 16.1 | 4.8 | 2.0 | 3.9 | 0 | 1.8 | 0 | 0 | 0 | 0.0 | ō | Ō | 0 | 0 | Ō | 0 | 0 | 0 | ōi | 0.5 | | 15 CAL | 5.1 | 0.7 | 0.2 | 0.0 | 3.3 | 1.0 | 0.2 | 0.3 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o i | 0.1 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.1 | 0 | 0 | 0 | 0 | 0 | o i | 0.0 | | 17 CHS | 23.9 | 3.4 | 1.8 | 0.0 | 15.2 | 4.8 | 0.6 | 1.3 | 0 | 1.7 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.8 | | 18 FAU | 1.9 | 0 | 0.0 | 0 | 0.1 | 0.0 | 0.2 | 1.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.1 | | 19 STA | 0.3 | 0 | 0 | 0 | 0 | 0 | 0.0 | 1.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.1 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0 | | 21 SP/FB | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 4.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 38.7 | ====== | 6.5 | ===== | 25.4 | ====== | 8.9 | ====== | 0.1 | ====== | 0.3 | ====== | 0.0 | :====== | 0.0 | ====== | 0.2 | ===== | 0.0 | ===== | 0.0 | ====== | 0 | ====== | | | | 19.3 | | 2.1 | | 15.4 | | 1.5 | | 0.3 | | 0 | | 0.0 | | 0.0 | | 0 | | 0 | | 0 | | 6.9 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHW Trips MODE: Obs Pct. Tran | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|--------|------|-------|-------|--------|------|------|-------|--------|-------|--------|------|-----|-------|-------|------|--------|------|--------|-------|--------|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 DC CR | 46.8 | 34.6 | 54.2 | 48.8 | 34.7 | 37.0 | 31.5 | 33.5 | 13.6 | 43.2 | 100.0 | 0 | 62.1 | 9.6 | 100.0 | 0 | 51.0 | 100.0 | 25.6 | 0 | 100.0 | 0 | 0 | 42.0 | | 2 DC NC | 45.5 | 8.2 | 7.1 | 10.2 | 23.9 | 17.1 | 10.5 | 21.0 | 0 | 66.0 | 0 | 0 | 0 | 0 | 33.3 | 0 | 0 | 0 | 39.0 | 0 | 0 | 0 | 0 | 18.5 | | 3 MTG | 55.3 | 27.1 | 1.8 | 5.2 | 0 | 11.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.0 | 0 | 0 | 0 | 5.7 | | 4 PG | 40.7 | 17.8 | 5.6 | 1.9 | 72.3 | 29.5 | 0 | 6.0 | 0 | 59.8 | 0 | 0 | 0 | 0 | 0 | 0 | 9.5 | 0 | 0 | 0 | 0 | 0 | 0 | 6.0 | | 5 ARLCR | 18.8 | 45.1 | 0 | 52.9 | 23.0 | 50.1 | 22.1 | 15.0 | 100.0 | 8.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26.3 | | 6 ARNCR | 56.5 | 45.1 | 31.0 | 34.5 | 14.2 | 2.8 | 8.4 | 6.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15.7 | | 7 ALX | 39.1 | 0 | 0 | 0 | 22.4 | 0 | 3.0 | 2.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.9 | | 8 FFX | 30.9 | 11.2 | 0 | 0 | 6.2 | 4.2 | 2.9 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.5 | | 9 LDN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10 PW | 0 | 68.2 | 0 | 0 | 20.4 | 21.2 | 0 | 2.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.4 | | 11 FRD | 0 | 0 | 4.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 58.8 | 0 | 0 | 0 | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.4 | | 14 AAR | 67.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.8 | | 15 CAL | 0 | 0 | 0 | 0 | 0 | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.2 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17 CHS | 19.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 19 STA | 30.8 | 38.3 | 0 | 0 | 0 | 75.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.3 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 43.6 | ====== | 6.1 | ===== | 19.0 | ====== | 8.3 | | 1.1 | ====== | 1.1 | ====== | 1.6 | | 4.5 | ===== | 5.4 | ====== | 2.7 | ====== | 1.1 | ====== | 0 l | :===== | | | | 21.0 | | 7.8 | | 14.5 | | 3.3 | | 2.9 | | 0 | | 0.2 | | 0 | | 3.9 | | 7.7 | | 0 | | 8.7 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Est Transit | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|------|------|------|------|------|------|----|-----|-----|----|----|----|----|----|-----|----|----|----|----|----|-----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 4051 | 4157 | 497 | 311 | 418 | 599 | 190 | 151 | 0 | 10 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10386 | | 2 DC NC | 5346 | 5593 | 1413 | 736 | 410 | 494 | 128 | 87 | 0 | 19 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 14227 | | 3 MTG | 683 | 513 | 4639 | 185 | 83 | 49 | 9 | 91 | 0 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6315 | | 4 PG | 554 | 362 | 172 | 883 | 79 | 83 | 11 | 66 | 0 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2256 | | 5 ARLCR | 284 | 41 | 5 | 0 | 46 | 313 | 84 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 787 | | 6 ARNCR | 1008 | 96 | 11 | 0 | 288 | 1006 | 331 | 97 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2861 | | 7 ALX | 546 | 24 | 2 | 0 | 60 | 279 | 617 | 77 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1636 | | 8 FFX | 448 | 23 | 47 | 31 | 43 | 267 | 217 | 799 | 6 | 225 | 3 | 0 | 12 | 4 | 4 | 2 | 13 | 0 | 0 | 0 | 4 | 0 | 0 | 2147 | | 9 LDN | 12 | 0 | 0 | 0 | 0 | 2 | 0 | 35 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | | 10 PW | 46 | 12 | 30 | 22 | 4 | 30 | 43 | 245 | 9 | 179 | 2 | 0 | 8 | 4 | 3 | 1 | 9 | 0 | 0 | 0 | 3 | 0 | 0 | 648 | | 11 FRD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 155 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 157 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 16 | 0 | 3 | 1 | 2 | 2 | 0 | 36 | 0 | 18 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 83 | | 14 AAR | 52 | 1 | 1 | 2 | 13 | 12 | 0 | 90 | 0 | 22 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 194 | | 15 CAL | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | | 17 CHS | 12 | 0 | 0 | 0 | 2 | 2 | 0 | 16 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 172 | 0 | 0 | 0 | 0 | 0 | 0 | 215 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 13058 | | 6819 | | 1448 | | 1632 | | 15 | | 160 | | 25 | | 8 | | 195 | | 0 | | 7 | | 0 | <b></b> | | | | 10822 | | 2171 | | 3137 | | 1868 | | 674 | | 0 | | 10 | | 25 | | 0 | | 0 | | 0 | | 42073 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Obs Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|--------|-------|------|------|------|--------|--------|----|----|--------|----|--------|----|----|----|----|----|----|----|----|-------|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | ====== | | | | | | ====== | | | | | | | | | | | | | | ===== | | | 1 DC CR | 7448 | 4101 | 2287 | 109 | 0 | 1321 | 354 | 473 | 0 | 0 | 0 | 0 | 0 | 574 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16669 | | 2 DC NC | 5218 | 9620 | 1516 | 6239 | 0 | 104 | 411 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23108 | | 3 MTG | 1182 | 1411 | 6406 | 590 | 177 | 393 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10159 | | 4 PG | 197 | 555 | 338 | 4218 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5513 | | 5 ARLCR | 659 | 0 | 417 | 0 | 112 | 236 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1424 | | 6 ARNCR | 1334 | 525 | 92 | 0 | 0 | 105 | 0 | 799 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2855 | | 7 ALX | 418 | 207 | 0 | 0 | 0 | 0 | 309 | 297 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1231 | | 8 FFX | 914 | 0 | 0 | 0 | 898 | 535 | 0 | 894 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3242 | | 9 LDN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10 PW | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 11 FRD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 268 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 268 | | 14 AAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 897 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 897 | | 15 CAL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17 CHS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 17640 | | 11056 | | 1392 | | 1075 | ====== | 0 | | 0 | ====== | 0 | ====== | 0 | | 0 | | 0 | | 0 | | 0 I | ====== | | | | 16420 | | 11156 | | 2693 | | 2463 | - | 0 | - | 0 | _ | 1470 | - | 0 | - | 0 | - | 0 | - | 0 | - 1 | 65365 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Difference (Est-Obs) Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|-------------|--------|-------|--------|----------|--------|------|--------|---|---------|-----|-------|----|--------|----|----|-----|--------|----|----|----|----|-----|--------| | ORIGIN | 1<br>====== | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | -3397 | 56 | -1790 | 201 | 418 | -722 | -164 | -322 | 0 | 10 | 0 | 0 | 0 | -573 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -6283 | | 2 DC NC | 128 | -4026 | -103 | -5502 | 410 | 390 | -283 | 87 | 0 | 19 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -8881 | | 3 MTG | -499 | -899 | -1767 | -405 | -94 | -343 | 9 | 91 | 0 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3844 | | 4 PG | 356 | -193 | -166 | -3335 | -125 | 83 | 11 | 66 | 0 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3256 | | 5 ARLCR | -376 | 41 | -412 | 0 | -67 | 77 | 84 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -638 | | 6 ARNCR | -327 | -429 | -82 | 0 | 288 | 901 | 331 | -702 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | | 7 ALX | 128 | -184 | 2 | 0 | 60 | 279 | 308 | -220 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 405 | | 8 FFX | -466 | 23 | 47 | 31 | -855 | -268 | 217 | -95 | 6 | 225 | 3 | 0 | 12 | 4 | 4 | 2 | 13 | 0 | 0 | 0 | 4 | 0 | 0 | -1094 | | 9 LDN | 12 | 0 | 0 | 0 | 0 | 2 | 0 | 35 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | | 10 PW | 46 | 12 | 30 | 22 | 4 | 30 | 43 | 245 | 9 | 179 | 2 | 0 | 8 | 4 | 3 | 1 | 9 | 0 | 0 | 0 | 3 | 0 | 0 | 648 | | 11 FRD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 155 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 157 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | -252 | 0 | 3 | 1 | 2 | 2 | 0 | 36 | 0 | 18 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -185 | | 14 AAR | 52 | 1 | 1 | 2 | 13 | 12 | 0 | 90 | 0 | 22 | 0 | 0 | 0 | -896 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -702 | | 15 CAL | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | | 17 CHS | 12 | 0 | 0 | 0 | 2 | 2 | 0 | 16 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 172 | 0 | 0 | 0 | 0 | 0 | 0 | 215 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | -4582 | ====== | -4237 | ====== | 55<br>55 | ====== | 557 | ====== | 0 | :====== | 0 | ===== | 0 | ====== | 0 | | 0 | ====== | 0 | | 0 | | 0 l | ====== | | | | -5598 | | -8985 | | 443 | | -595 | | 0 | | 0 | | -1460 | | 0 | | 0 | | 0 | | 0 | | -23292 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Ratio (Est/Obs) Transit | ORIGIN | DESTIN | ATION 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | |----------|--------|---------|--------|-------|--------|--------|---------|---------|------|---------|------------|-------|---------|--------|------------|---------|--------|---------|-----------|--------|------------|--------|-------|--------| | ======= | | ====== | ====== | | | ====== | ======= | .====== | | :=====: | | | :====== | ====== | ====== | :=====: | | :=====: | | ====== | | ====== | ===== | ====== | | 1 DC CR | 0.54 | 1.01 | 0.22 | 2.84 | 418.27 | 0.45 | 0.54 | 0.32 | 0 | 10.24 | 0 | 0 | 0.07 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.62 | | 2 DC NC | 1.02 | 0.58 | 0.93 | 0.12 | 410.17 | 4.75 | 0.31 | 87.29 | 0 | 18.92 | 0 | 0 | 0 | 0.51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.62 | | 3 MTG | 0.58 | 0.36 | 0.72 | 0.31 | 0.47 | 0.13 | 9.44 | 91.03 | 0 | 62.09 | 0 | 0 | 0.20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.62 | | 4 PG | 2.81 | 0.65 | 0.51 | 0.21 | 0.39 | 83.24 | 10.60 | 66.24 | 0 | 45.32 | 0 | 0 | 0.15 | 0.47 | 0 | 0 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0.41 | | 5 ARLCR | 0.43 | 40.54 | 0.01 | 0.28 | 0.41 | 1.33 | 84.29 | 11.59 | 0 | 3.04 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.55 | | 6 ARNCR | 0.76 | 0.18 | 0.12 | 0.43 | 287.81 | 9.62 | 331.47 | 0.12 | 0 | 23.39 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | | 7 ALX | 1.31 | 0.11 | 1.95 | 0.03 | 60.37 | 278.63 | 2.00 | 0.26 | 0 | J | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.33 | | 8 FFX | 0.49 | 23.24 | 46.53 | 31.15 | 0.05 | 0.50 | 217.43 | 0.89 | 5.87 | 224.70 | 2.97 | 0 | 11.54 | 3.81 | 4.03 | 2.04 | 13.38 | 0 | 0.01 | 0 | 3.85 | 0 | 0 | 0.66 | | 9 LDN | 11.71 | 0 | 0.02 | 0 | 0.09 | 1.72 | 0.03 | 35.37 | 0 | 22.69 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 71.63 | | 10 PW | 45.55 | 11.98 | 29.68 | 21.57 | 3.51 | 29.88 | 42.68 | 244.85 | 9.23 | 179.42 | 2.08 | 0 | 7.58 | 3.74 | 2.54 | 1.39 | 9.14 | 0 | 0.02 | 0 | 2.75 | 0 | 0 | 647.59 | | 11 FRD | 0.29 | 0 | 0.14 | 0 | 0.09 | 0.05 | 0 | 0.89 | 0 | 0.62 | 155.06 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 157.14 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 0.06 | 0.06 | 2.99 | 0.56 | 1.94 | 1.67 | 0 | 36.34 | 0 | 18.31 | 0 | 0 | 5.38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.31 | | 14 AAR | 52.15 | 0.97 | 1.44 | 1.58 | 12.60 | 11.88 | 0.06 | 90.39 | 0 | 22.31 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.22 | | 15 CAL | 0.54 | 0.01 | 0 | 0 | 0.06 | 0.06 | 0 | 0.71 | 0 | 0.49 | 0 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.87 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21.56 | 0.20 | 0 | 0 | 0 | 0 | 0 | 0 | 21.76 | | 17 CHS | 11.83 | 0.48 | 0 | 0 | 1.71 | 1.56 | 0 | | 0 | 11.21 | 0 | 0 | 0 | 0 | 0 | 0.35 | 171.92 | 0 | 0 | 0 | 0 | 0 | 0 | 215.12 | | 18 FAU | 0.01 | 0 | 0 | 0 | 0 | 0 | | 13.87 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.88 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.96 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.96 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36.86 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36.86 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.93 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.93 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 0.74 | ==== | 0.62 | ===== | 1.04 | ==== | 1.52 | ===== | 0 | ==== | =====<br>0 | ===== | ===== | ===== | =====<br>0 | ==== | ===== | ====: | ====<br>0 | ==== | =====<br>0 | ==== | 0 | ==== | | | | 0.66 | | 0.19 | | 1.16 | | 0.76 | _ | 0 | - | 0 | - | 0.01 | - | 0 | _ | 0 | - | 0 | - | 0 | - | 0.64 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Est Auto Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |------------------|--------|--------|--------|--------|--------|----------|---------|------------|--------|------------|--------|--------|--------|--------|---------|--------|--------|--------------|--------------|--------|-------------|------|-----|----------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 19780 | 18198 | 2715 | 4296 | 75 | 1301 | 1337 | 1823 | 48 | 127 | 28 | 2 | 69 | 295 | 14 | 1 | 106 | 14 | 39 | 1 | 16 | 0 | 0 I | 50285 | | 2 DC NC | 17879 | 61052 | 12821 | 20632 | 96 | 1696 | 1915 | 2853 | 76 | 166 | 69 | 5 | 402 | 1136 | 51 | 2 | 318 | 19 | 59 | 1 | 21 | 0 | 0 | 121269 | | 3 MTG | 2991 | 15067 | 397927 | 22897 | 171 | 1607 | 912 | 6670 | 544 | 386 | 4819 | 735 | 5977 | 2898 | 36 | 1 | 117 | 87 | 61 | 127 | 24 | 0 | 0 | 464053 | | 4 PG | 4510 | 22510 | 22795 | 234263 | 138 | 897 | 2339 | 3081 | 52 | 303 | 96 | 48 | 6165 | 12907 | 691 | 107 | 4356 | 17 | 85 | 1 | 32 | 6 | 0 | 315398 | | 5 ARLCR | 26 | 270 | 129 | 122 | 787 | 2555 | 1223 | 1639 | 45 | 137 | 3 | 0 | 3 | 14 | 1 | 0 | 7 | 3 | 9 | 0 | 4 | 0 | 0 | 6978 | | 6 ARNCR | 180 | 1196 | 806 | 522 | 2523 | 22691 | 7351 | 15248 | 424 | 967 | 15 | 1 | 18 | 67 | 4 | 0 | 30 | 29 | 57 | 1 | 23 | 0 | 0 | 52152 | | 7 ALX | 411 | 1182 | 468 | 1204 | 1167 | 7354 | 37570 | 21475 | 246 | 1965 | 10 | 0 | 20 | 97 | 12 | 1 | 116 | 27 | 143 | 1 | 59 | 1 | 0 | 73529 | | 8 FFX | 462 | 1312 | 2620 | 1458 | 1261 | 13068 | | 419017 | 16559 | 18952 | 54 | 2 | 54 | 131 | 11 | 1 | 158 | 722 | 615 | 39 | 241 | 1 | 0 | 496369 | | 9 LDN | 3 | 18 | 132 | 10 | 26 | 269 | 158 | | 101134 | 1692 | 264 | 4 | 3 | 2 | 0 | 0 | 1 | 279 | 6 | 586 | 2 | 0 | 0 | 119706 | | 10 PW | 15 | 68 | 95 | 94 | 85 | 652 | 1343 | 16052 | | 183799 | 2 | 0 | 1 | 8 | 1 | 0 | 13 | 2023 | 2615 | 23 | 779 | 11 | 0 | 209201 | | 11 FRD | 26 | 67 | 4281 | 81 | 4 | 21 | 14 | 109 | 528 | 6 | 113355 | 3150 | 958 | 117 | 0 | 0 | 0 | 3 | 1 | 1057 | 0 | 0 | 0 | 123778 | | 12 CAR | 2 | 6 | 714 | 45 | 0 | 1 | 1 | 6 | 11 | 0 | 3206 | 77411 | 1503 | 154 | 0 | 0 | 0 | 0 | 0 | 35 | 0 | 0 | 0 | 83095 | | 13 HOW | 93 | 555 | 6725 | 6703 | 4 | 34 | 39 | 146 | 16 | . 8 | 996 | 1583 | 97352 | 13840 | 9 | 0 | 22 | 1 | 1 | 24 | 0 | 0 | 0 | 128151 | | 14 AAR | 321 | 1343 | 3247 | 13904 | 9 | 93 | 156 | 261 | 11 | 27 | 132 | 174 | 14157 | 228676 | 761 | 8 | 166 | 2 | 6 | 4 | 2 | 0 | 0 | 263461 | | 15 CAL | 15 | 53 | 30 | 616 | Τ. | 5 | 17 | 17 | 0 | 2 | 0 | 0 | ./ | 674 | 36185 | 1594 | 520 | 0 | 0 | 0 | 0 | 3 | 0 | 39740 | | 16 STM | 104 | 351 | 100 | 80 | U | 4.0 | 1 T O | 1 | 0 | 0 | 0 | 0 | 10 | 150 | 1520 | 50182 | 1117 | 0 | 0 | 0 | 1 | 39 | 0 | 52949 | | 17 CHS | 104 | 351 | 102 | 4196 | 1 | 42 | 152 | 202 | 2 | 27<br>1653 | 0 | 0 | 18 | 153 | 558 | 1269 | 75056 | 00151 | 20.6 | - 0 | 110 | 222 | 0 | 82478 | | 18 FAU<br>19 STA | 2 | 11 | 13 | 16 | 1 | 12<br>25 | 11 | 467<br>341 | 237 | 2218 | Τ | 0 | 0 | 1 | 0 | 0 | 0 | 22151<br>318 | 296<br>28428 | 62 | 112<br>5859 | 162 | 0 | 25025<br>37471 | | 20 CL/JF | 0 | 11 | 30 | Τρ | 4 | ∠5 | 65<br>0 | 21 | 483 | 16 | 335 | 10 | 6 | 1 | 0 | 0 | 0 | 54 | 28428 | 22452 | 2029 | 102 | 0 1 | 23408 | | 21 SP/FB | 1 | 1 | 30 | 3 | 1 | 7 | 23 | 108 | 1 | 562 | 333 | Τ0 | 0 | U | 0 | 0 | 1 | 109 | 5495 | 0 | 52383 | 160 | 0 1 | 58858 | | 22 KGEO | 0 | 0 | 0 | 1 | 0 | 'n | 0 | 100 | 0 | 7 | 0 | 0 | 0 | 0 | 1 | 12 | 69 | 103 | 144 | 0 | 143 | 4430 | 0 | 4808 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ń | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 111 | 0 | 113 | 0 | 0 1 | 1000 | | ======== | ====== | ====== | .===== | | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | | :====== | ====== | ====== | ====== | ====== | ====== | ====== | | | ====== | | TOTAL | 46830 | | 455662 | | 6361 | | 74261 | | 121943 | | 123382 | | 126714 | | 39853 | | 82177 | | 38069 | | 59709 | | 0 | | | | | 123263 | | 311143 | | 52329 | | 504655 | | 213020 | | 83126 | | 261176 | | 53178 | | 25860 | | 24414 | | 5039 | | 2832162 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Obs Auto Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|------|-------|-------|--------|--------|--------|---------------|-------|--------|--------|-------|-------|-------|-------|-------|-------|--------|------|----|-------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 16995 | 14473 | 3175 | 4001 | 321 | 1787 | 2283 | 3474 | 1050 | 307 | .=======<br>0 | 0 | 0 | 81 | 0 | 451 | 127 | 0 | <br>0 | 0 | :<br>0 | n | 0 | 48524 | | 2 DC NC | 14691 | 65778 | 22519 | 14605 | 1672 | 2988 | 1475 | 3791 | 0 | 395 | 0 | 322 | 268 | 0 | 0 | 0 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 128650 | | 3 MTG | 2381 | | 394101 | 15986 | 0 | 748 | 314 | 5504 | 1386 | 303 | 5049 | 2163 | 3093 | 1656 | 307 | Ō | 145 | ō | 297 | 0 | 0 | 0 | 0 | 451627 | | 4 PG | 3461 | 11606 | 16523 | 234853 | 0 | 204 | 181 | 2681 | 0 | 181 | 130 | 308 | 8439 | 8018 | 2115 | 0 | 6962 | 0 | 0 | 0 | 0 | 0 | 0 | 295663 | | 5 ARLCR | 215 | 215 | 0 | 109 | 359 | 1668 | 334 | 1035 | 0 | 873 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 595 | 0 | 0 | 0 | 0 | 5403 | | 6 ARNCR | 1597 | 2493 | 1305 | 792 | 2371 | 29913 | 4976 | 11943 | 665 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 295 | 0 | 0 | 0 | 0 | 56350 | | 7 ALX | 405 | 888 | 857 | 894 | 252 | 4107 | 42119 | 18363 | 236 | 589 | 382 | 0 | 0 | 0 | 0 | 375 | 289 | 0 | 0 | 0 | 0 | 0 | 0 | 69757 | | 8 FFX | 1962 | 4379 | 3876 | 1722 | 1225 | 12281 | 20555 | 420536 | 15941 | 20374 | 0 | 0 | 0 | 471 | 109 | 0 | 0 | 849 | 521 | 132 | 769 | 0 | 0 | 505703 | | 9 LDN | 191 | 0 | 341 | 256 | 0 | 295 | 0 | 12059 | 96076 | 1404 | 298 | 99 | 0 | 178 | 0 | 0 | 0 | 353 | 0 | 2566 | 0 | 0 | 0 | 114116 | | 10 PW | 0 | 636 | 0 | 0 | 0 | 521 | 632 | 14476 | 1115 | 178948 | 0 | 0 | 0 | 0 | 0 | 0 | 169 | 1214 | 4084 | 0 | 609 | 0 | 0 | 202405 | | 11 FRD | 0 | 0 | 4145 | 130 | 0 | 0 | 0 | 215 | 0 | 0 | 112914 | 2292 | 1021 | 228 | 0 | 0 | 0 | 0 | 0 | 896 | 0 | 0 | 0 | 121839 | | 12 CAR | 0 | 0 | 264 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2601 | 75576 | 573 | 931 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 79944 | | 13 HOW | 0 | 0 | 3863 | 5035 | 0 | 54 | 0 | 93 | 0 | 0 | 996 | | 107605 | 6475 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 125433 | | 14 AAR | 822 | 1345 | 5549 | 21192 | 0 | 178 | 163 | 439 | 0 | 0 | 394 | 413 | 3458 | 238706 | 2358 | 81 | 401 | 0 | 451 | 0 | 0 | 0 | 0 | 275948 | | 15 CAL | 0 | 184 | 0 | 1864 | 0 | 0 | 0 | 510 | 0 | 0 | 0 | 0 | 0 | 1399 | 38185 | 1232 | 2553 | 0 | 0 | 0 | 0 | 0 | 0 | 45927 | | 16 STM | 0 | 0 | 0 | 489 | 0 | 390 | 375 | 0 | 0 | 0 | 0 | 0 | 0 | 884 | 801 | 54282 | 2559 | 0 | 0 | 0 | 0 | 0 | 0 | 59780 | | 17 CHS | 0 | 715 | 546 | 3790 | 0 | 0 | 289 | 263 | 0 | 0 | 0 | 362 | 0 | 314 | 1124 | 3531 | 77572 | 0 | 0 | 0 | 0 | 348 | 0 | 88855 | | 18 FAU | 259 | 0 | 0 | 0 | 0 | | 0 | 0 | 211 | 776 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25498 | 231 | 0 | 0 | 179 | 0 | 27154 | | 19 STA | 399 | 0 | 594 | 0 | 298 | 164 | 0 | 905 | 0 | 2541 | 130 | 0 | 0 | 394 | 0 | 0 | 0 | 0 | 34550 | 0 | 4086 | 118 | 0 | 44178 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 590 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19959 | 0 | 0 | 0 | 20548 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 349 | 0 | 1063 | 0 | 0 | 0 | 0 | 0 | 107 | 0 | 170 | 9788 | 617 | 67107 | 666 | 0 | 79590 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 118 | 0 | 179 | 0 | 0 | 0 | 0 | 0 | 197 | 0 | 179 | 0 | 0 | 1164 | 2435 | 0 | 4272 | | 23 EXTL | | | | | | | | | | | | | | | | | | | 0 | | 0 | | 0 | 0 | | TOTAL | 43378 | | 457659 | | 6498 | | 73697 | | 116678 | | 123481 | | 124457 | | 44998 | | 90922 | | 50814 | | 73734 | | 0 | <del></del> | | | | 120904 | | 305720 | | 55300 | | 496755 | | 207935 | | 82847 | | 259734 | | 60149 | | 28094 | | 24169 | | 3745 | | 2851667 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Difference (Est-Obs) Auto Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|-------|-------|-------|-------|-------|-------|--------|-------|------|-------|--------|--------|-------|-------|--------|-------|--------|--------|--------|------|----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======== | | | | | | | | | ====== | | | | | | | | ====== | | | | | | | | | 1 DC CR | 2785 | 3725 | -460 | 295 | -246 | -486 | -946 | -1651 | -1001 | -180 | 28 | 2 | 69 | 214 | 14 | -450 | -21 | 14 | 39 | 1 | 16 | 0 | 0 | 1761 | | 2 DC NC | 3189 | -4726 | -9698 | 6026 | -1576 | -1293 | 440 | -938 | 76 | -229 | 69 | -317 | 134 | 1136 | 51 | 2 | 173 | 19 | 59 | 1 | 21 | 0 | 0 | -7381 | | 3 MTG | 610 | -3126 | 3826 | 6911 | 171 | 858 | 598 | 1166 | -842 | 82 | -230 | -1428 | 2884 | 1242 | -271 | 1 | -27 | 87 | -235 | 127 | 24 | 0 | 0 | 12426 | | 4 PG | 1049 | 10903 | 6272 | -591 | 138 | 692 | 2158 | 400 | 52 | 122 | -34 | -260 | -2275 | 4889 | -1424 | 107 | -2606 | 17 | 85 | 1 | 32 | 6 | 0 | 19735 | | 5 ARLCR | -189 | 54 | 129 | 12 | 428 | 887 | 890 | 604 | 45 | -736 | 3 | 0 | 3 | 14 | 1 | 0 | 7 | 3 | -586 | 0 | 4 | 0 | 0 | 1574 | | 6 ARNCR | -1417 | -1297 | -499 | -270 | 152 | -7222 | 2375 | 3305 | -241 | 967 | 15 | 1 | 18 | 67 | 4 | - 0 | 30 | 29 | -238 | 1 | 23 | 0 | 0 | -4198 | | 7 ALX | 6 | 294 | -390 | 310 | 915 | 3247 | -4549 | 3112 | 10 | 1376 | -372 | 0 | 20 | 97 | 12 | -374 | -173 | 27 | 143 | 1 | 59 | 1 | 0 | 3772 | | 8 FFX | -1500 | -3067 | -1256 | -263 | 36 | 787 | -925 | -1519 | 618 | -1423 | 54 | 2 | 54 | -340 | -98 | 1 | 158 | -128 | 94 | -93 | -528 | 1 | 0 | -9334 | | 9 LDN | -189 | 18 | -209 | -246 | 26 | -26 | 158 | 3059 | 5058 | 288 | -33 | -96 | 3 | -176 | 0 | 0 | 1 | -74 | 6 | -1980 | 2 | 0 | 0 | 5590 | | 10 PW | 15 | -568 | 95 | 94 | 85 | 131 | 711 | 1575 | 407 | 4851 | 2 | 0 | 1 | 8 | 1 | 0 | -155 | 809 | -1470 | 23 | 170 | 11 | 0 | 6795 | | 11 FRD | 26 | 67 | 136 | -49 | 4 | 21 | 14 | -106 | 528 | 6 | 442 | 857 | -63 | -111 | 0 | 0 | 0 | 3 | 1 | 161 | 0 | 0 | 0 | 1938 | | 12 CAR | 2 | - 6 | 450 | 45 | 0 | 1 | 1 | - 6 | 11 | 0 | 605 | 1836 | 930 | -777 | 0 | 0 | 0 | 0 | 0 | 35 | 0 | 0 | 0 | 3151 | | 13 HOW | 93 | 555 | 2862 | 1668 | 4 | -19 | 39 | 52 | 16 | . 8 | -0 | | -10253 | 7365 | 9 | 0 | 22 | 1 | 1 | 24 | 0 | 0 | 0 | 2719 | | 14 AAR | -502 | -1 | -2302 | -7288 | 9 | -85 | -6 | -177 | 11 | 27 | -262 | -238 | 10700 | -10030 | -1597 | -73 | -234 | 2 | -445 | 4 | 2 | 0 | 0 | -12487 | | 15 CAL | 15 | -131 | 30 | -1249 | 1 | 5 | 17 | -493 | 0 | 2 | 0 | 0 | 7 | -725 | -2000 | 362 | -2033 | 0 | 0 | 0 | 0 | 3 | 0 | -6187 | | 16 STM | 1 | 2 | | -409 | 0 | -390 | -374 | 1 | 0 | 0 | 0 | 0 | 0 | -879 | 719 | -4100 | -1442 | 0 | 0 | 0 | 1 | 39 | 0 | -6831 | | 17 CHS | 104 | -364 | -444 | 406 | 7 | 42 | -137 | -61 | 2 | 27 | 0 | -362 | 18 | -161 | -566 | -2262 | -2516 | 1 | 9 | 0 | 7 | -126 | 0 | -6377 | | 18 FAU | -257 | 3 | 13 | 2 | 1 | 12 | 11 | 467 | 26 | 878 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -3348 | 65 | 62 | 112 | -177 | 0 | -2130 | | 19 STA | -391 | 11 | -584 | 16 | -294 | -140 | 65 | -564 | 4 | -323 | -130 | 0 | 0 | -393 | 0 | 0 | 2 | 318 | -6123 | 0 | 1774 | 44 | 0 | -6707 | | 20 CL/JF | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 21 | 483 | 16 | -255 | 10 | 6 | 1 | 0 | 0 | 0 | 54 | 0 | 2494 | 0 | | 0 | 2860 | | 21 SP/FB | 1 | 1 | 2 | 3 | 1 | 7 | 23 | -241 | 1 | -501 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 109 | -4293 | -617 - | -14723 | -505 | 0 | -20732 | | 22 KGEO | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -118 | 0 | -172 | 0 | 0 | 0 | 0 | 1 | -185 | 69 | -177 | 144 | 0 | -1020 | 1995 | 0 | 537 | | 23 EXTL | 0 | 0 | 0 | 0<br> | 0 | | 0<br> | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 3451 | | -1998 | | -137 | | 564 | | 5265 | | -100 | | 2257 | | -5145 | | -8745 | | -12745 | | -14025 | | 0 | | | | | 2359 | | 5423 | | -2971 | | 7900 | | 5085 | | 278 | | 1443 | | -6971 | | -2234 | | 245 | | 1293 | | -19505 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Ratio (Est/Obs) Auto Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------------------|---------|--------|--------|---------|--------|--------|--------|--------|--------|---------|--------|-----------|---------|--------|--------|---------|---------|-----------------|--------|--------|--------|--------|----------------|--------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.16 | 1.26 | 0.86 | 1.07 | 0.23 | 0.73 | 0.59 | 0.52 | 0.05 | 0.41 | 27.66 | 1.68 | 69.15 | 3.66 | 14.01 | 0.00 | 0.84 | 14.19 | 39.37 | 0.51 | 15.94 | 0 | 0 l | 1.04 | | 2 DC NC | 1.22 | 0.93 | 0.57 | 1.41 | 0.06 | 0.57 | 1.30 | 0.75 | 76.49 | | 68.69 | 0.02 | | 136.29 | 51.19 | 2.17 | 2.19 | 18.62 | 59.04 | 1.16 | 20.99 | 0.11 | 0 | 0.94 | | 3 MTG | 1.26 | 0.83 | 1.01 | 1.43 | 170.69 | 2.15 | 2.91 | 1.21 | 0.39 | | 0.95 | 0.34 | 1.93 | 1.75 | 0.12 | 1.15 | 0.81 | 86.66 | | 126.72 | 23.72 | 0.06 | ō i | 1.03 | | 4 PG | 1.30 | 1.94 | 1.38 | 1.00 | 137.99 | 4.39 | 12.92 | 1.15 | 52.49 | 1.67 | 0.74 | 0.16 | 0.73 | 1.61 | 0.33 | 106.61 | 0.63 | 16.99 | 84.98 | 1.46 | 31.50 | 5.88 | 0 | 1.07 | | 5 ARLCR | 0.12 | 1.25 | 129.19 | 1.11 | 2.19 | 1.53 | 3.67 | 1.58 | 44.82 | 0.16 | 2.67 | 0.16 | 3.24 | 14.16 | 0.99 | 0.06 | 6.57 | 3.39 | 0.02 | 0.23 | 3.82 | 0.02 | 0 | 1.29 | | 6 ARNCR | 0.11 | 0.48 | 0.62 | 0.66 | 1.06 | 0.76 | 1.48 | 1.28 | 0.64 | 966.57 | 14.60 | 0.54 | 17.59 | 66.53 | 3.59 | 0.14 | 30.49 | 29.38 | 0.19 | 1.22 | 23.04 | 0.05 | 0 | 0.93 | | 7 ALX | 1.01 | 1.33 | 0.55 | 1.35 | 4.63 | 1.79 | 0.89 | 1.17 | 1.04 | 3.33 | 0.03 | 0.43 | 20.13 | 97.18 | 12.22 | 0.00 | 0.40 | 26.85 | 142.96 | 0.71 | 59.38 | 0.63 | 0 | 1.05 | | 8 FFX | 0.24 | 0.30 | 0.68 | 0.85 | 1.03 | 1.06 | 0.96 | 1.00 | 1.04 | 0.93 | 54.38 | 2.10 | 54.18 | 0.28 | 0.10 | 0.77 | 158.00 | 0.85 | 1.18 | 0.29 | 0.31 | 1.49 | 0 | 0.98 | | 9 LDN | 0.01 | 17.97 | 0.39 | 0.04 | 26.48 | 0.91 | 157.89 | 1.25 | 1.05 | 1.20 | 0.89 | 0.04 | 3.01 | 0.01 | 0.02 | 0 | 0.72 | 0.79 | 6.01 | 0.23 | 1.79 | 0 | 0 | 1.05 | | 10 PW | 15.32 | 0.11 | 95.31 | 93.60 | 84.95 | 1.25 | 2.12 | 1.11 | 1.36 | 1.03 | 1.50 | 0.02 | 1.41 | 8.06 | 0.62 | 0.03 | 0.08 | 1.67 | 0.64 | 23.49 | 1.28 | 11.01 | 0 | 1.03 | | 11 FRD | 26.16 | 66.84 | 1.03 | 0.62 | 3.68 | 21.34 | 13.73 | 0.51 | 528.07 | 6.43 | 1.00 | 1.37 | 0.94 | 0.51 | 0.01 | 0 | 0.38 | 3.32 | 0.61 | 1.18 | 0.13 | 0 | 0 | 1.02 | | 12 CAR | 1.84 | 6.08 | 2.71 | 44.96 | 0.22 | 1.10 | 0.83 | 5.65 | | 0.25 | 1.23 | 1.02 | 2.62 | 0.17 | 0 | 0 | 0.06 | 0.08 | 0.01 | 35.35 | 0 | 0 | 0 | 1.04 | | 13 HOW | | 555.37 | 1.74 | 1.33 | 4.29 | 0.64 | 39.31 | 1.56 | 15.56 | | 1.00 | 1.21 | 0.90 | 2.14 | 8.70 | 0.24 | 21.53 | 1.43 | 0.94 | 23.80 | 0.27 | 0 | 0 | 1.02 | | 14 AAR | 0.39 | 1.00 | 0.59 | 0.66 | 8.96 | 0.52 | 0.96 | 0.60 | 10.73 | | 0.33 | 0.42 | 4.09 | 0.96 | 0.32 | 0.10 | 0.42 | 1.73 | 0.01 | 3.93 | 2.12 | 0.25 | 0 | 0.95 | | 15 CAL | 14.95 | 0.29 | 30.14 | 0.33 | 1.23 | 4.79 | 16.62 | 0.03 | 0.15 | 2.03 | 0.03 | 0 | 7.29 | 0.48 | 0.95 | 1.29 | 0.20 | 0.04 | 0.44 | 0 | 0.06 | 3.46 | 0 | 0.87 | | 16 STM | 0.63 | 1.63 | 0.46 | 0.16 | 0.05 | 0.00 | 0.00 | 0.66 | | 0.10 | . 0 | . 0 | 0.12 | 0.01 | 1.90 | 0.92 | 0.44 | 0 | 0.19 | 0 | 0.61 | 39.39 | 0 | 0.89 | | 17 CHS | 103.92 | 0.49 | 0.19 | 1.11 | 7.19 | 42.05 | 0.53 | 0.77 | 1.92 | | 0.28 | 0.00 | 17.78 | 0.49 | 0.50 | 0.36 | 0.97 | 0.89 | 8.56 | 0 | 7.33 | 0.64 | 0 | 0.93 | | 18 FAU | 0.01 | 2.96 | 12.97 | 2.04 | 1.26 | 11.73 | 11.48 | 466.53 | 1.12 | | 0.60 | 0 | 0.09 | 0.20 | 0 00 | 0 | 0.18 | 0.87 | 1.28 | 61.96 | 112.16 | 0.01 | 0 | 0.92 | | 19 STA | 0.02 | 10.92 | 0.02 | 15.74 | 0.01 | 0.15 | 65.38 | 0.38 | 4.19 | | 0.00 | 0<br>9.75 | 6.15 | 0.00 | 0.03 | 0 | 1.98 | 317.80<br>53.71 | 0.82 | 1.12 | 1.43 | 1.37 | 0 | 0.85<br>1.14 | | 20 CL/JF<br>21 SP/FB | 0.86 | 1.12 | 1.53 | 3.06 | 1.12 | 7.27 | 0.13 | 0.31 | 0.81 | 0.53 | 0.57 | 9.75 | 0.15 | 0.59 | 0 | 0.03 | | 108.67 | 0.56 | 1.12 | 0.78 | 0.24 | 0 | 0.74 | | 22 KGEO | 0.00 | 1.12 | 1.33 | 0.75 | 1.12 | 7.27 | 0.05 | 0.00 | 0.01 | 0.04 | 0 | 0 | 0 | 0.03 | 0.74 | 0.03 | 68.73 | | 143.91 | 0 | 0.78 | 1.82 | 0 | 1.13 | | 23 EXTL | 0 | 0 | 0 | 0.75 | 0 | 0 | 0.05 | 0.00 | 0 | 0.04 | 0 | 0 | 0 | 0.01 | 0.74 | 0.00 | 00.73 | 0.01 | 143.91 | 0 | 0.12 | 1.02 | 0 1 | 1.13 | | 23 EAID | .====== | | | .====== | | ====== | | | | ======= | ====== | ====== | :====== | ====== | ====== | .====== | .====== | | ====== | | | ====== | ا <sup>ن</sup> | ====== | | TOTAL | 1.08 | | 1.00 | | 0.98 | | 1.01 | | 1.05 | | 1.00 | | 1.02 | | 0.89 | | 0.90 | | 0.75 | | 0.81 | | 0 | | | | | 1.02 | | 1.02 | | 0.95 | | 1.02 | | 1.02 | | 1.00 | | 1.01 | | 0.88 | | 0.92 | | 1.01 | | 1.35 | | 0.99 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Est Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|------|-------|-------|--------|-------|--------|-------|-------|-------|--------|-------|-------|--------|-------|-------|-------|-------|--------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 13450 | 11534 | 1768 | 3292 | 27 | 793 | 734 | 1235 | 15 | 69 | 6 | 0 | 38 | 145 | 5 | 0 | 58 | 3 | 12 | 0 | 3 | 0 | 0 | 33185 | | 2 DC NC | 11363 | 41057 | 8829 | 16346 | 33 | 994 | 989 | 1900 | 25 | 80 | 17 | 1 | 225 | 589 | 23 | 0 | 187 | 4 | 14 | 0 | 2 | 0 | 0 | 82678 | | 3 MTG | 2181 | | 256045 | 13123 | 52 | 804 | 340 | 2695 | 161 | 95 | 2151 | 354 | 3124 | 1194 | 7 | 0 | 29 | 21 | 14 | 36 | 4 | 0 | 0 | 291899 | | 4 PG | 3695 | 15525 | | 161772 | 43 | 412 | 1057 | 1213 | 9 | 76 | 20 | 12 | 3500 | 6797 | 302 | 39 | 2460 | 3 | 19 | 0 | 5 | 1 | 0 | 210202 | | 5 ARLCR | 7 | 178 | 75 | 82 | 542 | 1725 | 706 | 1019 | 18 | 67 | 1 | 0 | 1 | 5 | 0 | 0 | 2 | 1 | 3 | 0 | 1 | 0 | 0 | 4433 | | 6 ARNCR | 81 | 782 | 441 | 343 | 1789 | 16342 | 4375 | 9622 | 169 | 465 | 3 | 0 | 4 | 20 | 1 | 0 | 10 | 7 | 17 | 0 | 5 | 0 | 0 | 34476 | | 7 ALX | 236 | 736 | 208 | 778 | 868 | 5076 | 22614 | 13650 | 80 | 974 | 2 | 0 | 5 | 30 | 3 | 0 | 55 | 6 | 48 | 0 | 17 | 0 | 0 | 45385 | | 8 FFX | 447 | 829 | 1113 | 653 | 938 | 9022 | 10114 | 261821 | 9899 | 10275 | 9 | 0 | 9 | 28 | 1 | 0 | 45 | 256 | 208 | 9 | 64 | 0 | 0 | 305740 | | 9 LDN | 1 | 5 | 32 | 2 | 12 | 99 | 45 | 7824 | 73189 | 777 | 132 | 1 | 0 | 0 | 0 | 0 | 0 | 123 | 1 | 294 | 0 | 0 | 0 | 82538 | | 10 PW | 11 | 18 | 18 | 21 | 50 | 287 | 508 | 8168 | 721 | 135008 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 1076 | 1440 | 6 | 278 | 3 | 0 | 147616 | | 11 FRD | 5 | 15 | 1850 | 16 | 1 | 4 | 3 | 22 | 253 | 1 | 79285 | 1890 | 392 | 32 | 0 | 0 | 0 | 1 | 0 | 466 | 0 | 0 | 0 | 84234 | | 12 CAR | 0 | 1 | 328 | 11 | 0 | 0 | 0 | 1 | 2 | 0 | 1868 | 59570 | 833 | 50 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 62674 | | 13 HOW | 54 | 236 | 3525 | 3684 | 1 | 8 | 10 | 32 | 2 | 1 | 400 | 903 | 68061 | 8016 | 2 | 0 | 5 | 0 | 0 | 7 | 0 | 0 | 0 | 84949 | | 14 AAR | 162 | 564 | 1350 | 7214 | 2 | 25 | 46 | 62 | 2 | 5 | 37 | 60 | 8178 | 159285 | 442 | 2 | 53 | 0 | 1 | 1 | 0 | 0 | 0 | 177491 | | 15 CAL | 4 | 17 | 6 | 262 | 0 | 1 | 3 | 2 | 0 | 0 | 0 | 0 | 1 | 396 | 27439 | 934 | 267 | 0 | 0 | 0 | 0 | 1 | 0 | 29334 | | 16 STM | 0 | 0 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 925 | 36718 | 637 | 0 | 0 | 0 | 0 | 13 | 0 | 38324 | | 17 CHS | 56 | 153 | 25 | 2490 | 2 | 11 | 53 | 56 | 0 | 6 | 0 | 0 | 4 | 51 | 280 | 727 | 55618 | 0 | 2 | 0 | 1 | 89 | 0 | 59622 | | 18 FAU | 0 | 0 | 3 | 0 | 0 | 3 | 2 | 151 | 109 | 888 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16167 | 169 | 30 | 44 | 0 | 0 | 17567 | | 19 STA | 1 | 1 | 1 | 3 | 2 | 6 | 18 | 107 | 1 | 1189 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 183 | 21793 | 0 | 3729 | 99 | 0 | 27133 | | 20 CL/JF | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 4 | 243 | 4 | 144 | 3 | 1 | 0 | 0 | 0 | 0 | 26 | 0 | 16997 | 0 | 0 | 0 | 17428 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 25 | 0 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 3678 | 0 | 38998 | 84 | 0 | 43042 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 27 | 0 | 87 | 0 | 70 | 3433 | 0 | 3623 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 31757 | ====== | 288861 | | 4362 | | 41626 | | 84898 | | 84075 | | 84375 | | 29430 | | 59456 | | 27505 | | 43221 | ====== | 0 | | | | | 81119 | | 210122 | -302 | 35612 | | 309610 | | 150186 | | 62794 | 22373 | 176640 | 150 | 38424 | 22 130 | 17923 | 505 | 17856 | | 3722 | Ü | 1883574 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Obs Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|---------|------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|----|-------------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 13580 | 10778 | 2335 | 3265 | 209 | 1236 | 1662 | 2172 | 794 | 307 | 0 | 0 | 0 | 81 | 0 | 451 | 127 | 0 | 0 | 0 | 0 | 0 | 0 | ======<br> 36998 | | 2 DC NC | 10306 | 46644 | 13847 | 9036 | 1057 | 2345 | 1383 | 2911 | 0 | 395 | 0 | 322 | 268 | 0 | 0 | 0 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 88660 | | 3 MTG | 1258 | 12942 | 261852 | 10630 | 0 | 528 | 314 | 3898 | 917 | 303 | 3275 | 1648 | 2065 | 1656 | 307 | 0 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 301737 | | 4 PG | 2771 | 7649 | 11565 | 157327 | 0 | 204 | 181 | 2681 | 0 | 181 | 0 | 99 | 4802 | 5753 | 1859 | 0 | 5649 | 0 | 0 | 0 | 0 | 0 | 0 | 200722 | | 5 ARLCR | 215 | 215 | 0 | 109 | 359 | 843 | 334 | 482 | 0 | 246 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2804 | | 6 ARNCR | 552 | 2157 | 401 | 792 | 1882 | 21266 | 3752 | 8723 | 332 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39858 | | 7 ALX | 405 | 627 | 438 | 527 | 252 | 3135 | 32931 | 12926 | 0 | 379 | 382 | 0 | 0 | 0 | 0 | 0 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 52146 | | 8 FFX | 1523 | 2196 | 3573 | 1618 | 672 | 9658 | 12937 | 289864 | 11937 | 12205 | 0 | 0 | 0 | 471 | 109 | 0 | 0 | 849 | 521 | 132 | 769 | 0 | 0 | 349034 | | 9 LDN | 191 | 0 | 341 | 256 | 0 | 295 | 0 | 7926 | 62422 | 1404 | 298 | 0 | 0 | 178 | 0 | 0 | 0 | 353 | 0 | 1002 | 0 | 0 | 0 | 74667 | | 10 PW | 0 | 636 | 0 | 0 | 0 | 521 | 211 | 8216 | 1115 | 107261 | 0 | 0 | 0 | 0 | 0 | 0 | 169 | 772 | 1728 | 0 | 363 | 0 | 0 | 120993 | | 11 FRD | 0 | 0 | 2576 | 0 | 0 | 0 | 0 | 215 | 0 | 0 | 76800 | 1667 | 1021 | 228 | 0 | 0 | 0 | 0 | 0 | 569 | 0 | 0 | 0 | 83074 | | 12 CAR | 0 | 0 | 264 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1752 | 45352 | 573 | 650 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48591 | | 13 HOW | 0 | 0 | 1987 | 3099 | 0 | 54 | 0 | 93 | 0 | 0 | 996 | 857 | 68313 | 4486 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 79884 | | 14 AAR | 124 | 92 | 2491 | 13012 | 0 | 178 | 163 | 439 | 0 | 0 | 394 | 413 | 2170 | 154597 | 2103 | 81 | 401 | 0 | 451 | 0 | 0 | 0 | 0 | 177107 | | 15 CAL | 0 | 184 | 0 | 1387 | 0 | 0 | 0 | 510 | 0 | 0 | 0 | 0 | 0 | 632 | 26467 | 978 | 1421 | 0 | 0 | 0 | 0 | 0 | 0 | 31578 | | 16 STM | 0 | 0 | 0 | 489 | 0 | 390 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 801 | 38412 | 1375 | 0 | 0 | 0 | 0 | 0 | 0 | 41467 | | 17 CHS | 0 | 524 | 546 | 3168 | 0 | 0 | 145 | 263 | 0 | 0 | 0 | 181 | 0 | 314 | 809 | 1658 | 55543 | 0 | 0 | 0 | 0 | 348 | 0 | 63499 | | 18 FAU | 259 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 211 | 442 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17816 | 0 | 0 | 0 | 179 | 0 | 18907 | | 19 STA | 0 | 0 | 297 | 0 | 0 | 0 | 0 | 905 | 0 | 1981 | 130 | 0 | 0 | 394 | 0 | 0 | 0 | 0 | 20417 | 0 | 1930 | 118 | 0 | 26171 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 395 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13036 | 0 | 0 | 0 | 13432 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 349 | 0 | 1063 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6079 | 308 | 41508 | 392 | 0 | 49700 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 118 | 0 | 179 | 0 | 0 | 0 | 0 | 0 | 98 | 0 | 179 | 0 | 0 | 404 | 2306 | 0 | 3285 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 31183 | ====== | 302514 | .====== | 4430 | ====== | 54012 | ====== | 77727 | ====== | 84420 | ====== | 79212 | | 32455 | ====== | 65119 | ====== | 29196 | ====== | 44975 | ====== | 0 | ======<br> | | | | 84645 | | 204716 | | 40655 | | 342691 | | 126346 | | 50540 | | 169439 | | 41677 | | 19970 | | 15047 | | 3343 | - | 1904312 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Difference (Est-Obs) Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------------|--------|------------------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|------|--------|-------|--------|--------|--------|-------|-------|---------|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | ====== | ====== | ====== | | ====== | | ====== | ====== | ====== | ====== | ====== | ====== | | ====== | | ====== | ====== | ====== | | | | | | | 1 DC CR | -130 | 756 | -568 | 26 | -182 | -444 | -928 | -937 | -779 | -238 | 6 | 0 | 38 | 64 | 5 | -451 | -70 | 3 | 12 | 0 | 3 | 0 | 0 | -3812 | | 2 DC NC | 1057 | -5587 | -5018 | 7310 | -1024 | -1351 | -393 | -1011 | 25 | -315 | 17 | -322 | -44 | 589 | 23 | 0 | 43 | 4 | 14 | 0 | 2 | 0 | 0 | -5982 | | 3 MTG | 923 | -3472 | -5807 | 2493 | 52 | 277 | 26 | -1203 | -755 | -208 | -1123 | -1294 | 1058 | -463 | -299 | 0 | -116 | 21 | 14 | 36 | 4 | 0 | 0 | -9838 | | 4 PG | 924 | 7876 | 1674 | 4445 | 43 | 208 | 876 | -1468 | 9 | -105 | 20 | -87 | -1302 | 1044 | -1557 | 39 | -3189 | 3 | 19 | 0 | 5 | 1 | 0 | 9480 | | 5 ARLCR | -208 | -38 | 75 | -28 | 183 | 882 | 373 | 537 | 18 | -179 | 1 | 0 | 1 | 5 | 0 | 0 | 2 | 1 | 3 | 0 | 1 | 0 | 0 | 1629 | | 6 ARNCR | -471 | -1375 | 39 | -449 | -93 | -4924 | 623 | 900 | -163 | 465 | 3 | 0 | 4 | 20 | 1 | 0 | 10 | 7 | 17 | 0 | 5 | 0 | 0 | -5382 | | 7 ALX | -169 | 109 | -230 | 251 | 616 | | -10316 | 724 | 80 | 595 | -380 | 0 | 5 | 30 | 3 | 0 | -90 | - 6 | 48 | 0 | 17 | 0 | 0 | -6761 | | 8 FFX | -1076 | -1367 | -2460 | -965 | 266 | -636 | -2824 | -28043 | -2038 | -1930 | 9 | 0 | 9 | -442 | -108 | 0 | 45 | -593 | -313 | -123 | -705 | 0 | 0 | -43294 | | 9 LDN | -190 | 5 | -310 | -254 | 12 | -196 | 45 | -103 | 10767 | -627 | -165 | 1 | 0 | -177 | 0 | 0 | 0 | -230 | 1 | -708 | 0 | 0 | 0 | 7871 | | 10 PW | 11 | -618 | 18 | 21 | 50 | -235 | 297 | -47 | -394 | 27746 | 0 | 0 | 0 | 1 | 0 | 0 | -166 | 304 | -288 | 6 | -86 | 3 | 0 | 26624 | | 11 FRD | 5 | 15 | -726 | 16 | 1 | 4 | 3 | -193 | 253 | 1 | 2485 | 223 | -629 | -196 | 0 | 0 | 0 | 1 | 0 | -102 | 0 | 0 | 0 | 1160 | | 12 CAR | 0 | 1 | 65 | 11 | 0 | 0 | 0 | 1 | 2 | 0 | 116 | 14217 | 260 | -600 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 14083 | | 13 HOW | 54 | 236 | 1538 | 586 | 1 | -46 | 10 | -61 | 2 | 1 | -595 | 46 | -253 | 3531 | 2 | 0 | 5 | 0 | 0 | 7 | 0 | 0 | 0 | 5065 | | 14 AAR | 38 | 471 | -1141 | -5798 | 2 | -153 | -116 | -377 | 2 | 5 | -357 | -353 | 6008 | 4688 | -1661 | -79 | -348 | 0 | -450 | 1 | 0 | 0 | 0 | 383 | | 15 CAL | 4 | -167 | 6 | -1125 | 0 | 1 | 3 | -507 | 0 | 0 | 0 | 0 | 1 | -236 | 972 | -44 | -1154 | 0 | 0 | 0 | 0 | 1 | 0 | -2244 | | 16 STM | 0 | 0 | 0 | -459 | 0 | -390 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 124 | -1693 | -739 | 0 | 0 | 0 | 0 | 13 | 0 | -3142 | | 17 CHS | 56 | -371 | -521 | -678 | 2 | 11 | -92 | -208 | 0 | 6 | 0 | -181 | 4 | -263 | -530 | -931 | 75 | 0 | 2 | 0 | 1 | -259 | 0 | -3877 | | 18 FAU | -259 | 0 | 3 | 0 | 0 | 3 | 2 | 151 | -102 | 446 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1650 | 169 | 30 | 44 | -178 | 0 | -1340 | | 19 STA | 1 | 1 | -296 | 3 | 2 | 6 | 18 | -798 | 1 | -792 | -130 | 0 | 0 | -394 | 0 | 0 | 0 | 183 | 1376 | 0 | 1799 | -19 | 0 | 962 | | 20 CL/JF | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 4 | 243 | 4 | -251 | 3 | 1 | 0 | 0 | 0 | 0 | 26 | 0 | 3960 | 0 | 0 | 0 | 3997 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 1 | 5 | -324 | 0 | -859 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | -2401 | -308 | -2510 | -308 | 0 | -6658 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -118 | 0 | -177 | 0 | 0 | 0 | 0 | 0 | -95 | 27 | -179 | 87 | 0 | -335 | 1126 | 0 | 338 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | ======<br>574 | ====== | -=====<br>-13653 | | -68 | ====== | -12387 | | 7171 | ====== | -345 | ====== | 5163 | | -3024 | | -5662 | ====== | -1692 | ===== | -1754 | .====== | 0 l | <br> | | | 3,1 | -3526 | | 5407 | | -5043 | | -33081 | / _ | 23841 | 313 | 12254 | 2200 | 7201 | - 321 | -3254 | 2302 | -2048 | -332 | 2809 | | 380 | ١ | -20738 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Ratio (Est/Obs) Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|-------|-------|-------|--------|-------|-------|-------|--------|--------|-------|-------|-------|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 0.99 | 1.07 | 0.76 | 1.01 | 0.13 | 0.64 | 0.44 | 0.57 | 0.02 | 0.22 | 6.19 | 0.13 | 38.00 | 1.80 | 5.05 | 0 | 0.45 | 2.94 | 11.54 | 0 | 2.83 | 0 | 0 | 0.90 | | 2 DC NC | 1.10 | 0.88 | 0.64 | 1.81 | 0.03 | 0.42 | 0.72 | 0.65 | 24.55 | 0.20 | 16.67 | 0.00 | 0.84 | 588.60 | 23.45 | 0.38 | 1.30 | 4.21 | 13.56 | 0.02 | 2.28 | 0 | 0 j | 0.93 | | 3 MTG | 1.73 | 0.73 | 0.98 | 1.23 | 51.51 | 1.52 | 1.08 | 0.69 | 0.18 | 0.31 | 0.66 | 0.22 | 1.51 | 0.72 | 0.02 | 0.14 | 0.20 | 20.76 | 13.51 | 35.82 | 3.54 | 0 | 0 j | 0.97 | | 4 PG | 1.33 | 2.03 | 1.14 | 1.03 | 42.85 | 2.02 | 5.84 | 0.45 | 9.14 | 0.42 | 20.19 | 0.12 | 0.73 | 1.18 | 0.16 | 39.44 | 0.44 | 3.07 | 19.49 | 0.04 | 5.46 | 1.09 | 0 | 1.05 | | 5 ARLCR | 0.03 | 0.83 | 74.67 | 0.75 | 1.51 | 2.05 | 2.12 | 2.11 | 17.76 | 0.27 | 0.63 | 0.02 | 1.09 | 4.92 | 0.23 | 0 | 2.46 | 0.81 | 2.93 | 0.02 | 0.99 | 0 | 0 | 1.58 | | 6 ARNCR | 0.15 | 0.36 | 1.10 | 0.43 | 0.95 | 0.77 | 1.17 | 1.10 | 0.51 | 465.34 | 2.60 | 0.02 | 3.79 | 19.78 | 0.60 | 0 | 10.08 | 6.97 | 16.51 | 0.08 | 5.00 | 0 | 0 | 0.86 | | 7 ALX | 0.58 | 1.17 | 0.47 | 1.48 | 3.45 | 1.62 | 0.69 | 1.06 | 79.76 | 2.57 | 0.00 | 0.01 | 4.65 | 29.62 | 2.70 | 0.10 | 0.38 | 6.37 | 47.98 | 0.02 | 16.70 | 0.03 | 0 | 0.87 | | 8 FFX | 0.29 | 0.38 | 0.31 | 0.40 | 1.40 | 0.93 | 0.78 | 0.90 | 0.83 | 0.84 | 9.11 | 0.13 | 8.81 | 0.06 | 0.01 | 0.01 | 44.73 | 0.30 | 0.40 | 0.07 | 0.08 | 0.07 | 0 | 0.88 | | 9 LDN | 0.01 | 4.61 | 0.09 | 0.01 | 11.97 | 0.34 | 45.46 | 0.99 | 1.17 | 0.55 | 0.44 | 0.70 | 0.40 | 0.00 | 0 | 0 | 0.12 | 0.35 | 0.91 | 0.29 | 0.28 | 0 | 0 | 1.11 | | 10 PW | 11.01 | 0.03 | 18.48 | 20.92 | 49.74 | 0.55 | 2.41 | 0.99 | 0.65 | 1.26 | 0.08 | 0 | 0.09 | 1.20 | 0.06 | 0 | 0.02 | 1.39 | 0.83 | 6.15 | 0.76 | 2.56 | 0 | 1.22 | | 11 FRD | 5.41 | 14.90 | 0.72 | 16.00 | 0.81 | 4.21 | 2.71 | | 252.81 | 0.82 | 1.03 | 1.13 | 0.38 | 0.14 | 0 | 0 | 0.01 | 0.62 | 0.04 | 0.82 | 0 | 0 | 0 | 1.01 | | 12 CAR | 0.15 | 0.60 | 1.25 | 11.06 | 0.04 | 0.10 | 0.04 | 0.59 | 2.44 | 0.01 | 1.07 | 1.31 | 1.45 | 0.08 | 0 | 0 | 0 | 0 | 0 | 10.56 | 0 | 0 | 0 | 1.29 | | 13 HOW | | 235.74 | 1.77 | 1.19 | 1.02 | 0.15 | 10.26 | 0.35 | 2.37 | 1.12 | 0.40 | 1.05 | 1.00 | 1.79 | 1.85 | 0 | 5.15 | 0.30 | 0.10 | 6.62 | 0 | 0 | 0 | 1.06 | | 14 AAR | 1.31 | 6.11 | 0.54 | 0.55 | 2.39 | 0.14 | 0.28 | 0.14 | 1.91 | 4.93 | 0.09 | 0.15 | 3.77 | 1.03 | 0.21 | 0.02 | 0.13 | 0.31 | 0.00 | 0.78 | 0.16 | 0.01 | 0 | 1.00 | | 15 CAL | 4.28 | 0.09 | 5.98 | 0.19 | 0.26 | 0.67 | 3.49 | 0.00 | 0.02 | 0.27 | 0 | 0 | 1.49 | 0.63 | 1.04 | 0.95 | 0.19 | 0 | 0.04 | 0 | 0 | 0.80 | 0 | 0.93 | | 16 STM | 0 | 0.13 | 0.07 | 0.06 | 0 | 0 | 0.12 | 0 | 0 | 0 | 0 | 0 | 0 | 1.10 | 1.16 | 0.96 | 0.46 | 0 | 0.01 | 0 | 0.03 | 12.89 | 0 | 0.92 | | 17 CHS | 56.17 | 0.29 | 0.05 | 0.79 | 1.86 | 10.51 | 0.37 | 0.21 | 0.28 | 5.72 | 0 | 0 | 4.17 | 0.16 | 0.35 | 0.44 | 1.00 | 0.18 | 1.63 | 0 | 1.17 | 0.26 | 0 | 0.94 | | 18 FAU | 0.00 | 0.32 | 2.54 | 0.22 | 0.28 | 2.64 | | 151.37 | 0.52 | 2.01 | 0.06 | 0 | 0 | 0.01 | 0 | 0 | 0 | | 168.96 | 30.03 | 43.89 | 0.00 | 0 | 0.93 | | 19 STA | 1.27 | 1.42 | 0.00 | 2.74 | 1.65 | 6.21 | 18.21 | 0.12 | 0.59 | 0.60 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0.20 | 182.76 | 1.07 | 0 | 1.93 | 0.84 | 0 | 1.04 | | 20 CL/JF | 0 | 0 | 6.70 | 0 | 0 | 0 | 0 | | 242.61 | 3.91 | 0.37 | 2.63 | 1.38 | 0.09 | 0 | 0 | 0 | 25.58 | 0 | 1.30 | 0 | 0 | 0 | 1.30 | | 21 SP/FB | 0.04 | 0.02 | 0.11 | 0.22 | 0.27 | 1.16 | 5.47 | 0.07 | 0.12 | 0.19 | 0 | 0 | 0 | 0 | 0 | . 0 | 0.16 | 44.84 | 0.61 | 0 | 0.94 | 0.21 | 0 | 0.87 | | 22 KGEO | 0 | 0 | 0 | 0.08 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0.16 | 0.04 | 27.45 | 0.00 | 87.21 | 0 | 0.17 | 1.49 | 0 | 1.10 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0<br> | 0 | 0<br> | 0<br> | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.02 | | 0.95 | | 0.98 | | 0.77 | | 1.09 | | 1.00 | | 1.07 | | 0.91 | | 0.91 | | 0.94 | | 0.96 | | 0 | | | | | 0.96 | | 1.03 | | 0.88 | | 0.90 | | 1.19 | | 1.24 | | 1.04 | | 0.92 | | 0.90 | | 1.19 | | 1.11 | | 0.99 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Est Motr Psn | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|------|-------|-------|--------|--------|--------|--------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 23831 | 22355 | 3212 | 4607 | 493 | 1900 | 1528 | 1974 | 48 | 137 | 28 | 2 | 69 | 296 | 14 | 1 | 106 | 14 | 39 | 1 | 16 | 0 | 0 | 60671 | | 2 DC NC | 23225 | 66645 | 14233 | 21368 | 506 | 2190 | 2043 | 2941 | 76 | 185 | 69 | 5 | 402 | 1137 | 51 | 2 | 318 | 19 | 59 | 1 | 21 | 0 | 0 | 135496 | | 3 MTG | 3674 | | 402566 | 23082 | 254 | 1656 | 922 | 6761 | 544 | 448 | 4819 | 735 | 5977 | 2898 | 36 | 1 | 117 | 87 | 61 | 127 | 24 | 0 | 0 | 470368 | | 4 PG | 5064 | 22872 | | 235146 | 217 | 980 | 2350 | 3147 | 52 | 348 | 96 | 48 | 6165 | 12908 | 691 | 107 | 4356 | 17 | 85 | 1 | 32 | 6 | 0 | 317654 | | 5 ARLCR | 310 | 310 | 134 | 122 | 832 | 2868 | 1308 | 1650 | 45 | 140 | 3 | 0 | 3 | 14 | 1 | 0 | 7 | 3 | 9 | 0 | 4 | 0 | 0 | 7764 | | 6 ARNCR | 1188 | 1292 | 817 | 523 | 2811 | 23697 | 7683 | 15345 | 424 | 990 | 15 | 1 | 18 | 67 | 4 | 0 | 30 | 29 | 57 | 1 | 23 | 0 | 0 | 55013 | | 7 ALX | 957 | 1205 | 470 | 1204 | 1227 | 7632 | 38188 | 21552 | 246 | 1996 | 10 | 0 | 20 | 97 | 12 | 1 | 116 | 27 | 143 | 1 | 59 | 1 | 0 | 75166 | | 8 FFX | 910 | 1335 | 2667 | 1489 | 1304 | 13335 | | 419815 | 16565 | 19176 | 57 | 2 | 66 | 135 | 15 | 3 | 171 | 722 | 615 | 39 | 245 | 1 | 0 | 498516 | | 9 LDN | 14 | 18 | 132 | 10 | 27 | 271 | 158 | | 101134 | 1715 | 264 | 4 | 3 | 2 | 0 | 0 | 1 | 279 | 6 | 586 | 2 | 0 | 0 | 119778 | | 10 PW | 61 | 80 | 125 | 115 | 88 | 682 | 1386 | 16297 | | 183978 | 4 | 0 | 9 | 12 | 3 | 1 | 23 | 2023 | 2615 | 23 | 782 | 11 | 0 | 209848 | | 11 FRD | 26 | 67 | 4281 | 81 | 4 | 21 | 14 | 110 | 528 | 7 | 113510 | 3150 | 958 | 117 | 0 | 0 | 0 | 3 | 1 | 1057 | 0 | 0 | 0 | 123935 | | 12 CAR | 2 | 6 | 714 | 45 | 0 | 1 | 1 | 6 | 11 | 0 | 3206 | 77411 | 1503 | 154 | 0 | 0 | 0 | 0 | 0 | 35 | 0 | 0 | 0 | 83095 | | 13 HOW | 109 | 555 | 6728 | 6704 | 6 | 36 | 39 | 182 | 16 | 26 | 996 | 1583 | 97357 | 13840 | 9 | 0 | 22 | 1 | 1 | 24 | 0 | 0 | 0 | 128235 | | 14 AAR | 373 | 1344 | 3248 | 13906 | 22 | 105 | 156 | 352 | 11 | 49 | 132 | 174 | 14157 | 228677 | 761 | 8 | 166 | 2 | 6 | 4 | 2 | 0 | 0 | 263655 | | 15 CAL | 15 | 53 | 30 | 616 | 1 | 5 | 17 | 18 | 0 | 3 | 0 | 0 | 7 | 674 | 36186 | 1594 | 520 | 0 | 0 | 0 | 0 | 3 | 0 | 39743 | | 16 STM | 1 | 2 | 0 | 80 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 1520 | 50203 | 1118 | 0 | 0 | 0 | 1 | 39 | 0 | 52971 | | 17 CHS | 116 | 351 | 102 | 4196 | 9 | 44 | 152 | 218 | 2 | 38 | 0 | 0 | 18 | 153 | 558 | 1269 | 75228 | 1 | 9 | 0 | 7 | 222 | 0 | 82693 | | 18 FAU | 2 | 3 | 13 | 2 | 1 | 12 | 11 | 480 | 237 | 1653 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 22151 | 296 | 62 | 112 | 2 | 0 | 25039 | | 19 STA | 8 | 11 | 9 | 16 | 4 | 25 | 65 | 353 | 4 | 2218 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 318 | 28428 | 0 | 5859 | 162 | 0 | 37483 | | 20 CL/JF | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 21 | 483 | 16 | 335 | 10 | 6 | 1 | 0 | 0 | 0 | 54 | 0 | 22452 | 0 | 0 | 0 | 23408 | | 21 SP/FB | 1 | 1 | 2 | 3 | 1 | 7 | 23 | 145 | 1 | 562 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 109 | 5495 | 0 | 52383 | 160 | 0 | 58895 | | 22 KGEO | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 7 | 0 | 0 | 0 | 0 | 1 | 12 | 69 | 2 | 144 | 0 | 143 | 4430 | 0 | 4809 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 59887 | | 462481 | | 7809 | | 75892 | | 121958 | | 123542 | | 126739 | | 39861 | | 82372 | | 38069 | | 59715 | | 0 | | | | | 134085 | | 313314 | | 55466 | | 506523 | | 213694 | | 83126 | | 261187 | | 53203 | | 25860 | | 24414 | | 5039 | | 2874235 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Obs Motr Psn | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|------|-------|-------|--------|------------------|--------|--------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 24443 | 18574 | 5462 | 4111 | 321 | 3108 | 2637 | 3948 | 1050 | 307 | 0 | 0 | 0 | 654 | 0 | 451 | 127 | 0 | 0 | 0 | 0 | 0 | 0 | 65193 | | 2 DC NC | 19909 | 75398 | 24035 | 20844 | 1672 | 3092 | 1886 | 3791 | 0 | 395 | 0 | 322 | 268 | 0 | 0 | 0 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 151758 | | 3 MTG | 3563 | 19604 | 400507 | 16576 | 177 | 1141 | 314 | 5504 | 1386 | 303 | 5049 | 2163 | 3093 | 1656 | 307 | 0 | 145 | 0 | 297 | 0 | 0 | 0 | 0 | 461786 | | 4 PG | 3658 | 12161 | 16861 | 239072 | 204 | 204 | 181 | 2681 | 0 | 181 | 130 | 308 | 8439 | 8018 | 2115 | 0 | 6962 | 0 | 0 | 0 | 0 | 0 | 0 | 301176 | | 5 ARLCR | 874 | 215 | 417 | 109 | 471 | 1903 | 334 | 1035 | 0 | 873 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 595 | 0 | 0 | 0 | 0 | 6828 | | 6 ARNCR | 2931 | 3018 | 1398 | 792 | 2371 | 30018 | 4976 | 12742 | 665 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 295 | 0 | 0 | 0 | 0 | 59205 | | 7 ALX | 823 | 1095 | 857 | 894 | 252 | 4107 | 42429 | 18660 | 236 | 589 | 382 | 0 | 0 | 0 | 0 | 375 | 289 | 0 | 0 | 0 | 0 | 0 | 0 | 70988 | | 8 FFX | 2876 | 4379 | 3876 | 1722 | 2123 | 12817 | 20555 | 421430 | 15941 | 20374 | 0 | 0 | 0 | 471 | 109 | 0 | 0 | 849 | 521 | 132 | 769 | 0 | 0 | 508944 | | 9 LDN | 191 | 0 | 341 | 256 | 0 | 295 | 0 | 12059 | 96076 | 1404 | 298 | 99 | 0 | 178 | 0 | 0 | 0 | 353 | 0 | 2566 | 0 | 0 | 0 | 114116 | | 10 PW | 0 | 636 | 0 | 0 | 0 | 521 | 632 | 14476 | 1115 | 178948 | 0 | 0 | 0 | 0 | 0 | 0 | 169 | 1214 | 4084 | 0 | 609 | 0 | 0 | 202405 | | 11 FRD | 0 | 0 | 4145 | 130 | 0 | 0 | 0 | 215 | 0 | 0 | 112914 | 2292 | 1021 | 228 | 0 | 0 | 0 | 0 | 0 | 896 | 0 | 0 | 0 | 121839 | | 12 CAR | 0 | 0 | 264 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2601 | 75576 | 573 | 931 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 79944 | | 13 HOW | 268 | 0 | 3863 | 5035 | 0 | 54 | 0 | 93 | 0 | 0 | 996 | 1312 | 107605 | 6475 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 125701 | | 14 AAR | 822 | 1345 | 5549 | 21192 | 0 | 178 | 163 | 439 | 0 | 0 | 394 | 413 | 3458 | 239603 | 2358 | 81 | 401 | 0 | 451 | 0 | 0 | 0 | 0 | 276844 | | 15 CAL | 0 | 184 | 0 | 1864 | 0 | 0 | 0 | 510 | 0 | 0 | 0 | 0 | 0 | 1399 | 38185 | 1232 | 2553 | 0 | 0 | 0 | 0 | 0 | 0 | 45927 | | 16 STM | 0 | 0 | 0 | 489 | 0 | 390 | 375 | 0 | 0 | 0 | 0 | 0 | 0 | 884 | 801 | 54282 | 2559 | 0 | 0 | 0 | 0 | 0 | 0 | 59780 | | 17 CHS | 0 | 715 | 546 | 3790 | 0 | 0 | 289 | 263 | 0 | 0 | 0 | 362 | 0 | 314 | 1124 | 3531 | 77572 | 0 | 0 | 0 | 0 | 348 | 0 | 88855 | | 18 FAU | 259 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 211 | 776 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25498 | 231 | 0 | 0 | 179 | 0 | 27154 | | 19 STA | 399 | 0 | 594 | 0 | 298 | 164 | 0 | 905 | 0 | 2541 | 130 | 0 | 0 | 394 | 0 | 0 | 0 | 0 | 34550 | 0 | 4086 | 118 | 0 | 44178 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 590 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19959 | 0 | 0 | 0 | 20548 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 349 | 0 | 1063 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9788 | 617 | 67107 | 666 | 0 | 79590 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 118 | 0 | 179 | 0 | 0 | 0 | 0 | 0 | 197 | 0 | 179 | 0 | 0 | 1164 | 2435 | 0 | 4272 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 61018 | = | 468715 | | 7890 | | 74771 | = | ======<br>116678 | = | 123481 | = | 124457 | | 44998 | | 90922 | = | 50814 | | 73734 | | 0 | = | | | | 137323 | | 316876 | | 57993 | | 499218 | | 207935 | | 82847 | | 261204 | | 60149 | | 28094 | | 24169 | | 3745 | | 2917033 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Difference (Est-Obs) Motorized Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |------------------|--------------|------------|------------|-----------|--------|------------|--------|---------|------------|---------|------|----------|------------|--------------|--------|--------|--------|--------|---------|-----------|---------|--------|-----|--------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1.3 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | | | | | | | | | | | ====== | .====== | .====== | | | ====== | | .====== | ====== | | | | | | 1 DC CR | -613 | 3780 | -2250 | 496 | 173 | -1208 | -1110 | -1973 | -1001 | -170 | 28 | 2 | 69 | -358 | 14 | -450 | -21 | 14 | 39 | 1 | 16 | 0 | 0 | -4522 | | 2 DC NC | 3316 | -8752 | -9802 | 524 | -1166 | -903 | 157 | -851 | 76 | -210 | 69 | -317 | 134 | 1137 | 51 | 2 | 173 | 19 | 59 | 1 | 21 | 0 | 0 | -16262 | | 3 MTG | 111 | -4025 | 2059 | 6506 | 77 | 515 | 608 | 1257 | -842 | 144 | -230 | -1428 | 2884 | 1242 | -271 | 1 | -27 | 87 | -235 | 127 | 24 | 0 | 0 | 8583 | | 4 PG | 1406 | 10710 | 6106 | -3926 | 13 | 775 | 2169 | 466 | 52 | 167 | -34 | -260 | -2275 | 4890 | -1424 | 107 | -2606 | 17 | 85 | 1 | 32 | 6 | 0 | 16478 | | 5 ARLCR | -564 | 95 | -283 | 12 | 361 | 964 | 974 | 615 | 45 | -733 | 3 | 0 | 3 | 14 | 1 | 0 | -/ | 3 | -586 | 0 | 4 | 0 | 0 | 937 | | 6 ARNCR | -1743 | -1726 | -581 | -269 | 440 | -6321 | 2707 | 2604 | -241 | 990 | 15 | Τ | 18 | 67 | 4 | 274 | 30 | 29 | -238 | 1 | 23 | 0 | 0 | -4192 | | 7 ALX | 134 | 110 | -388 | 310 | 975 | 3525 | -4241 | 2892 | 10 | 1407 | -372 | 0 | 20 | 97 | 12 | -374 | -173 | 27 | 143 | 1 | 59 | 1 | 0 | 4177 | | 8 FFX | -1966 | -3044 | -1210 | -232 | -819 | 518 | -707 | -1615 | 624 | -1198 | 57 | 2 | 66 | -336 | -94 | 3 | 171 | -128 | 94 | -93 | -524 | 1 | 0 | -10428 | | 9 LDN | -177 | 18 | -209 | -246 | 27 | -25 | 158 | 3095 | 5058 | 311 | -33 | -96 | 3 | -176 | 0 | 0 | 146 | -74 | 1 470 | -1980 | 2 | 11 | 0 | 5661 | | 10 PW | 61 | -556<br>67 | 125 | 115 | 88 | 161 | 753 | 1820 | 416<br>528 | 5030 | 597 | 0<br>857 | | 12 | 3 | Τ | -146 | 809 | -1470 | 23 | 173 | 11 | 0 | 7443 | | 11 FRD<br>12 CAR | 26<br>2 | 6/ | 136<br>450 | -49<br>45 | 4 | 21 | 14 | -105 | | , | 605 | 1836 | -63<br>930 | -111<br>-777 | 0 | 0 | 0 | 3 | 1 | 161<br>35 | 0 | 0 | 0 | 2096<br>3151 | | | -159 | 555 | 2865 | 1669 | 6 | -18 | 39 | 6<br>88 | 11 | 0<br>26 | -0 | | -10247 | 7365 | 0 | 0 | 22 | 1 | 1 | 24 | 0 | 0 | 0 1 | 2534 | | 13 HOW<br>14 AAR | -159<br>-450 | -0 | -2301 | -7287 | 22 | -18<br>-73 | -6 | -87 | 16<br>11 | 49 | -262 | -238 | | -10926 | -1597 | -73 | -234 | 1 | -445 | 24 | 0 | 0 | 0 1 | -13189 | | 15 CAL | -450<br>15 | -131 | 30 | -1249 | 22 | -/3 | 17 | -492 | 11 | 49 | -262 | -238 | 10/00 | -725 | -1597 | 362 | -234 | 2 | -445 | 0 | | 2 | 0 1 | -6184 | | 16 STM | 13 | -131 | 30 | -409 | ,<br>T | -390 | -374 | 1 | 0 | 0 | 0 | 0 | , | -879 | 719 | -4079 | -1442 | 0 | 0 | 0 | 1 | 39 | 0 1 | -6809 | | 17 CHS | 116 | -364 | -444 | 406 | ۵ | 44 | -137 | -45 | 2 | 38 | 0 | -362 | 1 Ω | -161 | -566 | -2262 | -2344 | 1 | ۵ | 0 | 7 | -126 | 0 1 | -6162 | | 18 FAU | -257 | -204 | 13 | 2 | 1 | 12 | 11 | 480 | 26 | 878 | 1 | -302 | 10 | -101 | -200 | -2202 | -2344 | -3348 | 65 | 62 | 112 | -177 | 0 1 | -2116 | | 19 STA | -391 | 11 | -584 | 16 | -294 | -140 | 65 | -552 | 4 | -323 | -130 | 0 | 0 | -393 | 0 | 0 | 2 | 318 | -6123 | 02 | 1774 | 44 | 0 1 | -6695 | | 20 CL/JF | -391 | 11 | 30 | 10 | -234 | -140 | 0.5 | 21 | 483 | 16 | -255 | 10 | 6 | -393 | 0 | 0 | 0 | 54 | 0123 | 2494 | T / / T | - 11 | 0 | 2860 | | 21 SP/FB | 1 | 1 | 20 | 3 | 1 | 7 | 23 | -204 | 1 | -501 | -233 | 10 | 0 | Λ<br>1 | 0 | 0 | 1 | 109 | -4293 | | -14723 | -505 | 0 | -20695 | | 22 KGEO | 0 | 0 | 0 | 1 | 0 | , | | -117 | 0 | -172 | 0 | 0 | 0 | 0 | 1 | -185 | 69 | -177 | 144 | -017 | -1020 | 1995 | 0 | 538 | | 23 EXTL | 0 | n | 0 | 0 | 0 | 0 | n | 117 | 0 | 1,2 | 0 | n | 0 | 0 | 0 | 103 | 0,5 | 1,, | 111 | 0 | 1020 | 1000 | 0 | 0 | | ======= | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | | | ====== | ====== | ====== | ====== | ====== | ====== | ====== | | ====== | ====== | ====== | | ====== | | TOTAL | -1131 | | -6234 | | -81 | | 1121 | | 5280 | | 60 | | 2282 | | -5137 | | -8550 | | -12745 | | -14018 | | 0 | | | | | -3239 | | -3562 | | -2527 | | 7305 | | 5759 | | 278 | | -17 | | -6945 | | -2234 | | 245 | | 1293 | | -42798 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Ratio (Est/Obs) Motorized Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |------------------|----------------|--------------|--------|-------|--------------|-------|---------------|--------|--------|--------------|-------|------|---------------|---------|-------|--------|--------|--------|--------------|--------|--------------|---------------|-----------------|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 0.97 | 1.20 | 0.59 | 1.12 | 1.54 | 0.61 | 0.58 | 0.50 | 0.05 | 0.45 | 27.66 | 1.68 | 69.22 | 0.45 | 14.01 | 0.00 | 0.84 | 14.19 | 39.37 | 0.51 | 15.94 | 0 | .======:<br>0 l | 0.93 | | 2 DC NC | 1.17 | 0.88 | 0.59 | | 0.30 | 0.71 | 1.08 | 0.78 | | 0.47 | 68.69 | 0.02 | | L136.80 | 51.19 | 2.17 | 2.19 | 18.62 | 59.04 | 1.16 | 20.99 | 0.11 | ōi | 0.89 | | 3 MTG | 1.03 | 0.79 | 1.01 | 1.39 | 1.43 | 1.45 | 2.94 | 1.23 | 0.39 | 1.48 | 0.95 | 0.34 | 1.93 | 1.75 | 0.12 | 1.15 | 0.81 | 86.66 | 0.21 | 126.72 | 23.72 | 0.06 | 0 | 1.02 | | 4 PG | 1.38 | 1.88 | 1.36 | 0.98 | 1.06 | 4.79 | 12.98 | 1.17 | 52.49 | 1.92 | 0.74 | 0.16 | 0.73 | 1.61 | 0.33 | 106.61 | 0.63 | 16.99 | 84.98 | 1.46 | 31.50 | 5.88 | 0 | 1.05 | | 5 ARLCR | 0.35 | 1.44 | 0.32 | 1.11 | 1.77 | 1.51 | 3.92 | 1.59 | 44.82 | 0.16 | 2.67 | 0.16 | 3.24 | 14.16 | 0.99 | 0.06 | 6.57 | 3.39 | 0.02 | 0.23 | 3.82 | 0.02 | 0 | 1.14 | | 6 ARNCR | 0.41 | 0.43 | 0.58 | 0.66 | 1.19 | 0.79 | 1.54 | 1.20 | 0.64 | 989.96 | 14.60 | 0.54 | 17.59 | 66.53 | 3.59 | 0.14 | 30.49 | 29.38 | 0.19 | 1.22 | 23.04 | 0.05 | 0 | 0.93 | | 7 ALX | 1.16 | 1.10 | 0.55 | 1.35 | 4.87 | 1.86 | 0.90 | 1.16 | 1.04 | 3.39 | 0.03 | 0.43 | 20.13 | 97.18 | 12.22 | 0.00 | 0.40 | 26.85 | 142.96 | 0.71 | 59.38 | 0.63 | 0 | 1.06 | | 8 FFX | 0.32 | 0.30 | 0.69 | | 0.61 | 1.04 | 0.97 | 1.00 | 1.04 | 0.94 | 57.35 | 2.10 | 65.72 | 0.29 | 0.14 | 2.81 | 171.38 | 0.85 | 1.18 | 0.29 | 0.32 | 1.49 | 0 | 0.98 | | 9 LDN | 0.07 | 17.97 | 0.39 | | 26.57 | | 157.92 | 1.26 | | | 0.89 | 0.04 | 3.01 | 0.01 | 0.02 | 0 | 0.72 | 0.79 | 6.01 | 0.23 | 1.79 | 0 | 0 | 1.05 | | 10 PW | 60.87 | 0.13 | 124.99 | | 88.46 | 1.31 | 2.19 | 1.13 | 1.37 | 1.03 | 3.58 | 0.02 | 8.99 | 11.80 | 3.16 | 1.42 | 0.13 | 1.67 | 0.64 | 23.49 | 1.28 | 11.01 | 0 | 1.04 | | 11 FRD | 26.45 | 66.84 | 1.03 | | 3.77 | 21.39 | 13.73 | 0.51 | 528.07 | 7.05 | 1.01 | 1.37 | 0.94 | 0.51 | 0.01 | 0 | 0.38 | 3.32 | 0.61 | 1.18 | 0.13 | 0 | 0 | 1.02 | | 12 CAR | 1.84 | 6.08 | 2.71 | 44.96 | 0.22 | 1.10 | 0.83 | 5.65 | | 0.25 | 1.23 | 1.02 | 2.62 | 0.17 | _ 0 | . 0 | 0.06 | 0.08 | 0.01 | 35.35 | | 0 | 0 | 1.04 | | 13 HOW | 0.41 | 555.43 | 1.74 | | 6.23 | 0.67 | 39.31 | 1.95 | | | 1.00 | 1.21 | 0.90 | 2.14 | 8.70 | 0.24 | 21.53 | 1.43 | 0.94 | 23.80 | 0.27 | 0 | 0 | 1.02 | | 14 AAR | 0.45 | 1.00 | 0.59 | | 21.56 | 0.59 | 0.96<br>16.62 | 0.80 | | | 0.33 | 0.42 | 4.09 | 0.95 | 0.32 | 0.10 | 0.42 | 1.73 | 0.01 | 3.93 | 2.12 | 0.25 | 0 | 0.95 | | 15 CAL | 15.49 | 0.29<br>1.63 | 30.14 | 0.33 | | 4.85 | | 0.03 | 0.15 | 2.52<br>0.10 | 0.03 | 0 | 7.29 | 0.48 | 0.95 | 1.29 | 0.20 | 0.04 | 0.44 | 0 | 0.06 | 3.46<br>39.39 | | 0.87 | | 16 STM<br>17 CHS | 0.63<br>115.75 | 0.49 | 0.46 | | 0.05<br>8.90 | 0.00 | 0.00 | 0.66 | 1.92 | | 0.28 | 0.00 | 0.12<br>17.78 | 0.01 | 1.90 | 0.92 | 0.44 | 0.89 | 0.19<br>8.56 | 0 | 0.61<br>7.33 | 0.64 | 0 | 0.89 | | 17 CHS | 0.01 | 2.96 | 12.97 | 2.04 | 1.26 | 11.73 | 11.48 | 480.40 | 1.12 | | 0.28 | 0.00 | 0.09 | 0.49 | 0.50 | 0.30 | 0.97 | 0.89 | 1.28 | | 112.16 | 0.04 | 0 | 0.93 | | 19 STA | 0.01 | 10.92 | 0.02 | | 0.01 | 0.15 | 65.38 | 0.39 | 4.19 | | 0.00 | 0 | 0.09 | 0.20 | 0.03 | 0 | | 317.80 | 0.82 | 01.90 | 1.43 | 1.37 | 0 | 0.85 | | 20 CL/JF | 0.02 | 0.01 | 29.66 | | 0.01 | 0.21 | 0.13 | 21.21 | | | 0.57 | 9.75 | 6.15 | 0.59 | 0.05 | 0 | 1.50 | 53.71 | 0.02 | 1.12 | 0 | 1.57 | 0 | 1.14 | | 21 SP/FB | 0.86 | 1.12 | 1.53 | | 1.12 | 7.27 | 23.25 | 0.42 | | 0.53 | 0.57 | 0 | 0.13 | 0.03 | 0 | 0.03 | - | 108.67 | 0.56 | 0 | 0.78 | 0.24 | o i | 0.74 | | 22 KGEO | 0 | 0 | 0 | 0.75 | 0 | 0 | 0.05 | 0.01 | 0 | 0.04 | Ō | 0 | ō | 0.01 | 0.74 | 0.06 | 68.73 | | | 0 | 0.12 | 1.82 | ōi | 1.13 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ======= | | | | | | | | | | | | | | | | | | | | | | | .====== | | | TOTAL | 0.98 | | 0.99 | | 0.99 | | 1.01 | | 1.05 | | 1.00 | | 1.02 | | 0.89 | | 0.91 | | 0.75 | | 0.81 | | 0 | | | | | 0.98 | | 0.99 | | 0.96 | | 1.01 | | 1.03 | | 1.00 | | 1.00 | | 0.88 | | 0.92 | | 1.01 | | 1.35 | | 0.99 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Est Auto Occ. | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|-------|-------|------|-------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.47 | 1.58 | 1.54 | 1.31 | 2.78 | 1.64 | 1.82 | 1.48 | 3.15 | 1.84 | 4.47 | 12.92 | 1.82 | 2.03 | 2.77 | 0.94 | 1.85 | 4.83 | 3.41 | 0.51 | 5.63 | 0 | 0 | 1.52 | | 2 DC NC | 1.57 | 1.49 | 1.45 | 1.26 | 2.94 | 1.71 | 1.94 | 1.50 | 3.12 | 2.07 | 4.12 | 9.21 | 1.79 | 1.93 | 2.18 | 5.71 | 1.69 | 4.42 | 4.35 | 58.00 | 9.21 | 0.11 | 0 | 1.47 | | 3 MTG | 1.37 | 1.59 | 1.55 | 1.74 | 3.31 | 2.00 | 2.68 | 2.47 | 3.38 | 4.04 | 2.24 | 2.07 | 1.91 | 2.43 | 4.86 | 8.21 | 4.02 | 4.17 | 4.55 | 3.54 | 6.70 | 0.06 | 0 | 1.59 | | 4 PG | 1.22 | 1.45 | 1.72 | 1.45 | 3.22 | 2.17 | 2.21 | 2.54 | 5.74 | 3.97 | 4.75 | 3.97 | 1.76 | 1.90 | 2.29 | 2.70 | 1.77 | 5.53 | 4.36 | 36.50 | 5.77 | 5.39 | 0 | 1.50 | | 5 ARLCR | 3.59 | 1.52 | 1.73 | 1.48 | 1.45 | 1.48 | 1.73 | 1.61 | 2.52 | 2.05 | 4.24 | 8.00 | 2.97 | 2.88 | 4.30 | 0.06 | 2.67 | 4.19 | 3.16 | 11.50 | 3.86 | 0.02 | 0 | 1.57 | | 6 ARNCR | 2.22 | 1.53 | 1.83 | 1.52 | 1.41 | 1.39 | 1.68 | 1.58 | 2.50 | 2.08 | 5.62 | 27.00 | 4.64 | 3.36 | 5.98 | 0.14 | 3.02 | 4.22 | 3.45 | 15.25 | 4.61 | 0.05 | 0 | 1.51 | | 7 ALX | 1.74 | 1.61 | 2.25 | 1.55 | 1.34 | 1.45 | 1.66 | 1.57 | 3.08 | 2.02 | 5.89 | 43.00 | 4.33 | 3.28 | 4.53 | 13.60 | 2.13 | 4.22 | 2.98 | 35.50 | 3.56 | 21.00 | 0 | 1.62 | | 8 FFX | 1.03 | 1.58 | 2.35 | 2.23 | 1.34 | 1.45 | 1.94 | 1.60 | 1.67 | 1.84 | 5.97 | 16.15 | 6.15 | 4.66 | 7.86 | 77.00 | 3.53 | 2.82 | 2.95 | 4.48 | 3.77 | 21.29 | 0 | 1.62 | | 9 LDN | 2.53 | 3.90 | 4.15 | 5.49 | 2.21 | 2.71 | 3.47 | 1.93 | 1.38 | 2.18 | 2.00 | 5.31 | 7.52 | 6.77 | 0.02 | 0 | 6.00 | 2.26 | 6.60 | 1.99 | 6.39 | 0 | 0 | 1.45 | | 10 PW | 1.39 | 3.86 | 5.16 | 4.47 | 1.71 | 2.28 | 2.65 | 1.97 | 2.11 | 1.36 | 18.75 | 0.02 | 15.67 | 6.72 | 10.33 | 0.03 | 5.19 | 1.88 | 1.82 | 3.82 | 2.81 | 4.30 | 0 | 1.42 | | 11 FRD | 4.84 | 4.49 | 2.31 | 5.04 | 4.54 | 5.07 | 5.07 | 5.02 | 2.09 | 7.84 | 1.43 | 1.67 | 2.45 | 3.67 | 0.01 | 0 | 38.00 | 5.35 | 15.25 | 2.27 | 0.13 | 0 | 0 | 1.47 | | 12 CAR | 12.27 | 10.13 | 2.17 | 4.07 | 5.50 | 11.00 | 20.75 | 9.58 | 4.59 | 25.00 | 1.72 | 1.30 | 1.80 | 3.09 | 0 | 0 | 0.06 | 0.08 | 0.01 | 3.35 | 0 | 0 | 0 | 1.33 | | 13 HOW | 1.72 | 2.36 | 1.91 | 1.82 | 4.21 | 4.41 | 3.83 | 4.51 | 6.57 | 6.99 | 2.49 | 1.75 | 1.43 | 1.73 | 4.70 | 0.24 | 4.18 | 4.77 | 9.40 | 3.60 | 0.27 | 0 | 0 | 1.51 | | 14 AAR | 1.98 | 2.38 | 2.41 | 1.93 | 3.75 | 3.75 | 3.39 | 4.21 | 5.62 | 5.48 | 3.60 | 2.91 | 1.73 | 1.44 | 1.72 | 4.64 | 3.15 | 5.58 | 6.37 | 5.04 | 13.25 | 25.00 | 0 | 1.48 | | 15 CAL | 3.49 | 3.15 | 5.04 | 2.35 | 4.73 | 7.15 | 4.76 | 6.83 | 7.50 | 7.52 | 0.03 | 0 | 4.89 | 1.70 | 1.32 | 1.71 | 1.94 | 0.04 | 11.00 | 0 | 0.06 | 4.32 | 0 | 1.35 | | 16 STM | 0.63 | 12.54 | 6.57 | 2.61 | 0.05 | 0.12 | 10.50 | 0.66 | 0 | 0.10 | 0 | 0 | 0.12 | 4.73 | 1.64 | 1.37 | 1.76 | 0 | 19.00 | 0 | 20.33 | 3.06 | 0 | 1.38 | | 17 CHS | 1.85 | 2.30 | 4.09 | 1.69 | 3.87 | 4.00 | 2.87 | 3.63 | 6.86 | 4.76 | 0.28 | 0.05 | 4.26 | 3.01 | 1.99 | 1.75 | 1.35 | 4.94 | 5.25 | 0 | 6.26 | 2.49 | 0 | 1.38 | | 18 FAU | 4.61 | 9.25 | 5.11 | 9.27 | 4.50 | 4.44 | 4.93 | 3.08 | 2.17 | 1.86 | 10.00 | 0 | 0.09 | 20.00 | 0 | 0 | 0.18 | 1.37 | 1.75 | 2.06 | 2.56 | 4.29 | 0 | 1.42 | | 19 STA | 6.54 | 7.69 | 7.63 | 5.74 | 2.19 | 3.96 | 3.59 | 3.20 | 7.10 | 1.87 | 0.01 | 0 | 0 | 22.67 | 0.03 | 0 | 9.90 | 1.74 | 1.30 | 0 | 1.57 | 1.65 | 0 | 1.38 | | 20 CL/JF | 0 | 0.01 | 4.43 | 0 | 0.06 | 0.21 | 0.13 | 5.04 | 1.99 | 4.06 | 2.32 | 3.71 | 4.46 | 6.56 | 0 | 0 | 0 | 2.10 | 0 | 1.32 | 0 | 0 | 0 | 1.34 | | 21 SP/FB | 21.50 | 56.00 | 13.91 | 13.91 | 4.15 | 6.27 | 4.25 | 4.32 | 6.75 | 2.75 | 0 | 0 | 0 | 0.03 | 0 | 0.03 | 8.00 | 2.42 | 1.49 | 0 | 1.34 | 1.91 | 0 | 1.37 | | 22 KGEO | 0 | 0 | 0 | 9.38 | 0 | 0 | 0.05 | 0.22 | 0 | 4.51 | 0 | 0 | 0 | 0.01 | 4.63 | 3.32 | 2.50 | 4.32 | 1.65 | 0 | 2.06 | 1.29 | 0 | 1.33 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.47 | | 1.58 | | 1.46 | | 1.78 | | 1.44 | | 1.47 | | 1.50 | | 1.35 | | 1.38 | | 1.38 | | 1.38 | | 0 | | | | | 1.52 | | 1.48 | | 1.47 | | 1.63 | | 1.42 | | 1.32 | | 1.48 | | 1.38 | | 1.44 | | 1.37 | | 1.35 | | 1.50 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Obs Auto Occ. | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|------|--------|--------|--------|--------|------|--------|------|--------|--------|------|--------|------|--------|------|-------|--------|------|------|------|---------|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6<br> | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.25 | 1.34 | 1.36 | 1.23 | 1.54 | 1.45 | 1.37 | 1.60 | 1.32 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.31 | | 2 DC NC | 1.43 | 1.41 | 1.63 | 1.62 | 1.58 | 1.27 | 1.07 | 1.30 | 0 | 1.00 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.45 | | 3 MTG | 1.89 | 1.41 | 1.51 | 1.50 | 0 | 1.42 | 1.00 | 1.41 | 1.51 | 1.00 | 1.54 | 1.31 | 1.50 | 1.00 | 1.00 | 0 | 1.00 | 0 | 296.95 | 0 | 0 | 0 | 0 | 1.50 | | 4 PG | 1.25 | 1.52 | 1.43 | 1.49 | 0 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 129.82 | 3.10 | 1.76 | 1.39 | 1.14 | 0 | 1.23 | 0 | 0 | 0 | 0 | 0 | 0 | 1.47 | | 5 ARLCR | 1.00 | 1.00 | 0 | 1.00 | 1.00 | 1.98 | 1.00 | 2.15 | 0 | 3.55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 595.10 | 0 | 0 | 0 | 0 | 1.93 | | 6 ARNCR | 2.89 | 1.16 | 3.25 | 1.00 | 1.26 | 1.41 | 1.33 | 1.37 | 2.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 295.26 | 0 | 0 | 0 | 0 | 1.41 | | 7 ALX | 1.00 | 1.42 | 1.96 | 1.70 | 1.00 | 1.31 | 1.28 | 1.42 | 235.54 | 1.56 | 1.00 | 0 | 0 | 0 | 0 | 374.95 | 2.00 | 0 | 0 | 0 | 0 | 0 | 0 | 1.34 | | 8 FFX | 1.29 | 1.99 | 1.08 | 1.06 | 1.82 | 1.27 | 1.59 | 1.45 | 1.34 | 1.67 | 0 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 0 | 1.45 | | 9 LDN | 1.00 | 0 | 1.00 | 1.00 | 0 | 1.00 | 0 | 1.52 | 1.54 | 1.00 | 1.00 | 99.39 | 0 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 2.56 | 0 | 0 | 0 | 1.53 | | 10 PW | 0 | 1.00 | 0 | 0 | 0 | 1.00 | 3.00 | 1.76 | 1.00 | 1.67 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.57 | 2.36 | 0 | 1.68 | 0 | 0 | 1.67 | | 11 FRD | 0 | 0 | 1.61 | 129.82 | 0 | 0 | 0 | 1.00 | 0 | 0 | 1.47 | 1.38 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 1.58 | 0 | 0 | 0 | 1.47 | | 12 CAR | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.48 | 1.67 | 1.00 | 1.43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.65 | | 13 HOW | 0 | 0 | 1.94 | 1.62 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 1.00 | 1.53 | 1.58 | 1.44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.57 | | 14 AAR | 6.63 | 14.57 | 2.23 | 1.63 | 0 | 1.00 | 1.00 | 1.00 | 0 | 0 | 1.00 | 1.00 | 1.59 | 1.54 | 1.12 | 1.00 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.56 | | 15 CAL | 0 | 1.00 | 0 | 1.34 | 0 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 2.21 | 1.44 | 1.26 | 1.80 | 0 | 0 | 0 | 0 | 0 | 0 | 1.45 | | 16 STM | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 374.95 | 0 | 0 | 0 | 0 | 0 | 0 | 883.86 | 1.00 | 1.41 | 1.86 | 0 | 0 | 0 | 0 | 0 | 0 | 1.44 | | 17 CHS | 0 | 1.36 | 1.00 | 1.20 | 0 | 0 | 2.00 | 1.00 | 0 | 0 | 0 | 2.00 | 0 | 1.00 | 1.39 | 2.13 | 1.40 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.40 | | 18 FAU | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.43 | 231.44 | 0 | 0 | 1.00 | 0 | 1.44 | | 19 STA | 399.09 | 0 | 2.00 | 0 | 297.55 | 164.17 | 0 | 1.00 | 0 | 1.28 | 1.00 | 0 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.69 | 0 | 2.12 | 1.00 | 0 | 1.69 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.53 | 0 | 0 | 0 | 1.53 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.61 | 2.00 | 1.62 | 1.70 | 0 | 1.60 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 0 | 2.00 | 0 | 1.00 | 0 | 0 | 2.88 | 1.06 | 0 | 1.30 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.39 | ====== | 1.51 | ====== | 1.47 | ====== | 1.36 | | 1.50 | | 1.46 | ====== | 1.57 | ====== | 1.39 | | 1.40 | ===== | 1.74 | | 1.64 | | <br>0 l | ====== | | TOTAL | 1.32 | 1.43 | 1.51 | 1.49 | | 1.36 | 1.50 | 1.45 | 1.50 | 1.65 | 1.10 | 1.64 | 1.57 | 1.53 | 1.33 | 1.44 | 2.10 | 1.41 | 1.71 | 1.61 | 1.01 | 1.12 | 0 | 1.50 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Est Pct. Tran | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|------|------|------|-------|------|------|-----|------|-------|----|------|-------|------|------|------|-------|-----|-------|-----|----|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 17.0 | 18.6 | 15.5 | 6.7 | 84.8 | 31.5 | 12.5 | 7.7 | 0 | 7.5 | 0 | 0 | 0.1 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 l | 17.1 | | 2 DC NC | 23.0 | 8.4 | 9.9 | 3.4 | 81.1 | 22.6 | 6.3 | 3.0 | 0 | 10.2 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.5 | | 3 MTG | 18.6 | 3.3 | 1.2 | 0.8 | 32.8 | 3.0 | 1.0 | 1.3 | 0 | 13.9 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.3 | | 4 PG | 10.9 | 1.6 | 0.7 | 0.4 | 36.5 | 8.5 | 0.5 | 2.1 | 0 | 13.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7 | | 5 ARLCR | 91.5 | 13.1 | 3.8 | 0.2 | 5.5 | 10.9 | 6.4 | 0.7 | 0 | 2.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.1 | | 6 ARNCR | 84.9 | 7.4 | 1.3 | 0.1 | 10.2 | 4.2 | 4.3 | 0.6 | 0 | 2.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.2 | | 7 ALX | 57.1 | 2.0 | 0.4 | 0.0 | 4.9 | 3.7 | 1.6 | 0.4 | 0 | 1.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.2 | | 8 FFX | 49.2 | 1.7 | 1.7 | 2.1 | 3.3 | 2.0 | 1.1 | 0.2 | 0.0 | 1.2 | 5.2 | 0 | 17.6 | 2.8 | 26.3 | 72.6 | 7.8 | 0 | 0.0 | 0 | 1.6 | 0 | 0 | 0.4 | | 9 LDN | 81.9 | 0 | 0.0 | 0 | 0.3 | 0.6 | 0.0 | 0.2 | 0 | 1.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 10 PW | 74.8 | 15.0 | 23.7 | 18.7 | 4.0 | 4.4 | 3.1 | 1.5 | 0.6 | 0.1 | 58.1 | 0 | 84.3 | 31.7 | 80.4 | 97.9 | 40.5 | 0 | 0.0 | 0 | 0.4 | 0 | 0 | 0.3 | | 11 FRD | 1.1 | 0 | 0.0 | 0 | 2.4 | 0.2 | 0 | 0.8 | 0 | 8.8 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 14.6 | 0.0 | 0.0 | 0.0 | 31.1 | 4.6 | 0 | 20.0 | 0 | 70.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 14 AAR | 14.0 | 0.1 | 0.0 | 0.0 | 58.4 | 11.3 | 0.0 | 25.7 | 0 | 45.2 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 15 CAL | 3.5 | 0.0 | 0 | 0 | 4.7 | 1.2 | 0 | 4.0 | 0 | 19.4 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 17 CHS | 10.2 | 0.1 | 0 | 0 | 19.2 | 3.6 | 0 | 7.4 | 0 | 29.2 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | | 18 FAU | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 2.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | | 23 EXTL | 0<br> | 0 | 0 | 0 | 0 | 0<br> | 0 | 0 | 0 | 0 | 0<br> | 0 | 0 | 0<br> | 0 | 0 | 0 | 0<br> | 0 | 0<br> | 0 | 0 | 0 | 0 | | TOTAL | 21.8 | | 1.5 | | 18.5 | | 2.1 | | 0.0 | | 0.1 | | 0.0 | | 0.0 | | 0.2 | | 0.0 | | 0.0 | | 0 | | | | | 8.1 | | 0.7 | | 5.7 | | 0.4 | | 0.3 | | 0 | | 0.0 | | 0.0 | | 0 | | 0 | | 0 | | 1.5 | Year: 2007 Estimate/Observed Trips Purpose: Internal NHO Trips MODE: Obs Pct. Tran | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|-------|-------|-------|------|------|---------|---|--------|----|----|----|------|----|-------|----|----|----|----|----|----|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 30.5 | 22.1 | 41.9 | 2.7 | 0 | 42.5 | 13.4 | 12.0 | 0 | | 0 | 0 | 0 | 87.7 | 0 | <br>n | 0 | 0 | 0 | · | 0 | 0 | 0 l | 25.6 | | 2 DC NC | 26.2 | 12.8 | 6.3 | 29.9 | 0 | 3.4 | 21.8 | 0 | 0 | 0 | 0 | 0 | 0 | 07.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 15.2 | | 3 MTG | 33.2 | 7.2 | 1.6 | 3.6 | 100.0 | 34.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o i | 2.2 | | 4 PG | 5.4 | 4.6 | 2.0 | 1.8 | 100.0 | 0 | 0 | Ö | 0 | 0 | 0 | ō | ō | 0 | 0 | 0 | 0 | Ō | 0 | 0 | Ō | 0 | ō i | 1.8 | | 5 ARLCR | 75.4 | 0 | 100.0 | 0 | 23.9 | 12.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o i | 20.9 | | 6 ARNCR | 45.5 | 17.4 | 6.6 | 0 | 0 | 0.3 | 0 | 6.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 4.8 | | 7 ALX | 50.8 | 18.9 | 0 | 0 | 0 | 0 | 0.7 | 1.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 1.7 | | 8 FFX | 31.8 | 0 | 0 | 0 | 42.3 | 4.2 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.6 | | 9 LDN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 10 PW | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 11 FRD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 100.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | | 14 AAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | | 15 CAL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 16 STM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17 CHS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 18 FAU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 19 STA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 20 CL/JF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 21 SP/FB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 KGEO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 28.9 | ====== | 2.4 | ===== | 17.6 | | 1.4 | ======= | 0 | ====== | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | ====== | | TOTAL | 20.5 | 12.0 | | 3.5 | 10 | 4.6 | | 0.5 | o | 0 | Ü | 0 | o | 0.6 | o | 0 | Ü | 0 | o | 0 | Ü | 0 | ١ | 2.2 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Est Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|-------|-------|-------|-------|-------|------|------|------|----|-----|-----|----|-----|------|----|----|----|----|----|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 36374 | 24490 | 4860 | 2151 | 4288 | 6768 | 2153 | 2349 | 1 | 35 | 0 | 0 | 3 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 83476 | | 2 DC NC | 158308 | 84974 | 28505 | 11624 | 8900 | 15150 | 4294 | 6024 | 2 | 48 | 0 | 0 | 16 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 317858 | | 3 MTG | 74607 | 17358 | 82164 | 3597 | 4022 | 4563 | 768 | 1852 | 0 | 141 | 0 | 0 | 28 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 189103 | | 4 PG | 55819 | 24930 | 12589 | 25711 | 5602 | 6893 | 1504 | 1772 | 0 | 110 | 0 | 0 | 105 | 65 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 135104 | | 5 ARLCR | 5646 | 702 | 248 | 43 | 679 | 2562 | 575 | 374 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10836 | | 6 ARNCR | 47143 | 4903 | 1687 | 251 | 6610 | 16753 | 3976 | 4283 | 1 | 56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 85663 | | 7 ALX | 19781 | 2276 | 765 | 135 | 2391 | 6177 | 6525 | 2974 | 0 | 59 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41082 | | 8 FFX | 48240 | 6843 | 3100 | 497 | 7690 | 15490 | 6456 | 23315 | 74 | 745 | 8 | 0 | 38 | 18 | 13 | 12 | 51 | 0 | 0 | 0 | 17 | 0 | 0 | 112607 | | 9 LDN | 4155 | 644 | 289 | 24 | 764 | 1137 | 119 | 598 | 788 | 119 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8638 | | 10 PW | 14577 | 3473 | 1706 | 459 | 3405 | 5725 | 2193 | 3630 | 139 | 2556 | 8 | 0 | 52 | 28 | 15 | 19 | 74 | 0 | 0 | 0 | 25 | 0 | 0 | 38085 | | 11 FRD | 2363 | 338 | 755 | 24 | 154 | 149 | 20 | 213 | 0 | 5 | 1825 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5845 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 8608 | 2304 | 1838 | 511 | 730 | 821 | 129 | 290 | 0 | 70 | 0 | 0 | 716 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16038 | | 14 AAR | 10416 | 2677 | 1173 | 553 | 1034 | 1122 | 177 | 711 | 0 | 94 | 0 | 0 | 40 | 98 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18095 | | 15 CAL | 971 | 357 | 100 | 42 | 175 | 166 | 27 | 42 | 0 | 3 | 0 | 0 | 0 | 1 | 48 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1934 | | 16 STM | 412 | 131 | 43 | 14 | 75 | 67 | 11 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 157 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 963 | | 17 CHS | 5130 | 1514 | 417 | 136 | 596 | 653 | 117 | 155 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 4 | 933 | 0 | 0 | 0 | 0 | 0 | 0 | 9688 | | 18 FAU | 138 | 51 | 18 | 2 | 49 | 65 | 28 | 110 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 466 | | 19 STA | 1215 | 298 | 96 | 12 | 367 | 458 | 129 | 448 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 3042 | | 20 CL/JF | 148 | 76 | 66 | 6 | 45 | 55 | 10 | 201 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 607 | | 21 SP/FB | 868 | 216 | 27 | 1 | 307 | 441 | 186 | 921 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 3043 | | 22 KGEO | 29 | 12 | 1 | 1 | 9 | 13 | 7 | 52 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 128 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 494947 | | 140449 | | 47893 | | 29405 | | 1006 | | 1841 | | 998 | | 78 | | 1081 | | 3 | | 46 | | 0 | | | | | 178565 | | 45795 | | 85226 | | 50346 | | 4180 | | 0 | | 251 | | 192 | | 0 | | 0 | | 0 | | 1082302 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Obs Transit | on tarm | DESTIN | ATION | 2 | 4 | - | _ | | 0 | a | 1.0 | 1.1 | 1.0 | 1.2 | 1.4 | 1.5 | 1.0 | 1.0 | 1.0 | 10 | 0.0 | 0.1 | 0.0 | 02 | mom | |----------------------|--------------|--------|-------|-------|-------|-------|-------|-------|------|------|------|-----|------|------|-----|-----|------|-----|--------|-----|----------|-----|-----|--------------| | ORIGIN | 1 | | 3 | | 5 | | / | 8<br> | y | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19<br> | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 41875 | 22039 | 14577 | 9295 | 2154 | 9277 | 2933 | 5669 | 523 | 1233 | 234 | 0 | 533 | 991 | 495 | 0 | 1514 | 215 | 253 | 0 | 308 | 0 | 0 | 114119 | | 2 DC NC | 134963 | 86294 | 12760 | 18613 | 2770 | 6233 | 3022 | 4495 | 922 | 396 | 0 | 0 | 0 | 0 | 239 | 0 | 0 | 0 | 268 | 0 | 0 | 0 | 0 j | 270974 | | 3 MTG | 93334 | 15555 | 48652 | 5246 | 3323 | 5060 | 2434 | 388 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 283 | 0 | 0 | 0 | 174274 | | 4 PG | 66466 | 18409 | 9949 | 35469 | 3116 | 3800 | 960 | 2427 | 0 | 636 | 0 | 0 | 608 | 0 | 0 | 0 | 348 | 0 | 0 | 0 | 0 | 0 | 0 | 142187 | | 5 ARLCR | 5964 | 909 | 621 | 614 | 468 | 3151 | 359 | 856 | 256 | 147 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13345 | | 6 ARNCR | 40661 | 4148 | 2529 | 1568 | 4326 | 11179 | 1245 | 4119 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 105 | 0 | 0 | 0 | 0 | 70083 | | 7 ALX | 20698 | 3404 | 210 | 0 | 2372 | 3740 | 4547 | 1472 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36443 | | 8 FFX | 68982 | 7484 | 2673 | 1446 | 9966 | 17618 | 3532 | 9432 | 238 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 121372 | | 9 LDN | 4566 | 745 | 200 | 0 | 256 | 450 | 518 | 0 | 518 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7254 | | 10 PW | 12804 | 4398 | 0 | 417 | 1592 | 4489 | 380 | 1640 | 0 | 385 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26104 | | 11 FRD | 3977 | 957 | 2934 | 447 | 0 | 360 | 0 | 0 | 0 | 0 | 1610 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10286 | | 12 CAR | 551 | 417 | 0 | 0 | 417 | 0 | 0 | 0 | 0 | 0 | 0 | 639 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2024 | | 13 HOW | 9524 | 1739 | 276 | 260 | 181 | 1358 | 537 | 0 | 0 | 0 | 0 | 0 | 570 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14444 | | 14 AAR | 17934 | 2083 | 2005 | 0 | 1996 | 479 | 72 | 1145 | 0 | 0 | 0 | 0 | 0 | 4586 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30301 | | 15 CAL | 3119 | 0 | 0 | 0 | 0 | 366 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3485 | | 16 STM | 459 | 0 | 0 | 1039 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 526 | | 0 | 0 | 0 | 0 | 0 | 0 | 2025 | | 17 CHS | 3963 | 0 | 297 | 348 | 264 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 412 | 0 | 0 | 0 | 0 | 0 | 0 | 5283 | | 18 FAU | 1900 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.60 | 0 | 0 | 1900 | | 19 STA | 2231 | 731 | 1106 | 0 | 262 | 3570 | 0 | 506 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 463 | 0 | 0 | 7763 | | 20 CL/JF<br>21 SP/FB | 1764<br>2415 | 0 | 1106 | 0 | 418 | 0 | 1092 | 969 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0<br>489 | 0 | 0 | 2870<br>5383 | | 21 SP/FB | 402 | 0 | 0 | 0 | 418 | 0 | 1092 | 969 | 0 | 244 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 489 | 0 | 0 1 | 646 | | 23 EXTL | 402 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 244 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 040 | | 23 EAIL | | | | | | | | | | | | | | | | | | | | | | | ا ت | | | TOTAL | 538552 | | 98789 | | 33882 | | 21631 | | 2661 | | 1844 | | 1710 | | 733 | | 2273 | | 626 | | 1260 | | 0 | | | | | 169310 | | 74761 | | 71132 | | 33116 | | 3042 | | 639 | | 5577 | | 526 | | 215 | | 283 | | 0 | | 1062563 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Difference (Est-Obs) Transit | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |---------------|-----------------|--------------|---------------|----------------|-------------|--------------|--------------|--------------|-----------|-------------|------|------|----------|---------|------|------|-------|------|------|------|-------|----|-----|----------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | | | | | | | ====== | ====== | | | | | | | | | | | | | | | ====== | | 1 DC CR | -5501 | 2450 | -9717 | -7145 | 2133 | -2510 | -780 | -3321 | -522 | -1198 | -234 | 0 | -529 | -988 | -494 | 0 | -1513 | -215 | -253 | 0 | -308 | 0 | 0 | -30643 | | 2 DC NC | 23345<br>-18727 | -1320 | 15745 | -6989 | 6130 | 8917 | 1273 | 1530 | -920 | -349<br>141 | 0 | 0 | 16<br>28 | 12 | -238 | 0 | 0 | 0 | -268 | 0 | 0 | 0 | 0 | 46884 | | 3 MTG<br>4 PG | -18727 | 1803<br>6521 | 33512<br>2640 | -1649<br>-9758 | 699<br>2485 | -497<br>3093 | -1665<br>545 | 1464<br>-655 | 0 | -525 | 0 | 0 | -503 | 3 | 0 | 0 | -344 | 0 | 0 | -283 | 0 | 0 | 0 | 14830<br>-7083 | | 5 ARLCR | -10647 | -206 | -373 | -9758<br>-571 | 2485 | -589 | 216 | -655 | -256 | -525 | 0 | 0 | -503 | 65<br>0 | 0 | 0 | -344 | 0 | 0 | 0 | 0 | 0 | 0 | -2509 | | 6 ARNCR | 6482 | 756 | -842 | -1316 | 2284 | 5574 | 2731 | 164 | -203 | 56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -105 | 0 | 0 | 0 | 0 | 15580 | | 7 ALX | -918 | -1128 | 555 | 135 | 19 | 2437 | 1977 | 1502 | -203<br>n | 59 | 0 | 0 | 0 | 0 | 0 | 0 | n | 0 | -103 | 0 | n | 0 | 0 | 4639 | | 8 FFX | -20742 | -641 | 427 | -949 | -2276 | -2128 | 2924 | 13883 | -164 | 745 | 8 | 0 | 38 | 18 | 13 | 12 | 51 | 0 | 0 | 0 | 17 | 0 | 0 | -8765 | | 9 LDN | -412 | -101 | 89 | 24 | 509 | 687 | -400 | 598 | 270 | 119 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1384 | | 10 PW | 1773 | -925 | 1706 | 43 | 1814 | 1236 | 1813 | 1990 | 139 | 2171 | 8 | 0 | 52 | 28 | 15 | 19 | 74 | 0 | 0 | 0 | 25 | 0 | 0 | 11981 | | 11 FRD | -1615 | -619 | -2179 | -423 | 154 | -211 | 20 | 213 | 0 | 5 | 215 | 0 | 0 | 0 | 0 | 0 | 0 | ō | 0 | 0 | 0 | 0 | 0 | -4441 | | 12 CAR | -551 | -417 | 0 | 0 | -417 | 0 | 0 | 0 | 0 | 0 | 0 | -639 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2024 | | 13 HOW | -916 | 564 | 1563 | 251 | 549 | -537 | -407 | 290 | 0 | 70 | 0 | 0 | 146 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1593 | | 14 AAR | -7518 | 594 | -833 | 553 | -963 | 643 | 105 | -434 | 0 | 94 | 0 | 0 | 40 | -4488 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -12206 | | 15 CAL | -2148 | 357 | 100 | 42 | 175 | -200 | 27 | 42 | 0 | 3 | 0 | 0 | 0 | 1 | 48 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1550 | | 16 STM | -47 | 131 | 43 | -1026 | 75 | 67 | 11 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -369 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | -1062 | | 17 CHS | 1167 | 1514 | 121 | -211 | 332 | 653 | 117 | 155 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 4 | 521 | 0 | 0 | 0 | 0 | 0 | 0 | 4405 | | 18 FAU | -1762 | 51 | 18 | 2 | 49 | 65 | 28 | 110 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1434 | | 19 STA | -1016 | -433 | 96 | 12 | 105 | -3112 | 129 | -58 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | -463 | 0 | 0 | -4721 | | 20 CL/JF | -1616 | 76 | -1040 | 6 | 45 | 55 | 10 | 201 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2263 | | 21 SP/FB | -1547 | 216 | 27 | 1 | -110 | 441 | -906 | -48 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | -486 | 0 | 0 | -2340 | | 22 KGEO | -372 | 12 | 1 | 1 | 9 | 13 | 7 | 52 | 0 | -241 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -518 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | -43606 | | 41660 | | 14011 | | 7775 | | -1655 | | -3 | | -712 | | -655 | == | -1191 | | -623 | | -1214 | | 0 | | | | | 9255 | | -28966 | | 14094 | | 17229 | | 1139 | | -639 | | -5327 | | -334 | | -215 | | -283 | | 0 | - ' | 19739 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Ratio (Est/Obs) Transit | | DESTIN | IATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|----|-------|-------|-------|-------|-------|----|------|----|-------|----|---------|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 0.87 | 1.11 | 0.33 | 0.23 | 1.99 | 0.73 | 0.73 | 0.41 | 0.00 | 0.03 | 0 | 0 | 0.01 | 0.00 | 0.00 | 0.03 | 0.00 | 0 | 0 | 0 | 0.00 | 0 | <br> 0 | 0.73 | | 2 DC NC | 1.17 | 0.98 | 2.23 | 0.62 | 3.21 | 2.43 | 1.42 | 1.34 | 0.00 | 0.12 | 0 | 0 | 16.18 | 11.61 | 0.00 | 0 | 0.22 | 0 | 0 | 0 | 0.10 | 0 | 0 j | 1.17 | | 3 MTG | 0.80 | 1.12 | 1.69 | 0.69 | 1.21 | 0.90 | 0.32 | 4.78 | 0.22 | 140.57 | 0.15 | 0 | 28.31 | 3.15 | 0.05 | 0 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 j | 1.09 | | 4 PG | 0.84 | 1.35 | 1.27 | 0.72 | 1.80 | 1.81 | 1.57 | 0.73 | 0 | 0.17 | 0 | 0 | 0.17 | 64.97 | 0.01 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0.95 | | 5 ARLCR | 0.95 | 0.77 | 0.40 | 0.07 | 1.45 | 0.81 | 1.60 | 0.44 | 0.00 | 0.04 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.81 | | 6 ARNCR | 1.16 | 1.18 | 0.67 | 0.16 | 1.53 | 1.50 | 3.19 | 1.04 | 0.00 | 55.85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.22 | | 7 ALX | 0.96 | 0.67 | 3.64 | 135.00 | 1.01 | 1.65 | 1.43 | 2.02 | 0.02 | 59.11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.13 | | 8 FFX | 0.70 | 0.91 | 1.16 | 0.34 | 0.77 | 0.88 | 1.83 | 2.47 | 0.31 | 745.14 | 7.73 | 0 | 37.82 | 17.85 | 12.83 | 12.40 | 51.22 | 0 | 0.08 | 0 | 16.81 | 0 | 0 | 0.93 | | 9 LDN | 0.91 | 0.87 | 1.45 | 24.41 | 2.99 | 2.53 | 0.23 | 598.05 | 1.52 | 119.45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.19 | | 10 PW | 1.14 | 0.791 | 706.20 | 1.10 | 2.14 | 1.28 | 5.78 | 2.21 | 139.30 | 6.63 | 8.00 | 0 | 52.03 | 28.43 | 14.93 | 18.81 | 74.03 | 0 | 0.15 | 0 | 25.44 | 0 | 0 | 1.46 | | 11 FRD | 0.59 | 0.35 | 0.26 | 0.05 | 154.40 | 0.41 | 19.66 | 212.57 | 0 | 4.53 | 1.13 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.57 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 13 HOW | 0.90 | 1.32 | 6.67 | 1.97 | | 0.60 | 0.24 | 289.99 | 0 | 70.11 | 0 | 0 | 1.26 | 21.72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.11 | | 14 AAR | 0.58 | 1.29 | | 553.21 | 0.52 | 2.34 | 2.46 | 0.62 | 0 | 94.14 | 0 | 0 | 39.93 | 0.02 | 0.22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.60 | | 15 CAL | | | 100.48 | | 174.87 | 0.45 | 27.44 | 42.10 | 0 | 3.19 | 0 | 0 | 0 | 1.49 | 47.70 | 0.60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.56 | | 16 STM | | 130.69 | 43.38 | 0.01 | 75.20 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 1.60 | 0.30 | 19.33 | 0 | 0 | 0 | 0 | 0 | 0 | 0.48 | | 17 CHS | | 513.66 | 1.41 | 0.39 | | 652.73 | | | 0 | 33.26 | 0 | 0 | 0.02 | 0.03 | 0 | 3.58 | 2.27 | 0 | 0 | 0 | 0 | 0 | 0 | 1.83 | | 18 FAU | 0.07 | 50.87 | 18.45 | 2.03 | 48.70 | | | 110.07 | 0 | 4.83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | | 19 STA | 0.54 | 0.41 | 95.60 | 12.09 | 1.40 | | 128.72 | 0.89 | 0 | 19.76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.10 | 0 | 0 | 0 | 0 | 0.39 | | 20 CL/JF | 0.08 | 76.10 | 0.06 | 6.18 | 45.27 | | | 200.55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.21 | | 21 SP/FB | | 216.22 | 27.07 | 0.93 | 0.74 | 440.59 | 0.17 | 0.95 | 0 | 72.17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.33 | 0 | 0.01 | 0 | 0 | 0.57 | | 22 KGEO | 0.07 | 12.05 | 1.38 | 0.59 | 9.26 | 13.38 | 6.59 | 52.47 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.20 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 0.92 | == | 1.42 | | 1.41 | | 1.36 | | 0.38 | = | 1.00 | = | 0.58 | == | 0.11 | = | 0.48 | | 0.00 | | 0.04 | = | 0 | | | | | 1.05 | | 0.61 | | 1.20 | | 1.52 | | 1.37 | | 0 | | 0.04 | | 0.37 | | 0 | | 0 | | 0 | | 1.02 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Est Auto Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |------------------|--------------|--------------|----------------|---------------|-------------|-------------|------------|--------------|------------|-----------|---------------|-----------------|-----------------|---------------|-----------|-----------|-----------|----------|---------|------------|--------|-------|----|--------------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 75726 | 51532 | 10209 | 14105 | 2002 | 6276 | 4783 | 11998 | 637 | 967 | 392 | ======<br>85 | 664 | 1960 | 188 | 115 | 742 | 144 | 278 | 52 | 186 | 14 | 0 | ======<br> 183057 | | 2 DC NC | | 340868 | 78433 | 86431 | 5225 | 19305 | 13624 | 43772 | 1561 | 1319 | 580 | 115 | 2982 | 5998 | 318 | 150 | 1653 | 175 | 362 | 60 | 224 | 15 | Ö | 735069 | | 3 MTG | 86598 | 1151012 | 029933 | 127592 | 5106 | 15574 | 6388 | 54114 | 3453 | 1717 | 21725 | 3905 | 31039 | 19345 | 402 | 297 | 1293 | 406 | 498 | 929 | 512 | 33 | 0 | 2525959 | | 4 PG | 78660 | 177342 | 1485131 | L266548 | 7180 | 20967 | 22193 | 54398 | 1349 | 1770 | 845 | 346 | 32516 | 61194 | 3946 | 2125 | 31369 | 197 | 599 | 79 | 374 | 178 | 0 | 1912688 | | 5 ARLCR | 1761 | 2554 | 1222 | 1106 | 6986 | 12537 | 3790 | 7536 | 328 | 566 | 49 | 10 | 49 | 151 | 17 | 11 | 65 | 38 | 75 | 13 | 50 | 3 | 0 | 38917 | | 6 ARNCR | 19488 | 21820 | 10310 | 6613 | 31286 | 190108 | 36179 | 104789 | 2759 | 3237 | 163 | 24 | 183 | 562 | 44 | 34 | 275 | 174 | 380 | 41 | 291 | 12 | 0 | 428772 | | 7 ALX | 13503 | 13349 | 5020 | 7821 | 9147 | 38557 | 147360 | 96162 | 1457 | 4879 | 106 | 19 | 156 | 547 | 73 | 61 | 580 | 138 | 580 | 31 | 388 | 21 | 0 | 339952 | | 8 FFX | 92152 | 67391 | 53677 | 34260 | 26623 | | 1218242 | | 77586 | 71755 | 1090 | 114 | 994 | 2496 | 221 | 321 | 2529 | 3800 | 6248 | 725 | 6095 | 303 | 0 | 3021928 | | 9 LDN | 10127 | 7717 | 11135 | 3832 | 2517 | 8843 | | | 498749 | 9753 | 8037 | 328 | 495 | 656 | 20 | 47 | 253 | 2344 | 398 | 12489 | 549 | 17 | 0 | 710778 | | 10 PW | 15712 | 9746 | 8436 | 5162 | 4344 | 14550 | | 155763 | | 841574 | 305 | 23 | 181 | 490 | 42 | 89 | 423 | 13949 | 15919 | 459 | 9703 | 314 | 0 | 1126761 | | 11 FRD | 3378 | 3639 | 59610 | 3557 | 587 | 1734 | 612 | 10838 | 11915 | 316 | 511356 | 23997 | 14523 | 4886 | 40 | 23 | 117 | 91 | 35 | 5933 | 32 | 2 | 0 | 657217 | | 12 CAR<br>13 HOW | 2443<br>6951 | 1764<br>9314 | 16861<br>43738 | 2328<br>37404 | 244 | 513<br>1525 | 169<br>799 | 2032<br>4442 | 740<br>346 | 45<br>135 | 19983<br>8428 | 358273<br>10401 | 16030<br>518282 | 3741<br>70007 | 25<br>152 | 10<br>154 | 63<br>355 | 16 | 8<br>32 | 324<br>278 | 30 | 1 | 0 | 425619<br>713357 | | 14 AAR | 15194 | 20485 | 28126 | 77585 | 543<br>1518 | 4630 | 3595 | 11438 | 559 | 472 | 1554 | 993 | 751551 | | 6321 | 974 | 2292 | 35<br>63 | 116 | 278<br>98 | 93 | 25 | 0 | 1398950 | | 15 CAL | 4342 | 3824 | 2441 | 11425 | 408 | 1238 | 1296 | 3670 | 70 | 120 | 51 | 14 | 491 | 7106 | 183217 | 15910 | 5628 | 10 | 20 | 20<br>/ | 24 | 39 | 0 | 241348 | | 16 STM | 3102 | 2344 | 1212 | 5655 | 334 | 829 | 1090 | 2598 | 49 | 91 | 26 | 7 | 218 | 1095 | | 258822 | 20833 | 12 | 49 | 3 | 87 | 417 | 0 | 310474 | | 17 CHS | 9311 | 8267 | 3601 | 23986 | 1002 | 2950 | 3881 | 10681 | 231 | 396 | 75 | 21 | 505 | 2187 | 4640 | | 306254 | 31 | 98 | 9 | 115 | 1254 | 0 | 388513 | | 18 FAU | 1217 | 707 | 1056 | 431 | 311 | 905 | 593 | 15154 | 3946 | 15086 | 91 | 9 | 39 | 69 | 9 | 23 | | 101570 | 2792 | 499 | 1715 | 57 | 0 | 146326 | | 19 STA | 1936 | 1488 | 1293 | 1248 | 492 | 2049 | 2318 | 20476 | 1109 | 33441 | 47 | 6 | 35 | 129 | 30 | 127 | 234 | 3773 | 176589 | 68 | 42926 | 982 | ō | 290796 | | 20 CL/JF | 532 | 352 | 4794 | 345 | 126 | 361 | 164 | 7653 | 19053 | 1311 | 5739 | 238 | 564 | 223 | 3 | 3 | 9 | 1147 | 23 | 106126 | 24 | 1 | 0 | 148793 | | 21 SP/FB | 726 | 457 | 397 | 472 | 223 | 1045 | 1209 | 13457 | 782 | 13931 | 37 | 5 | 20 | 69 | 34 | 150 | 206 | 2147 | 28288 | 57 | 245883 | 794 | 0 | 310389 | | 22 KGEO | 656 | 404 | 164 | 640 | 133 | 284 | 252 | 2186 | 99 | 2493 | 2 | 0 | 14 | 58 | 57 | 418 | 3435 | 286 | 3930 | 7 | 4258 | 29123 | 0 | 48899 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 575413 | <br>2 | 520182 | | 106335 | | 391734 | | 640942 | | 580681 | | 695138 | ===== | 211400 | | 378652 | | 237316 | :===== | 313567 | | 0 | ======<br> | | | 2.3113 | 860463 | | L718544 | | 467094 | | 3090838 | | .005376 | | 398931 | | 330632 | | 288882 | 2.2002 | 130546 | | 128284 | | 33610 | - | 16104561 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Obs Auto Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |---------------------|-------------|-------------|---------|---------|-------|--------|---------|-------------|---------|---------------|---------|---------|---------|--------|---------|------------|---------|------------|---------------|--------|---------------|---------|--------|-----------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 55312 | 45845 | 12471 | 13571 | 1320 | 12628 | 7627 | 15521 | 3563 | 1926 | 0 | 0 | 707 | 3041 | 0 | 714 | 1583 | 0 | 735 | 0 | 0 | 164 | 0 | 176729 | | 2 DC NC | 138030 | 396103 | 115798 | 71937 | 4299 | 22112 | 7706 | 37498 | 4674 | 1302 | 922 | 322 | 1375 | 6321 | 846 | 0 | 1815 | 0 | 420 | 0 | 624 | 0 | 0 | 812104 | | 3 MTG | 62406 | 1177472 | 117601 | 85943 | 5098 | 15969 | 4559 | 59134 | 8607 | 3698 | 19896 | 3096 | 24522 | 16938 | 307 | 0 | 1517 | 0 | 1231 | 838 | 1860 | 0 | 0 | 2550967 | | 4 PG | 71301 | 127274 | 1565221 | 322119 | 2136 | 17672 | 10432 | 38039 | 4005 | 1516 | 517 | 1964 | 30862 | 70810 | 8590 | 515 | 41846 | 0 | 0 | 0 | 0 | 197 | 0 | 1906318 | | 5 ARLCR | 1528 | 2248 | 1362 | 655 | 3036 | 7097 | 1805 | 8079 | 0 | 2833 | 0 | 0 | 210 | 225 | 0 | 0 | 0 | 0 | 1800 | 0 | 0 | 0 | 0 | 30878 | | 6 ARNCR | 40245 | 20749 | 10928 | 3433 | 16659 | 237192 | 30505 | 92762 | 3114 | 2227 | 93 | 0 | 556 | 914 | 108 | 0 | 667 | 102 | 1496 | 0 | 0 | 0 | 0 | 461749 | | 7 ALX | 21892 | 11341 | 4659 | 5473 | 4530 | 28844 | 177011 | 76791 | 1695 | 2782 | 382 | 0 | 706 | 1837 | 0 | 375 | 655 | 266 | 298 | 0 | 0 | 0 | 0 | 339538 | | 8 FFX | 87014 | 45888 | 46796 | 16283 | 23902 | | 1006322 | | 81609 | 87501 | 1591 | 0 | 2851 | 1504 | 772 | 236 | 1857 | 2366 | 4633 | 2067 | 2354 | 132 | 0 | 3063502 | | 9 LDN | 9605 | 3359 | 8115 | 1242 | 1174 | 7369 | | 140417 | | 7619 | 2055 | 99 | 0 | 853 | 0 | 0 | 0 | 2691 | 549 | 3763 | 0 | 0 | 0 | 702556 | | 10 PW | 7814 | 10349 | 6319 | 3448 | 5514 | 16276 | 15789 | 177073 | | 868746 | 0 | 0 | 0 | 0 | 0 | 689 | 463 | 9639 | 9649 | 0 | 2378 | 361 | 0 | 1146253 | | 11 FRD | 1452 | 3995 | 53394 | 4478 | 491 | 260 | 819 | 2840 | 4421 | 595 | 539707 | 25851 | 10578 | 4610 | 0 | 0 | 0 | 0 | 0 | 2296 | 0 | 0 | 0 | 655786 | | 12 CAR | 748 | 670 | 12212 | 4481 | 0 | 0 | 165 | 265 | 99 | 0 | 9904 | 356606 | 20875 | 9678 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 415703 | | 13 HOW | 6558 | 4776 | 32551 | 42706 | 260 | 1068 | 1466 | 3291 | 276 | 0 | 2286 | | 551021 | 56920 | 0 | | 667 | 570 | 0 | 325 | 0 | 0 | 0 | 712681 | | 14 AAR | 12075 | 16844 | 28283 | 99600 | 1732 | 3585 | 2134 | 7614 | 0 | 769 | 765 | 4635 | 642731 | | 6463 | 424 | 1480 | 0 | 451 | 144 | 0 | 0 | 0 | 1409043 | | 15 CAL | 4767 | 2422 | 1851 | 14480 | 239 | 1447 | 255 | 7373 | 0 | 362 | 0 | 0 | 1555 | 14819 | 179021 | 14168 | 6579 | 0 | 0 | 0 | 0 | 0 | 0 | 249337 | | 16 STM | 2260 | 3201 | 459 | 6756 | 0 | 781 | 375 | 1302 | 0 | 0 | 0 | 0 | | 2866 | | 267704 | 19583 | 0 | 459 | 0 | 0 | 0 | 0 | 320308 | | 17 CHS | 8080 | 8923 | 3451 | 41918 | 1752 | 3659 | 5445 | 6601 | 251 | 0 | 0 | 362 | 145 | 4165 | 4760 | 12692 | 296424 | 0 | 0 | 0 | 289 | 926 | 0 | 399845 | | 18 FAU | 1083 | 577 | 900 | 0 | 215 | 883 | 431 | 12836 | 7129 | 15381 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 93574 | 927 | 2646 | 214 | 179 | 0 | 136977 | | 19 STA | 3345 | 2928 | 1582 | 131 | 1633 | 1789 | 1285 | 13066 | 12506 | 23789 | 130 | 0 | 0 | 394 | 0 | 0 | 0 | 118 | 178412 | 536 | 64798 | 1129 | 0 | 295064 | | 20 CL/JF | 534 | 1.455 | 719 | 1011 | 0000 | 1135 | - U | 4431 | 13506 | 79 | 6239 | 0 | 236 | 0 | 0 | 61.0 | 0 | 393 | 25.620 | 99074 | 541<br>261421 | 297 | 0 | 126047 | | 21 SP/FB<br>22 KGEO | 1955<br>573 | 1477<br>328 | 1084 | 1011 | 2269 | 1135 | 546 | 2038<br>564 | 0 | 10150<br>1326 | 0 | 0 | 0 | 489 | 0 | 617<br>441 | 1598 | 258<br>423 | 35632<br>4200 | 2856 | 8002 | 6761 | 0 | 329210<br>49459 | | | 5/3 | 328 | 0 | 0 | 0 | 0 | 0 | 204 | 0 | 1320 | 0 | 0 | 0 | 489 | 0 | 441 | 1238 | 423 | 4200 | 0 | 8002 | 31516 | 0 | 49459 | | 23 EXTL | ====== | ======= | .====== | .====== | ===== | | <br> | .====== | .====== | .====== | .====== | .====== | .====== | ====== | .====== | .====== | .====== | ====== | .====== | ====== | ====== | ======= | :===== | 1 0 | | TOTAL | 538577 | | 617055 | | 76259 | | 371268 | | 656062 | | 584487 | | 710473 | | 215428 | | 376734 | | 240892 | | 342480 | | 0 | | | | | 827045 | 1 | 739663 | | 489371 | 3 | 3151447 | 1 | 032600 | | 400875 | 1 | 354155 | | 298575 | | 110400 | | 114544 | | 41661 | | 16290052 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Difference (Est-Obs) Auto Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|--------|-------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | | ====== | ====== | | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | | ====== | | ====== | | | ====== | ====== | | | | | | 1 DC CR | 20414 | 5687 | -2262 | 534 | 682 | -6352 | -2843 | -3523 | -2926 | -958 | 392 | 85 | -43 | -1081 | 188 | -599 | -841 | 144 | -458 | 52 | 186 | -150 | 0 | 6327 | | 2 DC NC | | | -37364 | 14494 | 926 | -2807 | 5918 | 6274 | -3113 | 17 | -342 | -207 | 1607 | -323 | -528 | 150 | -162 | 175 | -58 | 60 | -399 | 15 | 0 | -77035 | | 3 MTG | 24192 | | -87668 | 41650 | 7 | -395 | 1829 | -5021 | -5154 | -1981 | 1829 | 809 | 6516 | 2407 | 95 | 297 | -224 | 406 | -733 | 91 | -1348 | 33 | 0 | -25009 | | 4 PG | 7359 | 50068 | | -55571 | 5043 | 3295 | 11761 | 16359 | -2655 | 254 | 328 | -1618 | 1653 | -9616 | -4644 | 1610 | -10477 | 197 | 599 | 79 | 374 | -20 | 0 | 6370 | | 5 ARLCR | 234 | 306 | -140 | 450 | 3950 | 5440 | 1985 | -543 | 328 | -2267 | 49 | 10 | -161 | -74 | 17 | 11 | 65 | 38 | -1725 | 13 | 50 | 3 | 0 | 8040 | | 6 ARNCR | -20757 | 1071 | -617 | 3180 | 14627 | -47084 | 5674 | 12027 | -356 | 1010 | 69 | 24 | -373 | -352 | -63 | 34 | -392 | 72 | -1115 | 41 | 291 | 12 | 0 | -32977 | | 7 ALX | -8389 | 2007 | 361 | 2348 | 4616 | 9713 | -29651 | 19371 | -238 | 2097 | -276 | 19 | -550 | -1290 | 73 | -314 | -76 | -128 | 282 | 31 | 388 | 21 | 0 | 414 | | 8 FFX | 5138 | 21503 | 6881 | 17977 | 2722 | 12708 | | 114499 | -4022 | -15745 | -502 | 114 | -1857 | 992 | -551 | 86 | 672 | 1435 | 1615 | -1342 | 3741 | 171 | 0 | -41574 | | 9 LDN | 522 | 4358 | 3020 | 2590 | 1343 | 1475 | | 12110 | -12618 | 2134 | 5983 | 229 | 495 | -197 | 20 | 47 | 253 | -347 | -151 | 8726 | 549 | 17 | 0 | 8221 | | 10 PW | 7899 | -603 | 2117 | 1714 | -1171 | -1726 | | -21309 | 2417 | -27172 | 305 | 23 | 181 | 490 | 42 | -600 | -40 | 4310 | 6270 | 459 | 7325 | -47 | 0 | -19492 | | 11 FRD | 1925 | -356 | 6216 | -921 | 96 | 1474 | -208 | 7998 | 7494 | -280 | -28351 | -1854 | 3945 | 276 | 40 | 23 | 117 | 91 | 35 | 3636 | 32 | 2 | 0 | 1431 | | 12 CAR | 1695 | 1094 | 4649 | -2153 | 244 | 513 | 3 | 1767 | 640 | 45 | 10079 | 1667 | -4845 | -5937 | 25 | 10 | 63 | 16 | 8 | 324 | 7 | 1 | 0 | 9916 | | 13 HOW | 392 | 4538 | 11187 | -5302 | 283 | 458 | -667 | 1152 | 70 | 135 | 6142 | | -32739 | 13087 | 152 | 154 | -312 | -535 | 32 | -47 | 30 | 5 | 0 | 676 | | 14 AAR | 3119 | 3640 | -157 | -22015 | -213 | 1045 | 1461 | 3824 | 559 | -297 | 789 | -3642 | | -10107 | -143 | 550 | 812 | 63 | -335 | -46 | 93 | 25 | 0 | -10093 | | 15 CAL | -425 | 1402 | 590 | -3055 | 169 | -210 | 1042 | -3702 | 70 | -241 | 51 | 14 | -1064 | -7713 | 4196 | 1742 | -951 | 10 | 20 | 4 | 24 | 39 | 0 | -7988 | | 16 STM | 841 | -856 | 753 | | 334 | 48 | 715 | 1296 | 49 | 91 | 26 | 7 | 218 | -1771 | -2960 | -8882 | 1250 | 12 | -410 | 3 | 87 | 417 | 0 | -9834 | | 17 CHS | 1231 | -657 | | -17932 | -750 | -710 | -1565 | 4080 | -20 | 396 | 75 | -341 | 360 | -1978 | -121 | -3672 | 9830 | 31 | 98 | | -174 | 327 | 0 | -11332 | | 18 FAU | 134 | 130 | 155 | 431 | 95 | 22 | 162 | 2317 | -3183 | -295 | 91 | 9 | 39 | 69 | 9 | 23 | 45 | 7997 | 1865 | -2147 | 1501 | -122 | 0 | 9349 | | 19 STA | -1408 | -1440 | -290 | 1117 | -1141 | 261 | 1033 | 7410 | 1109 | 9652 | -82 | 6 | 35 | -265 | 30 | 127 | 234 | 3655 | -1824 | | -21871 | -147 | 0 | -4268 | | 20 CL/JF | -2 | 352 | 4076 | 345 | 126 | 361 | 164 | 3222 | 5547 | 1233 | -500 | 238 | 329 | 223 | 3 | 3 | 9 | 754 | 23 | 7053 | -516 | -296 | 0 | 22746 | | 21 SP/FB | -1229 | -1020 | -687 | -539 | -2046 | -90 | 663 | 11419 | 782 | 3781 | 37 | 5 | 20 | 69 | 34 | -467 | 206 | 1889 | -7344 | -2799 | -15538 | -5966 | 0 | -18821 | | 22 KGEO | 84 | 76 | 164 | 640 | 133 | 284 | 252 | 1622 | 99 | 1167 | 2 | 0 | 14 | -431 | 57 | -23 | 1837 | -137 | -270 | -/ | -3744 | -2393 | 0 | -560 | | 23 EXTL | | 0 | 0 | 0 | | | | | | | | | | 0 | 0 | 0 | | u | | | | | 0 | 0 | | TOTAL | 36837 | | -96874 | | 30076 | | 20466 | | -15120 | | -3806 | | -15335 | | -4028 | | 1918 | | -3576 | | -28913 | | 0 | | | | | 33419 | | -21119 | | -22277 | | -60609 | | -27224 | | -1943 | | -23523 | | -9693 | | 20146 | | 13740 | | -8052 | | -185491 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Ratio (Est/Obs) Auto Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|-------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|----------------|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.37 | 1.12 | 0.82 | 1.04 | 1.52 | 0.50 | 0.63 | 0.77 | 0.18 | 0.50 | 392.04 | 85.42 | 0.94 | 0.64 | 187.69 | 0.16 | 0.47 | 144.34 | 0.38 | 52.19 | 185.55 | 0.09 | =======<br> 0 | 1.04 | | 2 DC NC | 0.96 | 0.86 | 0.68 | 1.20 | 1.22 | 0.87 | 1.77 | 1.17 | 0.33 | 1.01 | 0.63 | 0.36 | 2.17 | 0.95 | 0.38 | 149.87 | 0.91 | 175.11 | 0.86 | 59.61 | 0.36 | 14.87 | 0 j | 0.91 | | 3 MTG | 1.39 | 0.98 | 0.96 | 1.48 | 1.00 | 0.98 | 1.40 | 0.92 | 0.40 | 0.46 | 1.09 | 1.26 | 1.27 | 1.14 | 1.31 | 296.58 | 0.85 | 406.11 | 0.40 | 1.11 | 0.28 | 33.05 | 0 | 0.99 | | 4 PG | 1.10 | 1.39 | 0.95 | 0.96 | 3.36 | 1.19 | 2.13 | 1.43 | 0.34 | 1.17 | 1.63 | 0.18 | 1.05 | 0.86 | 0.46 | 4.12 | 0.75 | 196.85 | 599.17 | 79.44 | 374.26 | 0.90 | 0 | 1.00 | | 5 ARLCR | 1.15 | 1.14 | 0.90 | 1.69 | 2.30 | 1.77 | 2.10 | 0.93 | 327.84 | 0.20 | 49.12 | 9.79 | 0.24 | 0.67 | 17.23 | 11.03 | 65.14 | 37.91 | 0.04 | 12.98 | 50.32 | 3.29 | 0 | 1.26 | | 6 ARNCR | 0.48 | 1.05 | 0.94 | 1.93 | 1.88 | 0.80 | 1.19 | 1.13 | 0.89 | 1.45 | 1.74 | 23.87 | 0.33 | 0.61 | 0.41 | 33.60 | 0.41 | 1.71 | 0.25 | 41.08 | 291.16 | 11.98 | 0 | 0.93 | | 7 ALX | 0.62 | 1.18 | 1.08 | 1.43 | 2.02 | 1.34 | 0.83 | 1.25 | 0.86 | 1.75 | 0.28 | 19.00 | 0.22 | 0.30 | 73.35 | 0.16 | 0.88 | 0.52 | 1.95 | 30.53 | 388.22 | 20.72 | 0 | 1.00 | | 8 FFX | 1.06 | 1.47 | 1.15 | 2.10 | 1.11 | 1.12 | 1.21 | 0.95 | 0.95 | 0.82 | 0.68 | 113.59 | 0.35 | 1.66 | 0.29 | 1.36 | 1.36 | 1.61 | 1.35 | 0.35 | 2.59 | 2.30 | 0 | 0.99 | | 9 LDN | 1.05 | 2.30 | 1.37 | 3.09 | 2.14 | 1.20 | 1.84 | 0.91 | 0.98 | 1.28 | 3.91 | 3.30 | 494.84 | 0.77 | 20.36 | 47.37 | 252.69 | 0.87 | 0.73 | 3.32 | 549.10 | 16.86 | 0 | 1.01 | | 10 PW | 2.01 | 0.94 | 1.33 | 1.50 | 0.79 | 0.89 | 0.98 | 0.88 | 1.21 | 0.97 | 304.71 | 23.26 | | 489.53 | 41.56 | 0.13 | 0.91 | 1.45 | 1.65 | 459.49 | 4.08 | 0.87 | 0 | 0.98 | | 11 FRD | 2.33 | 0.91 | 1.12 | 0.79 | 1.20 | 6.68 | 0.75 | 3.82 | 2.70 | 0.53 | 0.95 | 0.93 | 1.37 | 1.06 | 40.26 | 23.28 | 116.55 | 90.70 | 34.89 | 2.58 | 31.78 | 1.86 | 0 | 1.00 | | 12 CAR | 3.26 | 2.63 | 1.38 | | 243.54 | | 1.02 | 7.67 | 7.44 | 44.70 | 2.02 | 1.00 | | 0.39 | 25.42 | 9.99 | 62.93 | 15.93 | | 324.39 | 7.40 | 0.64 | 0 | 1.02 | | 13 HOW | 1.06 | 1.95 | 1.34 | 0.88 | 2.09 | 1.43 | 0.55 | 1.35 | 1.26 | 134.92 | 3.69 | 1.31 | 0.94 | | | 154.26 | 0.53 | 0.06 | 32.09 | 0.86 | 29.80 | 5.02 | 0 | 1.00 | | 14 AAR | 1.26 | 1.22 | 0.99 | 0.78 | 0.88 | 1.29 | 1.68 | | 559.35 | 0.61 | 2.03 | 0.21 | 1.17 | 0.99 | 0.98 | 2.30 | 1.55 | 62.59 | 0.26 | 0.68 | 92.95 | 24.69 | 0 | 0.99 | | 15 CAL | 0.91 | 1.58 | 1.32 | 0.79 | 1.71 | 0.86 | 5.09 | 0.50 | 70.49 | 0.33 | 50.98 | 13.96 | | 0.48 | 1.02 | 1.12 | 0.86 | 9.54 | 20.11 | 4.03 | 23.79 | 39.17 | 0 | 0.97 | | 16 STM | 1.37 | 0.73 | 2.64 | | 334.15 | 1.06 | 2.91 | 1.99 | 49.05 | 91.33 | 26.28 | 6.59 | | 0.38 | 0.80 | 0.97 | 1.06 | 11.64 | 0.11 | 2.87 | | | 0 | 0.97 | | 17 CHS | 1.15 | 0.93 | 1.04 | 0.57 | 0.57 | 0.81 | 0.71 | 1.62 | 0.92 | 395.56 | 75.01 | 0.06 | | 0.53 | 0.97 | 0.71 | 1.03 | 31.32 | 97.50 | 9.22 | 0.40 | 1.35 | 0 | 0.97 | | 18 FAU | 1.12 | 1.23 | 1.17 | 430.50 | 1.44 | 1.02 | 1.38 | 1.18 | 0.55 | 0.98 | 90.77 | 9.37 | 39.40 | 69.30 | 8.94 | 22.91 | 44.92 | 1.09 | 3.01 | 0.19 | 8.00 | 0.32 | 0 | 1.07 | | 19 STA | 0.58 | 0.51 | 0.82 | 9.52 | 0.30 | 1.15 | 1.80 | | 108.69 | 1.41 | 0.36 | 5.95 | | 0.33 | 29.53 | 126.64 | 234.32 | 31.96 | 0.99 | 0.13 | 0.66 | 0.87 | 0 | 0.99 | | 20 CL/JF | 1.00 | | 6.67 | | 126.22 | 360.56 | | 1.73 | 1.41 | 16.69 | 0.92 | | 2.39 | 223.44 | 3.12 | 2.67 | 9.25 | 2.92 | 22.72 | 1.07 | 0.04 | 0.00 | 0 | 1.18 | | 21 SP/FB | 0.37 | 0.31 | 0.37 | 0.47 | 0.10 | 0.92 | 2.21 | | 781.91 | 1.37 | 36.81 | 4.92 | | 69.46 | 34.08 | 0.24 | 205.90 | 8.32 | 0.79 | 0.02 | 0.94 | 0.12 | 0 | 0.94 | | 22 KGEO | 1.15 | 1.23 | 164.39 | 640.22 | 132.84 | 284.14 | 251.99 | 3.87 | 99.14 | 1.88 | 1.56 | 0.41 | 14.13 | 0.12 | 57.38 | 0.95 | 2.15 | 0.68 | 0.94 | 6.74 | 0.53 | 0.92 | 0 | 0.99 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0<br> | 0 | 0 | 0 | 0<br> | 0 | 0<br> | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.07 | | 0.96 | | 1.39 | | 1.06 | | 0.98 | | 0.99 | | 0.98 | | 0.98 | | 1.01 | | 0.99 | | 0.92 | | 0 | | | | | 1.04 | | 0.99 | | 0.95 | | 0.98 | | 0.97 | | 1.00 | | 0.98 | | 0.97 | | 1.18 | | 1.12 | | 0.81 | | 0.99 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Est Auto Driver | | DESTIN | NATION | | | | | | | | | | | | | | | | | | | | | | | |------------------|---------------|---------------|----------------|----------------|-------------|--------------|-------------|--------------|------------|-----------------|--------------|-------------|-----------------|-----------------|-------------|--------------|-------------|----------|---------|------------|------------------|---------|-------|--------------------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 59317 | 37539 | 7629 | 12184 | 1695 | 4681 | 3419 | 9197 | 434 | 785 | 216 | 45 | 537 | 1491 | 136 | ======<br>59 | 598 | 79 | 170 | 21 | 91 | ======= | -==== | ======<br> 140327 | | 2 DC NC | | 227284 | 54110 | 65498 | 3751 | 12675 | 8692 | 29791 | 1033 | 970 | 346 | 62 | 2170 | 4355 | 226 | 84 | 1249 | 88 | 202 | 22 | 104 | 5 | 0 | 503705 | | 3 MTG | 75897 | 849751 | 400876 | 92046 | 4327 | 12304 | 4667 | 39887 | 2300 | 1036 | 14406 | 2483 | 21760 | 13525 | 256 | 215 | 851 | 200 | 253 | 535 | 265 | 17 | 0 | 1773081 | | 4 PG | 66813 | 130251 | 102972 | 903463 | 5968 | 16048 | 14975 | 36571 | 819 | 1009 | 474 | 177 | 22712 | 43205 | 2660 | 1490 | 21737 | 83 | 293 | 27 | 170 | 102 | 0 | 1372019 | | 5 ARLCR | 1535 | 2074 | 977 | 974 | 5631 | 9468 | 2747 | 5675 | 221 | 427 | 29 | 5 | 37 | 109 | 12 | 6 | 51 | 23 | 49 | 5 | 27 | 1 | 0 | 30084 | | 6 ARNCR | 15839 | 15882 | 7853 | 5242 | 22726 | 132798 | 24892 | 75119 | 1845 | 2222 | 93 | 10 | 133 | 397 | 28 | 18 | 202 | 99 | 230 | 16 | 158 | 5 | 0 | 305807 | | 7 ALX | 11361 | 10091 | 3931 | 6182 | 7122 | 28248 | 100184 | 69518 | 938 | 3247 | 53 | 7 | 100 | 360 | 47 | 37 | 424 | 74 | 345 | 12 | 210 | 10 | 0 | 242501 | | 8 FFX | 80315 | 51931 | 42548 | 25587 | 21869 | 92878 | 860331 | | 57537 | 50419 | 689 | 50 | 689 | 1698 | 131 | 235 | 1691 | 2445 | 3749 | 441 | 3556 | 174 | 0 | 2156964 | | 9 LDN | 8606 | 6114 | 9337 | 2965 | 2077 | 6824 | 3161 | | 356847 | 7250 | 5690 | 224 | 412 | 513 | 13 | 39 | 170 | 1661 | 250 | 8248 | 340 | 11 | 0 | 517857 | | 10 PW | 14167 | 8390 | 6962 | 4096 | 3766 | 11832 | | 114164 | 11029 | 601152 | 234 | 13 | 129 | 344 | 26 | 72 | 292 | 9836 | 10569 | 340 | 6029 | 195 | 0 | 815489 | | 11 FRD | 2992 | 3156 | 41524 | 3032 | 490 | 1309 | 448 | 7114 | 7339 | 213 | 371320 | 17232 | 11242 | 4120 | 26 | 12 | 82 | 56 | 12 | 3830 | 10 | 0 | 0 | 475560 | | 12 CAR | 2266 | 1624 | 12379 | 2029 | 221 | 446 | 143 | 1578 | 467 | 30 | 15294 | 262222 | 11424 | 3105 | 18 | 104 | 48 | 8 | 2 | 222<br>173 | 2 | 0 | 0 | 313531 | | 13 HOW<br>14 AAR | 6344<br>13238 | 7717<br>15868 | 31921<br>20153 | 27327<br>55032 | 485<br>1223 | 1283<br>3408 | 616<br>2347 | 3244<br>7339 | 222<br>319 | 77<br>253 | 6287<br>1122 | 6971<br>637 | 363968<br>52890 | 50949<br>816546 | 108<br>4343 | 124<br>754 | 250<br>1631 | 15<br>23 | 11 | 1/3<br>50 | 10<br>33 | 2<br>12 | 0 | 508104<br>997264 | | 15 CAL | 3920 | 3215 | 1980 | 8650 | 331 | 927 | 839 | 2374 | 49 | 253<br>75 | 36 | 7 | 393 | 5357 | 131031 | 12305 | 4254 | 23 | 46<br>8 | 1 | 12 | 24 | 0 | 175792 | | 16 STM | 2795 | 2046 | 1053 | 4436 | 272 | 632 | 659 | 1686 | 34 | 62 | 16 | 2 | 181 | 909 | | 197991 | 14630 | 6 | 26 | 0 | 51 | 255 | 0 | 236338 | | 17 CHS | 8407 | 6992 | 2929 | 18740 | 814 | 2188 | 2489 | 6663 | 136 | 228 | 42 | 8 | 392 | 1761 | 3413 | 6719 | 221944 | 12 | 46 | 2 | 63 | 742 | 0 | 284731 | | 18 FAU | 1023 | 582 | 853 | 324 | 258 | 741 | 493 | 11738 | 3123 | 11386 | 67 | 4 | 23 | 37 | 4 | 17 | 28 | 72542 | 2042 | 361 | 1249 | 43 | 0 | 106940 | | 19 STA | 1662 | 1242 | 881 | 873 | 417 | 1630 | 1734 | 14882 | 952 | 24461 | 27 | 1 | 16 | 69 | 21 | 110 | 176 | 2961 | 126756 | 61 | 31686 | 743 | 0 | 211361 | | 20 CL/JF | 478 | 309 | 3255 | 291 | 106 | 290 | 134 | 5576 | 12202 | 963 | 3978 | 159 | 406 | 171 | 1 | 0 | 3 | 785 | 17 | 78825 | 18 | 1 | 0 | 107967 | | 21 SP/FB | 602 | 380 | 215 | 316 | 178 | 786 | 855 | 9210 | 668 | 10020 | 20 | 1 | 5 | 26 | 25 | 125 | 170 | 1772 | 21266 | 51 | 179330 | 638 | 0 | 226658 | | 22 KGEO | 628 | 386 | 143 | 561 | 123 | 249 | 186 | 1471 | 90 | 1669 | 0 | 0 | 11 | 48 | 47 | 303 | 2225 | 229 | 2700 | 6 | 3044 | 21029 | 0 | 35151 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 469193 | | 754477 | | 83850 | | 271565 | | 458604 | | 420438 | | 489634 | | 151164 | | 272706 | | 169042 | | ======<br>226458 | ====== | | ======<br> | | TOTAL | | 618049 | | L239850 | 03030 | 341642 | | 182202 | 420004 | 717953 | 120130 | 290321 | 402034 | 949097 | 101104 | 220720 | 2/2/00 | 93001 | 109042 | 93251 | 220430 | 24015 | U | 1<br>11537231 | | | | 010019 | - | 2222000 | | 311012 | 2 | 102202 | | , 1, 2, 2, 2, 3 | | 270321 | | 212021 | | 220/20 | | 22001 | | JJZJI | | 21013 | | 1100,201 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Obs Auto Driver | | DESTIN | NATION | | | | | | | | | | | | | | | | | | | | | | | |------------------|-------------|-------------|-------------|---------|------------|-------------|-------------|----------------|-------------|----------------|---------|---------|--------|--------|--------|--------|--------|--------|--------|-------------|-------------|-------------|-------|----------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 43316 | 34799 | 11051 | 12335 | 868 | 10678 | 6400 | 12696 | 2420 | -=====<br>785 | 0 | .====== | 382 | 2628 | 0 | 451 | 1097 | 0 | 131 | 0 | ======<br>0 | 164 | 0 | 140202 | | 2 DC NC | | 270470 | 81876 | 59515 | 3493 | 18664 | 6628 | 29801 | 4050 | 1302 | 0 | 322 | 883 | 5775 | 846 | 0 | 1554 | ō | 122 | 0 | 316 | 0 | 0 | 590251 | | 3 MTG | 55578 | 906181 | 489936 | 72046 | 4180 | 15421 | 4559 | 51295 | 7668 | 1838 | 15250 | 2580 | 19087 | 14869 | 307 | 0 | 813 | 0 | 934 | 838 | 620 | 0 | 0 | 1848438 | | 4 PG | 61280 | 98694 | 116341 | 911744 | 2136 | 13738 | 6890 | 35035 | 3438 | 1516 | 387 | 1574 | 22213 | 53557 | 6376 | 286 | 27962 | 0 | 0 | 0 | 0 | 197 | 0 | 1363362 | | 5 ARLCR | 980 | 2248 | 1362 | 655 | 2601 | 5273 | 1805 | 6045 | 0 | 1274 | 0 | 0 | 210 | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22679 | | 6 ARNCR | 31235 | 17253 | 9616 | 2827 | 12257 | 170170 | 23788 | 76329 | 2551 | 1382 | 93 | 0 | 556 | 710 | 108 | 0 | 667 | 102 | 1200 | 0 | 0 | 0 | 0 | 350844 | | 7 ALX | 18955 | 8881 | 4056 | 4319 | 3658 | 22688 | 134972 | 58667 | 1249 | 2571 | 382 | 0 | 706 | 1104 | 0 | 0 | 511 | 266 | 298 | 0 | 0 | 0 | 0 | 263283 | | 8 FFX | 75104 | 38053 | 41667 | 16179 | 20911 | 89335 | 770651 | 726774 | 63733 | 65869 | 1591 | 0 | 2851 | 1372 | 772 | 236 | 1857 | 2366 | 3717 | 1401 | 2235 | 132 | 0 | 2233219 | | 9 LDN | 8169 | 3359 | 7905 | 1242 | 662 | 6101 | | | 334685 | 6035 | 883 | 0 | 0 | 853 | 0 | 0 | 0 | 2691 | 405 | 2198 | 0 | 0 | 0 | 491022 | | 10 PW | 5920 | 9516 | 4844 | 2394 | 3946 | 12511 | 11030 | 139796 | | | 0 | 0 | 0 | 0 | 0 | 590 | 463 | 6836 | 6305 | 0 | 1888 | 263 | 0 | 786279 | | 11 FRD | 1452 | 3771 | 41821 | 4218 | 491 | 260 | 819 | 2840 | 4099 | 595 | 393668 | 16491 | 8523 | 2916 | 0 | 0 | 0 | 0 | 0 | 1969 | 0 | 0 | 0 | 483934 | | 12 CAR | 583 | 290 | 10965 | 3702 | 0 | 0 | 165 | 265 | 0 | 0 | 6660 | 237191 | 17511 | 8145 | 0 | 0 | 0 | - 0 | 0 | 0 | 0 | 0 | 0 | 285476 | | 13 HOW | 5549 | 4639 | 27095 | 35984 | 260 | 792 | 1466 | 3291 | 276 | 0 | 1967 | | 377314 | 48363 | 0 | 0 | 667 | 570 | 0 | 325 | 0 | 0 | 0 | 514355 | | 14 AAR | 10331 | 12144 | 18930 | 73882 | 1732 | 3585 | 2134 | 6235 | 0 | 769 | 765 | 3263 | | 826157 | 5802 | 424 | 1480 | 0 | 451 | 144 | 0 | 0 | 0 | 1014842 | | 15 CAL | 4270 | 2166 | 1101 | 12059 | 239 | 724 | 255 | 5202 | 0 | 362 | 0 | 0 | 1555 | 11640 | 119310 | 12705 | 4117 | 0 | 450 | 0 | 0 | 0 | 0 | 175703 | | 16 STM | 1997 | 3201 | 459 | 6000 | 1750 | 781 | 25.60 | 1302 | 0.51 | 0 | 0 | 101 | 1.45 | 835 | | | 14356 | 0 | 459 | 0 | 1.45 | 700 | 0 | 239307 | | 17 CHS | 7118 | 7686<br>577 | 2488 | 32363 | 1752 | 3438 | 3568 | 5973 | 251<br>4694 | 12127 | 0 | 181 | 145 | 3868 | 4446 | 8620 | 210313 | C7200 | 577 | 1222 | 145<br>214 | 782 | 0 | 293137 | | 18 FAU<br>19 STA | 808<br>1637 | 2508 | 900<br>1285 | 131 | 215<br>131 | 883<br>1225 | 431<br>1285 | 12560<br>10754 | 4694 | 13127<br>20833 | 130 | 0 | 0 | 394 | 0 | 0 | 0 | 67380 | 112628 | 1323<br>536 | 40363 | 179<br>1129 | 0 | 103871 | | 20 CL/JF | 534 | 2508 | 719 | 131 | 131 | 1225 | 1285 | 4237 | 9933 | 20833<br>79 | 5697 | 0 | 236 | 394 | 0 | 0 | 0 | 393 | 112028 | 71111 | 541 | 297 | 0 | 93775 | | 21 SP/FB | 1955 | 1169 | 1084 | 1011 | 2269 | 1135 | 0 | 2038 | 2233<br>0 | 7103 | 0097 | 0 | 230 | 0 | 0 | 308 | 0 | 258 | 25573 | 2239 | 180507 | 5943 | 0 | 232593 | | 22 KGEO | 573 | 328 | 1004 | 1011 | 2209 | 1133 | 0 | 564 | 0 | 1326 | 0 | 0 | 0 | 489 | 0 | 343 | 1598 | 423 | 3145 | 0 | 5564 | 24647 | 0 | 39000 | | 23 EXTL | 0/3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1320 | 0 | 0 | 0 | 0 | 0 | 242 | 1330 | 123 | 2143 | 0 | 2204 | 0 | 0 | 1 3,000 | | ======= | ======= | -===== | .===== | | ====== | .====== | .====== | ====== | ===== | ====== | .====== | -===== | .===== | -===== | ====== | ====== | ====== | ====== | | ====== | ====== | ====== | ===== | ====== | | TOTAL | 441979 | 1 | 875501 | | 61799 | | 285541 | | 449739 | | 427476 | | 498785 | | 147720 | | 267454 | | 155946 | | 232392 | | 0 | 1 | | | | 612371 | - | 1252606 | | 377402 | 2 | 305251 | | 696051 | | 267402 | | 983900 | | 224124 | | 81284 | | 82085 | | 33732 | | 11760538 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Difference (Est-Obs) Auto Driver | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|--------|-------|--------|--------|-------|-------|-------|--------------|-------|--------------|-------|-------|----|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 16001 | 2740 | -3422 | -151 | 827 | -5997 | -2982 | -3499 | -1986 | -0 | 216 | 45 | 156 | -1137 | 136 | -392 | -499 | ======<br>79 | 39 | ======<br>21 | 91 | -159 | 0 | 125 | | 2 DC NC | -13647 | -43186 | -27766 | 5984 | 259 | -5989 | 2064 | -10 | -3017 | -332 | 346 | -260 | 1287 | -1420 | -621 | 84 | -305 | 88 | 80 | 22 | -212 | 5 | 0 | -86546 | | 3 MTG | 20319 | -5643 | -89059 | 20000 | 147 | -3117 | 107 | -11407 | -5368 | -802 | -844 | -98 | 2673 | -1344 | -51 | 215 | 38 | 200 | -681 | -303 | -355 | 17 | 0 | -75357 | | 4 PG | 5533 | 31557 | -13369 | -8281 | 3832 | 2310 | 8086 | 1536 | -2619 | -507 | 86 | -1397 | 500 | -10352 | -3716 | 1204 | -6225 | 83 | 293 | 27 | 170 | -96 | 0 | 8657 | | 5 ARLCR | 555 | -173 | -385 | 319 | 3030 | 4194 | 943 | -371 | 221 | -847 | 29 | 5 | -173 | -116 | 12 | 6 | 51 | 23 | 49 | 5 | 27 | 1 | 0 | 7405 | | 6 ARNCR | -15396 | -1372 | -1763 | 2415 | 10469 | -37373 | 1104 | -1210 | -706 | 840 | -1 | 10 | -423 | -313 | -79 | 18 | -464 | -2 | -971 | 16 | 158 | 5 | 0 | -45036 | | 7 ALX | -7593 | 1210 | -125 | 1863 | 3465 | 5560 | -34788 | 10851 | -312 | 676 | -329 | 7 | -606 | -744 | 47 | 37 | -87 | -192 | 47 | 12 | 210 | 10 | 0 | -20782 | | 8 FFX | 5212 | 13877 | 880 | 9408 | 959 | 3544 | 8969 | -94475 | -6197 | -15450 | -903 | 50 | -2162 | 326 | -641 | -1 | -166 | 80 | 32 | -960 | 1321 | 42 | 0 | -76255 | | 9 LDN | 437 | 2755 | 1433 | 1723 | 1415 | 723 | | -16448 | 22162 | 1215 | 4807 | 224 | 412 | -339 | 13 | 39 | 170 | -1031 | -155 | 6050 | 340 | 11 | 0 | 26836 | | 10 PW | 8247 | -1126 | 2118 | 1702 | -180 | -680 | | -25632 | 338 | 31867 | 234 | 13 | 129 | 344 | 26 | -518 | -172 | 3000 | 4264 | 340 | 4141 | -67 | 0 | 29211 | | 11 FRD | 1539 | -615 | -297 | -1186 | -1 | 1049 | -371 | 4274 | 3240 | -382 | -22349 | 741 | 2719 | 1204 | 26 | 12 | 82 | 56 | 12 | 1862 | 10 | 0 | 0 | -8374 | | 12 CAR | 1683 | 1334 | 1414 | -1673 | 221 | 446 | -22 | 1313 | 467 | 30 | 8633 | 25031 | -6087 | -5040 | 18 | 5 | 48 | 8 | 2 | 222 | 2 | 0 | 0 | 28054 | | 13 HOW | 794 | 3079 | 4826 | -8657 | 225 | 490 | -851 | -47 | -54 | 77 | 4320 | 1173 | -13346 | 2587 | 108 | 124 | -416 | -555 | 11 | -152 | 10 | 2 | 0 | -6251 | | 14 AAR | 2907 | 3724 | | -18850 | -509 | -177 | 212 | 1103 | 319 | -515 | 357 | -2626 | 6276 | -9612 | -1459 | 330 | 151 | 23 | -406 | -94 | 33 | 12 | 0 | -17578 | | 15 CAL | -349 | 1049 | 879 | -3410 | 93 | 203 | 584 | -2827 | 49 | -287 | 36 | 7 | -1162 | -6283 | 11721 | -399 | 137 | 4 | 8 | 1 | 12 | 24 | 0 | 89 | | 16 STM | 798 | -1154 | 594 | -1563 | 272 | -149 | 659 | 384 | 34 | 62 | 16 | 2 | 181 | 74 | -1160 | -2171 | 274 | 6 | -433 | 0 | 51 | 255 | 0 | -2969 | | 17 CHS | 1289 | -694 | 440 | -13624 | -938 | -1250 | -1079 | 690 | -114 | 228 | 42 | -173 | 247 | -2107 | -1034 | -1901 | 11631 | 12 | 46 | 2 | -82 | -40 | 0 | -8406 | | 18 FAU | 215 | 5 | -48 | 324 | 43 | -142 | 62 | -822 | -1571 | -1741 | 67 | 4 | 23 | 37 | 4 | 17 | 28 | 5162 | 1465 | -962 | 1035 | -135 | 0 | 3069 | | 19 STA | 24 | -1266 | -405 | 742 | 286 | 404 | 450 | 4128 | 952 | 3628 | -102 | 1 | 16 | -325 | 21 | 110 | 176 | 2961 | 14127 | -475 | -8677 | -385 | 0 | 16392 | | 20 CL/JF | -56 | 309 | 2536 | 291 | 106 | 290 | 134 | 1339 | 2269 | 884 | -1719 | 159 | 170 | 171 | 1 | 0 | 3 | 393 | 17 | 7714 | -522 | -296 | 0 | 14193 | | 21 SP/FB | -1353 | -789 | -870 | -694 | -2092 | -349 | 855 | 7173 | 668 | 2917 | 20 | 1 | 5 | 26 | 25 | -184 | 170 | 1514 | -4307 | -2188 | -1177 | -5305 | 0 | -5934 | | 22 KGEO | 55 | 58 | 143 | 561 | 123 | 249 | 186 | 907 | 90 | 343 | 0 | 0 | 11 | -440 | 47 | -39 | 627 | -194 | -445 | 6 | -2520 | -3618 | 0 | -3849 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | | TOTAL | 27214 | | 121024 | | 22050 | | -13975 | | 8865 | | -7037 | | -9151 | | 3444 | | 5252 | | 13096 | | -5934 | | 0 | | | | | 5678 | | -12757 | | -35760 | - | 123049 | | 21902 | | 22919 | | -34802 | | -3405 | | 11716 | | 11167 | | -9717 | | -223307 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Ratio (Est/Obs) Auto Driver | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|-------|--------|--------|--------|--------|--------|--------|------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|-----|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.37 | 1.08 | 0.69 | 0.99 | 1.95 | 0.44 | 0.53 | 0.72 | 0.18 | 1.00 | 215.62 | 45.36 | 1.41 | 0.57 | 135.87 | 0.13 | 0.55 | 78.91 | 1.30 | 20.79 | 91.24 | 0.03 | 0 | 1.00 | | 2 DC NC | 0.87 | 0.84 | 0.66 | 1.10 | 1.07 | 0.68 | 1.31 | 1.00 | 0.26 | 0.74 | 346.09 | 0.19 | 2.46 | 0.75 | 0.27 | 84.11 | 0.80 | 88.17 | 1.65 | 21.75 | 0.33 | 5.10 | o i | 0.85 | | 3 MTG | 1.37 | 0.94 | 0.94 | 1.28 | 1.04 | 0.80 | 1.02 | 0.78 | 0.30 | 0.56 | 0.94 | 0.96 | 1.14 | 0.91 | 0.83 | 214.85 | 1.05 | 199.89 | 0.27 | 0.64 | 0.43 | 16.70 | 0 j | 0.96 | | 4 PG | 1.09 | 1.32 | 0.89 | 0.99 | 2.79 | 1.17 | 2.17 | 1.04 | 0.24 | 0.67 | 1.22 | 0.11 | 1.02 | 0.81 | 0.42 | 5.22 | 0.78 | 82.80 | 293.30 | 27.12 | 169.61 | 0.51 | o j | 1.01 | | 5 ARLCR | 1.57 | 0.92 | 0.72 | 1.49 | 2.16 | 1.80 | 1.52 | 0.94 | 221.37 | 0.34 | 28.78 | 5.08 | 0.18 | 0.49 | 11.93 | 5.57 | 50.87 | 22.66 | 49.18 | 5.40 | 26.70 | 1.38 | 0 j | 1.33 | | 6 ARNCR | 0.51 | 0.92 | 0.82 | 1.85 | 1.85 | 0.78 | 1.05 | 0.98 | 0.72 | 1.61 | 0.99 | 9.68 | 0.24 | 0.56 | 0.26 | 17.94 | 0.30 | 0.98 | 0.19 | 16.40 | 157.98 | 5.19 | 0 | 0.87 | | 7 ALX | 0.60 | 1.14 | 0.97 | 1.43 | 1.95 | 1.25 | 0.74 | 1.18 | 0.75 | 1.26 | 0.14 | 6.54 | 0.14 | 0.33 | 47.25 | 37.47 | 0.83 | 0.28 | 1.16 | 12.23 | 210.49 | 10.24 | 0 | 0.92 | | 8 FFX | 1.07 | 1.36 | 1.02 | 1.58 | 1.05 | 1.04 | 1.12 | 0.95 | 0.90 | 0.77 | 0.43 | 50.04 | 0.24 | 1.24 | 0.17 | 1.00 | 0.91 | 1.03 | 1.01 | 0.31 | 1.59 | 1.32 | 0 | 0.97 | | 9 LDN | 1.05 | 1.82 | 1.18 | 2.39 | 3.14 | 1.12 | 1.39 | 0.86 | 1.07 | 1.20 | 6.44 | 223.82 | 412.26 | 0.60 | 13.07 | 39.21 | 170.39 | 0.62 | 0.62 | 3.75 | 340.08 | 10.83 | 0 | 1.05 | | 10 PW | 2.39 | 0.88 | 1.44 | 1.71 | 0.95 | 0.95 | 1.07 | 0.82 | 1.03 | 1.06 | 233.79 | 13.18 | 129.35 | 344.32 | 26.11 | 0.12 | 0.63 | 1.44 | 1.68 | 340.28 | 3.19 | 0.74 | 0 | 1.04 | | 11 FRD | 2.06 | 0.84 | 0.99 | 0.72 | 1.00 | 5.04 | 0.55 | 2.51 | 1.79 | 0.36 | 0.94 | 1.04 | 1.32 | 1.41 | 26.03 | 12.13 | 81.79 | 55.54 | 11.58 | 1.95 | 10.31 | 0.39 | 0 | 0.98 | | 12 CAR | 3.89 | 5.61 | 1.13 | 0.55 | 220.59 | 446.08 | 0.87 | 5.96 | 467.18 | 30.10 | 2.30 | 1.11 | 0.65 | 0.38 | 18.27 | 4.81 | 47.92 | 8.27 | 1.91 | 221.58 | 1.54 | 0.19 | 0 | 1.10 | | 13 HOW | 1.14 | 1.66 | 1.18 | 0.76 | 1.87 | 1.62 | 0.42 | 0.99 | 0.80 | 76.63 | 3.20 | 1.20 | 0.96 | 1.05 | 108.08 | 123.65 | 0.38 | 0.03 | 10.79 | 0.53 | 9.99 | 1.97 | 0 | 0.99 | | 14 AAR | 1.28 | 1.31 | 1.06 | 0.74 | 0.71 | 0.95 | 1.10 | 1.18 | | 0.33 | 1.47 | 0.20 | 1.13 | 0.99 | 0.75 | 1.78 | 1.10 | 23.18 | 0.10 | 0.35 | 33.09 | 12.09 | 0 | 0.98 | | 15 CAL | 0.92 | 1.48 | 1.80 | 0.72 | 1.39 | 1.28 | 3.29 | 0.46 | 48.61 | 0.21 | 35.65 | 7.28 | 0.25 | 0.46 | 1.10 | 0.97 | 1.03 | 3.63 | 8.31 | 0.96 | 12.39 | 24.29 | 0 | 1.00 | | 16 STM | 1.40 | 0.64 | 2.29 | 0.74 | 271.81 | 0.81 | 659.22 | 1.29 | 33.94 | 61.73 | | 2.03 | 181.28 | 1.09 | 0.88 | 0.99 | 1.02 | 5.61 | 0.06 | 0.37 | 51.33 | 255.18 | 0 | 0.99 | | 17 CHS | 1.18 | 0.91 | 1.18 | 0.58 | 0.46 | 0.64 | 0.70 | 1.12 | 0.54 | 227.54 | 42.42 | 0.04 | 2.71 | 0.46 | 0.77 | 0.78 | 1.06 | 12.28 | 45.82 | 2.40 | 0.43 | 0.95 | 0 | 0.97 | | 18 FAU | 1.27 | 1.01 | | 324.40 | 1.20 | 0.84 | 1.14 | 0.93 | 0.67 | 0.87 | 66.62 | 4.12 | | 36.58 | 3.93 | 16.90 | 28.16 | 1.08 | 3.54 | 0.27 | 5.83 | | 0 | 1.03 | | 19 STA | 1.01 | 0.50 | 0.69 | 6.66 | 3.18 | 1.33 | 1.35 | 1.38 | 952.43 | 1.17 | 0.21 | 1.36 | | 0.17 | | 109.91 | 175.802 | | 1.13 | 0.11 | 0.79 | | 0 | 1.08 | | 20 CL/JF | 0.90 | | 4.53 | 290.62 | 105.50 | 289.88 | | 1.32 | 1.23 | 12.26 | | | | | 0.55 | 0.30 | 2.92 | 2.00 | 16.84 | 1.11 | 0.03 | | 0 | 1.15 | | 21 SP/FB | 0.31 | 0.33 | 0.20 | 0.31 | 0.08 | 0.69 | 854.94 | | | 1.41 | 19.70 | 0.69 | 5.09 | 26.03 | 25.29 | 0.40 | 169.54 | 6.87 | 0.83 | 0.02 | 0.99 | | 0 | 0.97 | | 22 KGEO | 1.10 | 1.18 | 142.74 | 561.35 | 123.07 | 249.25 | | 2.61 | 89.99 | 1.26 | 0.46 | 0.06 | 11.29 | 0.10 | 46.52 | 0.89 | 1.39 | 0.54 | 0.86 | 6.35 | 0.55 | | 0 | 0.90 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | TOTAL | 1.06 | | 0.94 | === | 1.36 | | 0.95 | | 1.02 | == | 0.98 | | 0.98 | | 1.02 | === | 1.02 | === | 1.08 | === | 0.97 | | 0 | | | | | 1.01 | | 0.99 | | 0.91 | | 0.95 | | 1.03 | | 1.09 | | 0.96 | | 0.98 | | 1.14 | | 1.14 | | 0.71 | | 0.98 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Est Motr Psn | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |---------------|---------|---------|--------|-----------------|---------------|----------------|---------------|----------------|--------------|--------------|--------------|-------------|----------------|----------------|-------------|-------------|---------------|------------|------------|----------|------------|-----------|----|----------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | | | ====== | | | | | | | | | | | | | | | | | | | | | | | | 1 DC CR | 112100 | 76021 | 15070 | 16256 | 6290 | 13044 | 6937 | 14347 | 638 | 1002 | 392 | 85 | 667 | 1964 | 189 | 115 | 743 | 144 | 278 | 52 | 186 | 14 | 0 | 266533 | | 2 DC NC | | | 106939 | 98055<br>131189 | 14125 | 34455 | 17919 | 49797 | 1564 | 1367 | 580 | 115 | 2998 | 6010 | 318 | 150 | 1653 | 175 | 362 | 60 | 224 | 15 | 0 | 1052927 | | 3 MTG<br>4 PG | | 1324592 | | | 9128<br>12781 | 20137<br>27860 | 7157<br>23697 | 55966<br>56170 | 3453<br>1349 | 1858<br>1880 | 21725<br>845 | 3905<br>346 | 31067<br>32621 | 19348<br>61259 | 402<br>3946 | 297<br>2125 | 1293<br>31372 | 406<br>197 | 498<br>599 | 929 | 512<br>374 | 33<br>178 | 0 | 2715062 | | 5 ARLCR | 7407 | 3256 | 1470 | 1148 | 7665 | 15099 | 4365 | 7910 | 328 | 573 | 49 | 10 | 32021<br>49 | 151 | 3946 | 2125 | 65 | 38 | 75 | 79<br>13 | 50 | 1/8 | 0 | 49754 | | 6 ARNCR | 66631 | 26723 | 11997 | 6864 | 37896 | 206861 | | 109072 | 2759 | 3293 | 163 | 24 | 183 | 562 | 44 | 34 | 275 | 174 | 380 | 41 | 291 | 12 | 0 | 514435 | | 7 ALX | 33283 | 15625 | 5784 | 7956 | 11537 | | 153884 | 99136 | 1457 | 4938 | 106 | 19 | 156 | 547 | 73 | 61 | 580 | 138 | 580 | 31 | 388 | 21 | 0 | 381034 | | 8 FFX | 140392 | 74234 | 56777 | 34757 | 34313 | | 1282802 | | 77661 | 72500 | 1098 | 114 | 1032 | 2514 | 234 | 333 | 2580 | 3800 | 6248 | 725 | 6111 | 303 | 0 | 3134535 | | 9 LDN | 14281 | 8361 | 11424 | 3856 | 3281 | 9980 | | | 499537 | 9873 | 8037 | 328 | 495 | 656 | 20 | 47 | 253 | 2344 | 398 | 12489 | 549 | 17 | ٥ | 719416 | | 10 PW | 30290 | 13218 | 10142 | 5621 | 7749 | 20275 | | 159393 | | 844131 | 313 | 23 | 233 | 518 | 56 | 107 | 497 | 13949 | 15920 | 459 | 9729 | 314 | 0 | 11164846 | | 11 FRD | 5741 | 3977 | 60365 | 3581 | 741 | 1883 | 631 | 11050 | 11915 | | 513181 | 23997 | 14523 | 4886 | 40 | 23 | 117 | 91 | 35 | 5933 | 32 | 2 | 0 | 663062 | | 12 CAR | 2443 | 1764 | 16861 | 2328 | 244 | 513 | 169 | 2032 | 740 | 45 | | 358273 | 16030 | 3741 | 25 | 10 | 63 | 16 | 8 | 324 | 7 | 1 | 0 | 425619 | | 13 HOW | 15558 | 11617 | 45577 | 37915 | 1272 | 2346 | 929 | 4732 | 346 | 205 | 8428 | 10401 | 518998 | 70029 | 152 | 154 | 355 | 35 | 32 | 278 | 30 | 5 | 0 | 729394 | | 14 AAR | 25610 | 23162 | 29299 | 78138 | 2552 | 5752 | 3772 | 12149 | 559 | 566 | 1554 | 993 | 751951 | | 6321 | 974 | 2292 | 63 | 116 | 98 | 93 | 25 | 0 | 1417045 | | 15 CAL | 5313 | 4181 | 2541 | 11467 | 583 | 1404 | 1324 | 3713 | 70 | 124 | 51 | 14 | 491 | 7108 | 183264 | 15911 | 5628 | 10 | 20 | 4 | 24 | 39 | 0 | 243283 | | 16 STM | 3514 | 2475 | 1256 | 5669 | 409 | 896 | 1101 | 2630 | 49 | 91 | 26 | 7 | 218 | 1095 | 11602 | 258979 | 20853 | 12 | 49 | 3 | 87 | 417 | 0 | 311437 | | 17 CHS | 14441 | 9780 | 4019 | 24123 | 1598 | 3602 | 3998 | 10836 | 231 | 429 | 75 | 21 | 505 | 2187 | 4640 | 9023 | 307186 | 31 | 98 | 9 | 115 | 1254 | 0 | 398201 | | 18 FAU | 1355 | 758 | 1074 | 433 | 360 | 971 | 621 | 15264 | 3946 | 15091 | 91 | 9 | 39 | 69 | 9 | 23 | 45 | 101570 | 2792 | 499 | 1715 | 57 | 0 | 146792 | | 19 STA | 3151 | 1786 | 1388 | 1260 | 859 | 2507 | 2446 | 20924 | 1109 | 33461 | 47 | 6 | 35 | 129 | 30 | 127 | 234 | 3773 | 176590 | 68 | 42926 | 982 | 0 | 293838 | | 20 CL/JF | 680 | 428 | 4860 | 352 | 171 | 416 | 174 | 7854 | 19053 | 1311 | 5739 | 238 | 564 | 223 | 3 | 3 | 9 | 1147 | 23 | 106126 | 24 | 1 | 0 | 149400 | | 21 SP/FB | 1594 | 673 | 424 | 472 | 531 | 1485 | 1395 | 14378 | 782 | 14003 | 37 | 5 | 20 | 69 | 34 | 150 | 206 | 2147 | 28289 | 57 | 245886 | 794 | 0 | 313432 | | 22 KGEO | 686 | 416 | 166 | 641 | 142 | 298 | 259 | 2239 | 99 | 2496 | 2 | 0 | 14 | 58 | 57 | 418 | 3435 | 286 | 3930 | 7 | 4258 | 29123 | 0 | 49028 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ======= | | | ====== | | | | | ====== | ====== | | | | | | | | | ====== | | | ====== | | | | | TOTAL | 1070360 | | 660630 | | 154228 | | 421139 | | 641948 | | 582522 | | 696136 | | 211478 | | 379733 | | 237318 | | 313613 | | 0 | ! | | | 1 | 1039028 | 1 | L764339 | | 552320 | 3 | 141184 | 1 | 1009556 | | 398931 | 1 | 330883 | | 289074 | | 130546 | | 128284 | | 33610 | | 17186863 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Obs Motr Psn | ORIGIN | DESTII | NATION 2 | 3 | 4 | 5 | 6 | 7 | Ω | q | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | |----------|---------|----------|---------|---------|--------|---------|---------|--------|---------|---------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------| | ======== | | | ====== | | ====== | .=====: | :====== | ====== | .====== | ====== | | ====== | ====== | | ====== | ====== | | ====== | | ====== | ====== | ====== | ====== | | | 1 DC CR | 97187 | 67884 | 27048 | 22866 | 3475 | 21905 | 10560 | 21191 | 4087 | 3159 | 234 | 0 | 1239 | 4033 | 495 | 714 | 3097 | 215 | 988 | 0 | 308 | 164 | 0 | 290848 | | 2 DC NC | 272992 | 482397 | 128558 | 90550 | 7070 | 28345 | 10728 | 41992 | 5596 | 1699 | 922 | 322 | 1375 | 6321 | 1085 | 0 | 1815 | 0 | 688 | 0 | 624 | 0 | 0 | 1083078 | | 3 MTG | 155740 | 1333022 | 166253 | 91188 | 8421 | 21029 | 6993 | 59522 | 8607 | 3698 | 19896 | 3096 | 24522 | 16938 | 307 | 0 | 1517 | 0 | 1231 | 1121 | 1860 | 0 | 0 | 2725241 | | 4 PG | 137768 | 145683 | 1664711 | 1357588 | 5253 | 21473 | 11391 | 40466 | 4005 | 2151 | 517 | 1964 | 31470 | 70810 | 8590 | 515 | 42193 | 0 | 0 | 0 | 0 | 197 | 0 | 2048505 | | 5 ARLCR | 7492 | 3156 | 1983 | 1269 | 3504 | 10248 | 2164 | 8935 | 256 | 2981 | 0 | 0 | 210 | 225 | 0 | 0 | 0 | 0 | 1800 | 0 | 0 | 0 | 0 | 44222 | | 6 ARNCR | 80906 | 24897 | 13456 | 5001 | 20986 | 248371 | 31750 | 96881 | 3318 | 2227 | 93 | 0 | 556 | 914 | 108 | 0 | 667 | 102 | 1600 | 0 | 0 | 0 | 0 | 531832 | | 7 ALX | 42590 | 14745 | 4869 | 5473 | 6902 | 32584 | 181558 | 78263 | 1695 | 2782 | 382 | 0 | 706 | 1837 | 0 | 375 | 655 | 266 | 298 | 0 | 0 | 0 | 0 | 375980 | | 8 FFX | 155996 | 53372 | 49469 | 17729 | 33868 | 127224 | 1041652 | 453341 | 81846 | 87501 | 1591 | 0 | 2851 | 1504 | 772 | 236 | 1857 | 2366 | 4633 | 2067 | 2354 | 132 | 0 | 3184873 | | 9 LDN | 14171 | 4103 | 8314 | 1242 | 1430 | 7819 | 2799 | 140417 | 511886 | 7619 | 2055 | 99 | 0 | 853 | 0 | 0 | 0 | 2691 | 549 | 3763 | 0 | 0 | 0 | 709810 | | 10 PW | 20618 | 14747 | 6319 | 3865 | 7106 | 20764 | 16169 | 178712 | 11746 | 869132 | 0 | 0 | 0 | 0 | 0 | 689 | 463 | 9639 | 9649 | 0 | 2378 | 361 | 0 | 1172356 | | 11 FRD | 5430 | 4952 | 56328 | 4925 | 491 | 620 | 819 | 2840 | 4421 | 595 | 541317 | 25851 | 10578 | 4610 | 0 | 0 | 0 | 0 | 0 | 2296 | 0 | 0 | 0 | 666073 | | 12 CAR | 1299 | 1087 | 12212 | 4481 | 417 | 0 | 165 | 265 | 99 | 0 | 9904 | 357245 | 20875 | 9678 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 417727 | | 13 HOW | 16082 | 6515 | 32826 | 42966 | 441 | 2426 | 2003 | 3291 | 276 | 0 | 2286 | | 551591 | 56920 | 0 | 0 | 667 | 570 | 0 | 325 | 0 | 0 | 0 | 727125 | | 14 AAR | 30010 | 18927 | 30289 | 99600 | 3728 | 4064 | 2206 | 8759 | 0 | 769 | 765 | 4635 | 642731 | | 6463 | 424 | 1480 | 0 | 451 | 144 | 0 | 0 | 0 | 1439345 | | 15 CAL | 7886 | 2422 | 1851 | 14480 | 239 | 1814 | 255 | 7373 | 0 | 362 | 0 | 0 | 1555 | 14819 | 179021 | 14168 | 6579 | 0 | 0 | 0 | 0 | 0 | 0 | 252821 | | 16 STM | 2720 | 3201 | 459 | 7795 | 0 | 781 | 375 | 1302 | 0 | 0 | 0 | 0 | 0 | 2866 | | 268231 | 19583 | 0 | 459 | 0 | 0 | 0 | 0 | 322332 | | 17 CHS | 12043 | 8923 | 3748 | 42266 | 2016 | 3659 | 5445 | 6601 | 251 | 0 | 0 | 362 | 145 | 4165 | 4760 | 12692 | 296836 | 0 | 0 | 0 | 289 | 926 | 0 | 405128 | | 18 FAU | 2983 | 577 | 900 | 0 | 215 | 883 | 431 | 12836 | 7129 | 15381 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 93574 | 927 | 2646 | 214 | 179 | 0 | 138876 | | 19 STA | 5576 | 3659 | 1582 | 131 | 1895 | 5359 | 1285 | 13572 | 0 | 23789 | 130 | 0 | 0 | 394 | 0 | 0 | 0 | 118 | 178412 | 536 | 65260 | 1129 | 0 | 302827 | | 20 CL/JF | 2298 | 0 | 1825 | 0 | 0 | 0 | 0 | 4431 | 13506 | 79 | 6239 | 0 | 236 | 0 | 0 | 0 | 0 | 393 | 0 | 99074 | 541 | 297 | 0 | 128917 | | 21 SP/FB | 4371 | 1477 | 1084 | 1011 | 2687 | 1135 | 1639 | 3007 | 0 | 10150 | 0 | 0 | 0 | 0 | 0 | 617 | 1500 | 258 | 35632 | 2856 | 261909 | 6761 | 0 | 334593 | | 22 KGEO | 974 | 328 | 0 | 0 | 0 | 0 | 0 | 564 | 0 | 1570 | 0 | 0 | 0 | 489 | 0 | 441 | 1598 | 423 | 4200 | 0 | 8002 | 31516 | 0 | 50105 | | 23 EXTL | 0 | U | | | | | | | | | | | | | | | | | 0 | 0 | | | 0 | 0 | | TOTAL | 1077129 | | 715844 | | 110141 | | 392899 | | 658723 | | 586331 | | 712184 | | 216162 | | 379007 | | 241517 | | 343740 | | 0 | | | | | 996355 | 1 | 1814424 | | 560504 | 3 | 184563 | 1 | 1035642 | | 401513 | 1 | L359732 | | 299101 | | 110615 | | 114827 | | 41661 | | 17352615 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Difference (Est-Obs) Motorized Person | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|---------|---------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======= | ====== | ====== | ====== | | ====== | | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | ====== | | ====== | ====== | ====== | ====== | ====== | | :=====: | | | 1 DC CR | 14913 | | -11978 | -6611 | 2815 | -8862 | -3623 | -6844 | -3448 | -2157 | 158 | 85 | -572 | -2069 | -306 | -599 | -2354 | -71 | -711 | 52 | -122 | -150 | 0 | -24315 | | 2 DC NC | | | -21619 | 7505 | 7056 | 6109 | 7191 | 7804 | -4033 | -331 | -342 | -207 | 1623 | -311 | -767 | 150 | -162 | 175 | -326 | 60 | -399 | 15 | 0 | -30151 | | 3 MTG | 5465 | | -54156 | 40001 | 707 | -892 | 164 | -3556 | -5154 | -1840 | 1829 | 809 | 6545 | 2410 | 95 | 297 | -224 | 406 | -733 | -192 | -1348 | 33 | 0 | -10179 | | 4 PG | -3288 | 56589 | -5369 | -65329 | 7529 | 6388 | 12306 | 15704 | -2655 | -271 | 328 | -1618 | 1151 | -9551 | -4644 | | -10821 | 197 | 599 | 79 | 374 | -20 | 0 | -713 | | 5 ARLCR | -84 | 100 | -513 | -121 | 4161 | 4851 | 2201 | -1025 | 72 | -2408 | 49 | 10 | -161 | -74 | 17 | 11 | 65 | 38 | -1725 | 13 | 50 | 3 | 0 | 5531 | | 6 ARNCR | -14275 | 1827 | -1459 | 1863 | | -41510 | 8405 | 12191 | -559 | 1066 | 69 | 24 | -373 | -352 | -63 | 34 | -392 | 72 | -1220 | 41 | 291 | 12 | 0 | -17397 | | 7 ALX | -9307 | 880 | 916 | 2483 | 4635 | | -27673 | 20873 | -238 | 2156 | -276 | 19 | -550 | -1290 | 73 | -314 | -76 | -128 | 282 | 31 | 388 | 21 | 0 | 5054 | | 8 FFX | -15604 | 20862 | 7308 | 17027 | 445 | 10580 | | 100616 | | -15000 | -494 | 114 | -1819 | 1010 | -538 | 98 | 723 | 1435 | 1615 | -1342 | 3758 | 171 | 0 | -50339 | | 9 LDN | 110 | 4258 | 3110 | 2614 | 1851 | 2161 | | -11550 | -12348 | 2254 | 5983 | 229 | 495 | -197 | 20 | 47 | 253 | -347 | -151 | 8726 | 549 | 17 | 0 | 9606 | | 10 PW | 9672 | -1528 | 3823 | 1757 | 643 | -490 | | -19319 | | -25001 | 313 | 23 | 233 | 518 | 56 | -581 | 34 | 4310 | 6271 | 459 | 7351 | -47 | 0 | -7510 | | 11 FRD | 311 | -975 | 4037 | -1344 | 250 | 1262 | -188 | 8211 | 7494 | | -28136 | -1854 | 3945 | 276 | 40 | 23 | 117 | 91 | 35 | 3636 | 32 | 2 | 0 | -3010 | | 12 CAR | 1144 | 677 | 4649 | -2153 | -173 | 513 | 3 | 1767 | 640 | 45 | 10079 | 1028 | -4845 | -5937 | 25 | 10 | 63 | 16 | 8 | 324 | 7 | 1 | 0 | 7892 | | 13 HOW | -524 | 5102 | 12750 | -5050 | 832 | -80 | -1075 | 1441 | 70 | 205 | 6142 | | -32593 | 13108 | 152 | 154 | -312 | -535 | 32 | -47 | 30 | 5 | 0 | 2269 | | 14 AAR | -4400 | 4234 | -990 | -21462 | -1176 | 1688 | 1566 | 3390 | 559 | -203 | 789 | -3642 | | -14595 | -143 | 550 | 812 | 63 | -335 | -46 | 93 | 25 | 0 | -22300 | | 15 CAL | -2572 | 1759 | 691 | -3012 | 344 | -410 | 1069 | -3660 | 70 | -238 | 51 | 14 | -1064 | -7712 | 4244 | 1742 | -951 | 10 | 20 | 4 | 24 | 39 | 0 | -9539 | | 16 STM | 794 | -726 | 797 | -2126 | 409 | 115 | 726 | 1328 | 49 | 91 | 26 | - 7 | 218 | -1771 | -2959 | -9252 | 1269 | 12 | -410 | 3 | 87 | 417 | 0 | -10895 | | 17 CHS | 2398 | 857 | | -18143 | -418 | -57 | -1448 | 4235 | -20 | 429 | 75 | -341 | 360 | -1978 | -121 | -3669 | 10351 | 31 | 98 | 9 | -174 | 327 | 0 | -6927 | | 18 FAU | -1628 | 181 | 174 | 433 | 144 | 87 | 190 | 2427 | -3183 | -290 | 91 | 9 | 39 | 69 | 9 | 23 | 45 | 7997 | 1865 | -2147 | 1501 | -122 | 0 | 7915 | | 19 STA | -2425 | -1873 | -194 | 1129 | -1037 | -2852 | 1161 | 7352 | 1109 | 9672 | -82 | 6 | 35 | -265 | 30 | 127 | 234 | 3655 | -1823 | | -22334 | -147 | 0 | -8989 | | 20 CL/JF | -1618 | 428 | 3035 | 352 | 171 | 416 | 174 | 3422 | 5547 | 1233 | -500 | 238 | 329 | 223 | 3 | 3 | 9 | 754 | 23 | 7053 | -516 | -296 | 0 | 20483 | | 21 SP/FB | -2777 | -804 | -660 | -538 | -2156 | 351 | -243 | 11371 | 782 | 3853 | 37 | 5 | 20 | 69 | 34 | -467 | 206 | 1889 | -7343 | -2799 | -16024 | -5966 | 0 | -21161 | | 22 KGEO | -289 | 88 | 166 | 641 | 142 | 298 | 259 | 1674 | 99 | 926 | 2 | 0 | 14 | -431 | 57 | -23 | 1837 | -137 | -270 | 7 | -3744 | -2393 | 0 | -1077 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | -6769 | | -55213 | | 44087 | | 28240 | | -16775 | | -3809 | | -16047 | | -4683 | | 727 | | -4199 | | -30127 | | 0 | | | | | 42673 | | -50085 | | -8183 | | -43379 | | -26086 | | -2582 | | -28849 | | -10028 | | 19931 | | 13457 | | -8052 | | -165752 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Ratio (Est/Obs) Motorized Person | | DESTI | NATION | | | | | | | | | | | | | | | | | | | | | | | |----------|-------|--------|--------|--------|--------|--------|--------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.15 | 1.12 | 0.56 | 0.71 | 1.81 | 0.60 | 0.66 | 0.68 | 0.16 | 0.32 | 1.68 | 85.42 | 0.54 | 0.49 | 0.38 | 0.16 | 0.24 | 0.67 | 0.28 | 52.19 | 0.60 | 0.09 | <br> 0 | 0.92 | | 2 DC NC | 1.06 | 0.88 | 0.83 | 1.08 | 2.00 | 1.22 | 1.67 | 1.19 | 0.28 | 0.80 | 0.63 | 0.36 | 2.18 | 0.95 | 0.29 | 149.87 | 0.91 | 175.11 | 0.53 | 59.61 | 0.36 | 14.87 | o j | 0.97 | | 3 MTG | 1.04 | 0.99 | 0.97 | 1.44 | 1.08 | 0.96 | 1.02 | 0.94 | 0.40 | 0.50 | 1.09 | 1.26 | 1.27 | 1.14 | 1.31 | 296.58 | 0.85 | 406.11 | 0.40 | 0.83 | 0.28 | 33.05 | 0 j | 1.00 | | 4 PG | 0.98 | 1.39 | 0.97 | 0.95 | 2.43 | 1.30 | 2.08 | 1.39 | 0.34 | 0.87 | 1.63 | 0.18 | 1.04 | 0.87 | 0.46 | 4.12 | 0.74 | 196.85 | 599.17 | 79.44 | 374.26 | 0.90 | 0 | 1.00 | | 5 ARLCR | 0.99 | 1.03 | 0.74 | 0.90 | 2.19 | 1.47 | 2.02 | 0.89 | 1.28 | 0.19 | 49.12 | 9.79 | 0.24 | 0.67 | 17.23 | 11.03 | 65.14 | 37.91 | 0.04 | 12.98 | 50.32 | 3.29 | 0 | 1.13 | | 6 ARNCR | 0.82 | 1.07 | 0.89 | 1.37 | 1.81 | 0.83 | 1.26 | 1.13 | 0.83 | 1.48 | 1.74 | 23.87 | 0.33 | 0.61 | 0.41 | 33.60 | 0.41 | 1.71 | 0.24 | 41.08 | 291.16 | 11.98 | 0 | 0.97 | | 7 ALX | 0.78 | 1.06 | 1.19 | 1.45 | 1.67 | 1.37 | 0.85 | 1.27 | 0.86 | 1.78 | 0.28 | 19.00 | 0.22 | 0.30 | 73.35 | 0.16 | 0.88 | 0.52 | 1.95 | 30.53 | 388.22 | 20.72 | 0 | 1.01 | | 8 FFX | 0.90 | 1.39 | 1.15 | 1.96 | 1.01 | 1.08 | 1.23 | 0.96 | 0.95 | 0.83 | 0.69 | 113.59 | 0.36 | 1.67 | 0.30 | 1.42 | 1.39 | 1.61 | 1.35 | 0.35 | 2.60 | 2.30 | 0 | 0.98 | | 9 LDN | 1.01 | 2.04 | 1.37 | 3.11 | 2.29 | 1.28 | 1.54 | 0.92 | 0.98 | 1.30 | 3.91 | 3.30 | 494.84 | 0.77 | 20.36 | 47.37 | 252.69 | 0.87 | 0.73 | 3.32 | 549.10 | 16.86 | 0 | 1.01 | | 10 PW | 1.47 | 0.90 | 1.60 | 1.45 | 1.09 | 0.98 | 1.09 | 0.89 | 1.22 | 0.97 | 312.71 | 23.26 | 233.43 | 517.96 | 56.49 | 0.16 | 1.07 | 1.45 | 1.65 | 459.49 | 4.09 | 0.87 | 0 | 0.99 | | 11 FRD | 1.06 | 0.80 | 1.07 | 0.73 | 1.51 | 3.04 | 0.77 | 3.89 | 2.70 | 0.54 | 0.95 | 0.93 | 1.37 | 1.06 | 40.26 | 23.28 | 116.55 | 90.70 | 34.89 | 2.58 | 31.78 | 1.86 | 0 | 1.00 | | 12 CAR | 1.88 | 1.62 | 1.38 | 0.52 | 0.58 | 513.16 | 1.02 | 7.67 | 7.44 | 44.70 | 2.02 | 1.00 | 0.77 | 0.39 | 25.42 | 9.99 | 62.93 | 15.93 | 7.82 | 324.39 | 7.40 | 0.64 | 0 | 1.02 | | 13 HOW | 0.97 | 1.78 | 1.39 | 0.88 | 2.89 | 0.97 | 0.46 | 1.44 | 1.26 | 205.03 | 3.69 | 1.31 | 0.94 | 1.23 | 152.20 | 154.26 | 0.53 | 0.06 | 32.09 | 0.86 | 29.80 | 5.02 | 0 | 1.00 | | 14 AAR | 0.85 | 1.22 | 0.97 | 0.78 | 0.68 | 1.42 | 1.71 | | 559.35 | 0.74 | 2.03 | 0.21 | 1.17 | 0.99 | 0.98 | 2.30 | 1.55 | 62.59 | 0.26 | 0.68 | 92.95 | | 0 | 0.98 | | 15 CAL | 0.67 | 1.73 | 1.37 | 0.79 | 2.44 | 0.77 | 5.20 | 0.50 | 70.49 | 0.34 | 50.98 | 13.96 | 0.32 | 0.48 | 1.02 | 1.12 | 0.86 | 9.54 | 20.11 | 4.03 | 23.79 | 39.17 | 0 | 0.96 | | 16 STM | 1.29 | 0.77 | 2.73 | | 409.35 | 1.15 | 2.94 | 2.02 | 49.05 | 91.33 | 26.28 | 6.59 | | 0.38 | 0.80 | 0.97 | 1.06 | 11.64 | 0.11 | 2.87 | | 417.42 | 0 | 0.97 | | 17 CHS | 1.20 | 1.10 | 1.07 | 0.57 | 0.79 | 0.98 | 0.73 | 1.64 | 0.92 | 428.82 | 75.01 | 0.06 | | 0.53 | 0.97 | 0.71 | 1.03 | 31.32 | 97.50 | 9.22 | 0.40 | 1.35 | 0 | 0.98 | | 18 FAU | 0.45 | 1.31 | | 432.53 | 1.67 | 1.10 | 1.44 | 1.19 | 0.55 | 0.98 | 90.77 | 9.37 | 39.40 | 69.30 | 8.94 | 22.91 | 44.92 | 1.09 | 3.01 | 0.19 | 8.00 | 0.32 | 0 | 1.06 | | 19 STA | 0.57 | 0.49 | 0.88 | 9.61 | 0.45 | 0.47 | 1.90 | | 108.69 | 1.41 | 0.36 | 5.95 | | 0.33 | 29.53 | | 234.32 | 31.96 | 0.99 | 0.13 | 0.66 | 0.87 | 0 | 0.97 | | 20 CL/JF | 0.30 | 428.18 | | 351.52 | 171.49 | 415.52 | 173.85 | 1.77 | 1.41 | 16.69 | 0.92 | 237.51 | 2.39 | 223.44 | 3.12 | 2.67 | 9.25 | 2.92 | 22.72 | 1.07 | 0.04 | 0.00 | 0 | 1.16 | | 21 SP/FB | 0.36 | 0.46 | 0.39 | 0.47 | 0.20 | 1.31 | 0.85 | | 781.91 | 1.38 | 36.81 | 4.92 | 20.39 | 69.46 | 34.08 | 0.24 | 205.90 | 8.32 | 0.79 | 0.02 | 0.94 | 0.12 | 0 | 0.94 | | 22 KGEO | 0.70 | 1.27 | 165.77 | 640.81 | 142.10 | 297.52 | 258.58 | 3.97 | 99.14 | 1.59 | 1.56 | 0.41 | 14.13 | 0.12 | 57.38 | 0.95 | 2.15 | 0.68 | 0.94 | 6.74 | 0.53 | 0.92 | 0 | 0.98 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 0.99 | | 0.98 | | 1.40 | | 1.07 | | 0.97 | | 0.99 | | 0.98 | | 0.98 | | 1.00 | | 0.98 | | 0.91 | | 0 | | | | | 1.04 | | 0.97 | | 0.99 | | 0.99 | | 0.97 | | 0.99 | | 0.98 | | 0.97 | | 1.18 | | 1.12 | | 0.81 | | 0.99 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Est Auto Occ. | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|--------|--------|--------|--------|--------|------|--------|------|--------|------|--------|------|--------|------|--------|------|--------|------|--------|------|------|----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | ======== | | | ====== | ====== | ====== | ====== | | | | | | ====== | | | | | | | | | | | | ====== | | 1 DC CR | 1.28 | 1.37 | 1.34 | 1.16 | 1.18 | 1.34 | 1.40 | 1.30 | 1.47 | 1.23 | 1.82 | 1.88 | 1.24 | 1.31 | 1.38 | 1.95 | 1.24 | 1.83 | 1.63 | 2.51 | 2.03 | 2.92 | 0 | 1.30 | | 2 DC NC | 1.45 | 1.50 | 1.45 | 1.32 | 1.39 | 1.52 | 1.57 | 1.47 | 1.51 | 1.36 | 1.68 | 1.85 | 1.37 | 1.38 | 1.41 | 1.78 | 1.32 | 1.99 | 1.79 | 2.74 | 2.15 | 2.92 | 0 | 1.46 | | 3 MTG | 1.14 | 1.35 | 1.45 | 1.39 | 1.18 | 1.27 | 1.37 | 1.36 | 1.50 | 1.66 | 1.51 | 1.57 | 1.43 | 1.43 | 1.57 | 1.38 | 1.52 | 2.03 | 1.97 | 1.74 | 1.94 | 1.98 | 0 | 1.42 | | 4 PG | 1.18 | 1.36 | 1.44 | 1.40 | 1.20 | 1.31 | 1.48 | 1.49 | 1.65 | 1.75 | 1.78 | 1.95 | 1.43 | 1.42 | 1.48 | 1.43 | 1.44 | 2.38 | 2.04 | 2.93 | 2.21 | 1.75 | 0 | 1.39 | | 5 ARLCR | 1.15 | 1.23 | 1.25 | 1.13 | 1.24 | 1.32 | 1.38 | 1.33 | 1.48 | 1.33 | 1.71 | 1.93 | 1.32 | 1.38 | 1.44 | 1.98 | 1.28 | 1.67 | 1.52 | 2.40 | 1.88 | 2.38 | 0 | 1.29 | | 6 ARNCR | 1.23 | 1.37 | 1.31 | 1.26 | 1.38 | 1.43 | 1.45 | 1.39 | 1.50 | 1.46 | 1.75 | 2.47 | 1.38 | 1.41 | 1.58 | 1.87 | 1.36 | 1.75 | 1.65 | 2.50 | 1.84 | 2.31 | 0 | 1.40 | | 7 ALX | 1.19 | 1.32 | 1.28 | 1.27 | 1.28 | 1.36 | 1.47 | 1.38 | 1.55 | 1.50 | 2.00 | 2.91 | 1.56 | 1.52 | 1.55 | 1.62 | 1.37 | 1.87 | 1.68 | 2.50 | 1.84 | 2.02 | 0 | 1.40 | | 8 FFX | 1.15 | 1.30 | 1.26 | 1.34 | 1.22 | 1.32 | 1.42 | 1.43 | 1.35 | 1.42 | 1.58 | 2.27 | 1.44 | 1.47 | 1.69 | 1.37 | 1.50 | 1.55 | 1.67 | 1.64 | 1.71 | 1.74 | 0 | 1.40 | | 9 LDN | 1.18 | 1.26 | 1.19 | 1.29 | 1.21 | 1.30 | 1.33 | 1.32 | 1.40 | 1.35 | 1.41 | 1.47 | 1.20 | 1.28 | 1.56 | 1.21 | 1.48 | 1.41 | 1.59 | 1.51 | 1.61 | 1.56 | 0 | 1.37 | | 10 PW | 1.11 | 1.16 | 1.21 | 1.26 | 1.15 | 1.23 | 1.30 | 1.36 | 1.28 | 1.40 | 1.30 | 1.76 | 1.40 | 1.42 | 1.59 | 1.23 | 1.45 | 1.42 | 1.51 | 1.35 | 1.61 | 1.61 | 0 | 1.38 | | 11 FRD | 1.13 | 1.15 | 1.44 | 1.17 | 1.20 | 1.32 | 1.37 | 1.52 | 1.62 | 1.48 | 1.38 | 1.39 | 1.29 | 1.19 | 1.55 | 1.92 | 1.42 | 1.63 | 3.01 | 1.55 | 3.08 | 4.77 | 0 | 1.38 | | 12 CAR | 1.08 | 1.09 | 1.36 | 1.15 | 1.10 | 1.15 | 1.17 | 1.29 | 1.58 | 1.49 | 1.31 | 1.37 | 1.40 | 1.20 | 1.39 | 2.08 | 1.31 | 1.93 | 4.09 | 1.46 | 4.81 | 3.37 | 0 | 1.36 | | 13 HOW | 1.10 | 1.21 | 1.37 | 1.37 | 1.12 | 1.19 | 1.30 | 1.37 | 1.56 | 1.76 | 1.34 | 1.49 | 1.42 | 1.37 | 1.41 | 1.25 | 1.42 | 2.40 | 2.97 | 1.61 | 2.98 | 2.55 | 0 | 1.40 | | 14 AAR | 1.15 | 1.29 | 1.40 | 1.41 | 1.24 | 1.36 | 1.53 | 1.56 | 1.75 | 1.86 | 1.39 | 1.56 | 1.42 | 1.41 | 1.46 | 1.29 | 1.41 | 2.70 | 2.56 | 1.96 | 2.81 | 2.04 | 0 | 1.40 | | 15 CAL | 1.11 | 1.19 | 1.23 | 1.32 | 1.23 | 1.34 | 1.55 | 1.55 | 1.45 | 1.62 | 1.43 | 1.92 | 1.25 | 1.33 | 1.40 | 1.29 | 1.32 | 2.63 | 2.42 | 4.20 | 1.92 | 1.61 | 0 | 1.37 | | 16 STM | 1.11 | 1.15 | 1.15 | 1.27 | 1.23 | 1.31 | 1.65 | 1.54 | 1.45 | 1.48 | 1.63 | 3.25 | 1.21 | 1.20 | 1.35 | 1.31 | 1.42 | 2.07 | 1.87 | 7.76 | 1.69 | 1.64 | 0 | 1.31 | | 17 CHS | 1.11 | 1.18 | 1.23 | 1.28 | 1.23 | 1.35 | 1.56 | 1.60 | 1.69 | 1.74 | 1.77 | 2.60 | 1.29 | 1.24 | 1.36 | 1.34 | 1.38 | 2.55 | 2.13 | 3.84 | 1.84 | 1.69 | 0 | 1.36 | | 18 FAU | 1.19 | 1.21 | 1.24 | 1.33 | 1.20 | 1.22 | 1.20 | 1.29 | 1.26 | 1.33 | 1.36 | 2.27 | 1.68 | 1.89 | 2.27 | 1.36 | 1.60 | 1.40 | 1.37 | 1.38 | 1.37 | 1.31 | 0 | 1.37 | | 19 STA | 1.17 | 1.20 | 1.47 | 1.43 | 1.18 | 1.26 | 1.34 | 1.38 | 1.16 | 1.37 | 1.72 | 4.38 | 2.25 | 1.87 | 1.41 | 1.15 | 1.33 | 1.27 | 1.39 | 1.11 | 1.35 | 1.32 | 0 | 1.38 | | 20 CL/JF | 1.11 | 1.14 | 1.47 | 1.19 | 1.20 | 1.24 | 1.22 | 1.37 | 1.56 | 1.36 | 1.44 | 1.49 | 1.39 | 1.30 | 5.67 | 8.90 | 3.17 | 1.46 | 1.35 | 1.35 | 1.32 | 1.41 | 0 | 1.38 | | 21 SP/FB | 1.21 | 1.20 | 1.85 | 1.49 | 1.26 | 1.33 | 1.41 | 1.46 | 1.17 | 1.39 | 1.87 | 7.13 | 4.01 | 2.67 | 1.35 | 1.20 | 1.21 | 1.21 | 1.33 | 1.13 | 1.37 | 1.25 | 0 | 1.37 | | 22 KGEO | 1.04 | 1.05 | 1.15 | 1.14 | 1.08 | 1.14 | 1.35 | 1.49 | 1.10 | 1.49 | 3.39 | 6.83 | 1.25 | 1.19 | 1.23 | 1.38 | 1.54 | 1.25 | 1.46 | 1.06 | 1.40 | 1.38 | 0 | 1.39 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.23 | ====== | 1.44 | ====== | 1.27 | ====== | 1.44 | ====== | 1.40 | ====== | 1.38 | ====== | 1.42 | ====== | 1.40 | ====== | 1.39 | ====== | 1.40 | ====== | 1.38 | | 0 | ====== | | | | 1.39 | | 1.39 | | 1.37 | | 1.42 | | 1.40 | | 1.37 | | 1.40 | | 1.31 | | 1.40 | | 1.38 | | 1.40 | | 1.40 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Obs Auto Occ. | | DESTIN | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|--------|-------|------|------|-------|------|--------|------|-------|------|--------|-------|------|------|------|--------|------|--------|--------|------|------|------|-------|-------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 1.28 | 1.32 | 1.13 | 1.10 | 1.52 | 1.18 | 1.19 | 1.22 | 1.47 | 2.45 | 0 | 0 | 1.85 | 1.16 | 0 | 1.58 | 1.44 | 0 | 5.61 | 0 | 0 | 1.00 | <br>0 | 1.26 | | 2 DC NC | 1.32 | 1.46 | 1.41 | 1.21 | 1.23 | 1.18 | 1.16 | 1.26 | 1.15 | 1.00 | 921.84 | 1.00 | 1.56 | 1.09 | 1.00 | 0 | 1.17 | 0 | 3.44 | 0 | 1.98 | 0 | 0 j | 1.38 | | 3 MTG | 1.12 | 1.30 | 1.42 | 1.19 | 1.22 | 1.04 | 1.00 | 1.15 | 1.12 | 2.01 | 1.30 | 1.20 | 1.28 | 1.14 | 1.00 | 0 | 1.87 | 0 | 1.32 | 1.00 | 3.00 | 0 | 0 | 1.38 | | 4 PG | 1.16 | 1.29 | 1.35 | 1.45 | 1.00 | 1.29 | 1.51 | 1.09 | 1.16 | 1.00 | 1.34 | 1.25 | 1.39 | 1.32 | 1.35 | 1.80 | 1.50 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.40 | | 5 ARLCR | 1.56 | 1.00 | 1.00 | 1.00 | 1.17 | 1.35 | 1.00 | 1.34 | 0 | 2.22 | 0 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 01' | 799.56 | 0 | 0 | 0 | 0 | 1.36 | | 6 ARNCR | 1.29 | 1.20 | 1.14 | 1.21 | 1.36 | 1.39 | 1.28 | 1.22 | 1.22 | 1.61 | 1.00 | 0 | 1.00 | 1.29 | 1.00 | 0 | 1.00 | 1.00 | 1.25 | 0 | 0 | 0 | 0 | 1.32 | | 7 ALX | 1.15 | 1.28 | 1.15 | 1.27 | 1.24 | 1.27 | 1.31 | 1.31 | 1.36 | 1.08 | 1.00 | 0 | 1.00 | 1.66 | 0 : | 374.95 | 1.28 | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 1.29 | | 8 FFX | 1.16 | 1.21 | 1.12 | 1.01 | 1.14 | 1.23 | 1.31 | 1.42 | 1.28 | 1.33 | 1.00 | 0 | 1.00 | 1.10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.25 | 1.47 | 1.05 | 1.00 | 0 | 1.37 | | 9 LDN | 1.18 | 1.00 | 1.03 | 1.00 | 1.77 | 1.21 | 1.00 | 1.24 | 1.53 | 1.26 | 2.33 | 99.39 | 0 | 1.00 | 0 | 0 | 0 | 1.00 | 1.36 | 1.71 | 0 | 0 | 0 | 1.43 | | 10 PW | 1.32 | 1.09 | 1.30 | 1.44 | 1.40 | 1.30 | 1.43 | 1.27 | 1.10 | 1.53 | 0 | 0 | 0 | 0 | 0 | 1.17 | 1.00 | 1.41 | 1.53 | 0 | 1.26 | 1.37 | 0 | 1.46 | | 11 FRD | 1.00 | 1.06 | 1.28 | 1.06 | 1.00 | 1.00 | 1.00 | 1.00 | 1.08 | 1.00 | 1.37 | 1.57 | 1.24 | 1.58 | 0 | 0 | 0 | 0 | 0 | 1.17 | 0 | 0 | 0 | 1.36 | | 12 CAR | 1.28 | 2.31 | 1.11 | 1.21 | 0 | 0 | 1.00 | 1.00 | 99.39 | 0 | 1.49 | 1.50 | 1.19 | 1.19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.46 | | 13 HOW | 1.18 | 1.03 | 1.20 | 1.19 | 1.00 | 1.35 | 1.00 | 1.00 | 1.00 | 0 | 1.16 | 1.37 | 1.46 | 1.18 | 0 | 0 | 1.00 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 1.39 | | 14 AAR | 1.17 | 1.39 | 1.49 | 1.35 | 1.00 | 1.00 | 1.00 | 1.22 | 0 | 1.00 | 1.00 | 1.42 | 1.38 | 1.40 | 1.11 | 1.00 | 1.00 | 0 | 1.00 | 1.00 | 0 | 0 | 0 | 1.39 | | 15 CAL | 1.12 | 1.12 | 1.68 | 1.20 | 1.00 | 2.00 | 1.00 | 1.42 | 0 | 1.00 | 0 | 0 | 1.00 | 1.27 | 1.50 | 1.12 | 1.60 | 0 | 0 | 0 | 0 | 0 | 0 | 1.42 | | 16 STM | 1.13 | 1.00 | 1.00 | 1.13 | 0 | | 374.95 | 1.00 | 0 | 0 | 0 | 0 | 0 | 3.43 | 1.49 | 1.34 | 1.36 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.34 | | 17 CHS | 1.14 | 1.16 | 1.39 | 1.30 | 1.00 | 1.06 | 1.53 | 1.11 | 1.00 | 0 | 0 | 2.00 | 1.00 | 1.08 | 1.07 | 1.47 | 1.41 | 0 | 0 | 0 | 2.00 | 1.19 | 0 | 1.36 | | 18 FAU | 1.34 | 1.00 | 1.00 | 0 | 1.00 | 1.00 | 1.00 | 1.02 | 1.52 | 1.17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.39 | 1.61 | 2.00 | 1.00 | 1.00 | 0 | 1.32 | | 19 STA | 2.04 | 1.17 | 1.23 | 1.00 | 12.46 | 1.46 | 1.00 | 1.21 | 0 | 1.14 | 1.00 | 0 | 0 | 1.00 | 0 | 0 | 0 | 118.04 | 1.58 | 1.00 | 1.61 | 1.00 | 0 | 1.51 | | 20 CL/JF | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.05 | 1.36 | 1.00 | 1.10 | 0 | 1.00 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.39 | 1.00 | 1.00 | 0 | 1.34 | | 21 SP/FB | 1.00 | 1.26 | 1.00 | 1.00 | 1.00 | 1.00 | 546.17 | 1.00 | 0 | 1.43 | 0 | 0 | 0 | 0 | 0 | 2.00 | 0 | 1.00 | 1.39 | 1.28 | 1.45 | 1.14 | 0 | 1.42 | | 22 KGEO | 1.00 | 1.00 | 0 | 0 | 0 | 0 | 0 | 1.00 | 0 | 1.00 | 0 | 0 | 0 | 1.00 | 0 | 1.29 | 1.00 | 1.00 | 1.34 | 0 | 1.44 | 1.28 | 0 | 1.27 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 1.22 | | 1.40 | = | 1.23 | | 1.30 | = | 1.46 | == | 1.37 | | 1.42 | | 1.46 | | 1.41 | | 1.54 | | 1.47 | == | 0 | | | | | 1.35 | | 1.39 | | 1.30 | | 1.37 | | 1.48 | | 1.50 | | 1.38 | | 1.33 | | 1.36 | | 1.40 | | 1.24 | | 1.39 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Est Pct. Tran | | DESTINA | ATION | | | | | | | | | | | | | | | | | | | | | | | |----------|---------|-------|------|--------|------|--------|------|------|-----|------|-----|---------|------|--------|------|--------|------|--------|-----|----|-----|----|-----|--------| | ORIGIN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | TOTAL | | 1 DC CR | 32.4 | 32.2 | 32.3 | 13.2 | 68.2 | 51.9 | 31.0 | 16.4 | 0.1 | 3.4 | 0 | 0 | 0.5 | 0.2 | 0.5 | 0.0 | 0.1 | 0 | 0 | 0 | 0.4 | 0 | 0 | 31.3 | | 2 DC NC | 54.6 | 20.0 | 26.7 | 11.9 | 63.0 | 44.0 | 24.0 | 12.1 | 0.1 | 3.5 | 0 | 0 | 0.5 | 0.2 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 30.2 | | 3 MTG | 46.3 | 13.1 | 3.9 | 2.7 | 44.1 | 22.7 | 10.7 | 3.3 | 0.0 | 7.6 | 0.0 | 0 | 0.1 | 0.0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.0 | | 4 PG | 41.5 | 12.3 | 7.8 | 2.0 | 43.8 | 24.7 | 6.3 | 3.2 | 0 | 5.9 | 0 | 0 | 0.3 | 0.1 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.6 | | 5 ARLCR | 76.2 | 21.6 | 16.9 | 3.7 | 8.9 | 17.0 | 13.2 | 4.7 | 0.0 | 1.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21.8 | | 6 ARNCR | 70.8 | 18.3 | 14.1 | 3.7 | 17.4 | 8.1 | 9.9 | 3.9 | 0.0 | 1.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16.7 | | 7 ALX | 59.4 | 14.6 | 13.2 | 1.7 | 20.7 | 13.8 | 4.2 | 3.0 | 0.0 | 1.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.8 | | 8 FFX | 34.4 | 9.2 | 5.5 | 1.4 | 22.4 | 11.2 | 5.0 | 1.0 | 0.1 | 1.0 | 0.7 | 0 | 3.7 | 0.7 | 5.5 | 3.7 | 2.0 | 0 | 0.0 | 0 | 0.3 | 0 | 0 | 3.6 | | 9 LDN | 29.1 | 7.7 | 2.5 | 0.6 | 23.3 | 11.4 | 2.8 | 0.5 | 0.2 | 1.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | | 10 PW | 48.1 | 26.3 | 16.8 | 8.2 | 43.9 | 28.2 | 12.5 | 2.3 | 1.0 | 0.3 | 2.6 | 0 | 22.3 | 5.5 | 26.4 | 17.5 | 14.9 | 0 | 0.0 | 0 | 0.3 | 0 | 0 | 3.3 | | 11 FRD | 41.2 | 8.5 | 1.3 | 0.7 | 20.8 | 7.9 | 3.1 | 1.9 | 0 | 1.4 | 0.4 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | | 12 CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0 | | 13 HOW | 55.3 | 19.8 | 4.0 | 1.3 | 57.4 | 35.0 | 13.9 | 6.1 | 0 | 34.2 | 0 | 0 | 0.1 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 2.2 | | 14 AAR | 40.7 | 11.6 | 4.0 | 0.7 | 40.5 | 19.5 | 4.7 | 5.9 | 0 | 16.6 | 0 | 0 | 0.1 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 1.3 | | 15 CAL | 18.3 | 8.5 | 4.0 | 0.4 | 30.0 | 11.8 | 2.1 | 1.1 | 0 | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | | 16 STM | 11.7 | 5.3 | 3.5 | 0.2 | 18.4 | 7.5 | 1.0 | 1.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.1 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | | 17 CHS | 35.5 | 15.5 | 10.4 | 0.6 | 37.3 | 18.1 | 2.9 | 1.4 | 0 | 7.8 | 0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 j | 2.4 | | 18 FAU | 10.2 | 6.7 | 1.7 | 0.5 | 13.5 | 6.7 | 4.5 | 0.7 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.3 | | 19 STA | 38.5 | 16.7 | 6.9 | 1.0 | 42.7 | 18.3 | 5.3 | 2.1 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | o i | 1.0 | | 20 CL/JF | 21.7 | 17.8 | 1.4 | 1.8 | 26.4 | 13.2 | 5.8 | 2.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.4 | | 21 SP/FB | 54.5 | 32.1 | 6.4 | 0.2 | 57.9 | 29.7 | 13.3 | 6.4 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 j | 1.0 | | 22 KGEO | 4.3 | 2.9 | 0.8 | 0.1 | 6.5 | 4.5 | 2.5 | 2.3 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 j | 0.3 | | 23 EXTL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TOTAL | 46.2 | | 5.3 | ====== | 31.1 | ====== | 7.0 | | 0.2 | | 0.3 | :=====: | 0.1 | .===== | 0.0 | ====== | 0.3 | ====== | 0.0 | | 0.0 | | 0 | ====== | | | | 17.2 | | 2.6 | | 15.4 | | 1.6 | | 0.4 | | 0 | | 0.0 | | 0.1 | | 0 | | 0 | | 0 | | 6.3 | Year: 2007 Estimate/Observed Trips Purpose: Total Internal Trips MODE: Obs Pct. Tran DESTINATION 5 7 9 3 4 6 8 10 11 12 13 14 15 16 17 18 19 21 22 23 | TOTAL 20 ORIGIN 1 \_\_\_\_\_ 1 DC CR 43.1 32.5 53.9 40.7 62.0 42.4 27.8 26.8 12.8 39.0 100.0 43.0 24.6 100.0 48.9 100.0 25.6 100.0 39.2 2 DC NC 49.4 17.9 9.9 20.6 39.2 22.0 28.2 10.7 16.5 23.3 22.0 39.0 25.0 59.9 11.7 2.2 39.5 24.1 34.8 0.7 25.3 59.3 0 0 4 PG 48.2 12.6 6.0 2.6 17.7 8.4 6.0 0 29.5 1.9 0.8 0 0 0 6.9 28.8 5 ARLCR 79.6 31.3 48.4 13.4 30.7 16.6 9.6 100.0 4.9 30.2 0 Ω 6 ARNCR 50.3 16.7 18.8 31.3 20.6 4.5 3.9 4.3 0 13.2 23.1 7 ALX 48.6 4.3 0 34.4 11.5 2.5 1.9 0 0 0 9.7 8 FFX 44.2 14.0 5.4 8.2 29.4 13.8 0.3 3.4 0.4 0 0 3.8 9 LDN 32.2 18.1 2.4 17.9 5.8 18.5 10 PW 29.8 22.4 62.1 0 10.8 21.6 2.3 0.9 0 0 2.2 0 19.3 11 FRD 73.3 5.2 9.1 58.1 Ω 0.3 Ω Ω 1 5 12 CAR 42.4 38.4 0 0 100.0 0 0 0.2 0.5 13 HOW 59.2 26.7 0.8 0.6 41.1 56.0 26.8 0 0.1 2.0 14 AAR 59 8 11.0 11 8 6.6 53.6 3.3 13 1 Ω 2 1 Ω Ω 15 CAL 39.5 0 0 0 20.2 0 0 0 0 16 STM 16.9 0 13.3 0 0 0 0 0.2 0 0 0 0.6 17 CHS 7.9 13.1 32.9 0 0.8 0 0 1.3 18 FAU 63.7 0 19 STA 40.0 20.0 0 13.8 66.6 0 3.7 0 0 0.7 2.6 20 CL/JF 76.8 60.6 0 0 0 Ω Ω 2.2 21 SP/FB 55.3 15.5 0 66.7 32.2 0 22 KGEO 41.2 0 0 0 0 15.6 1.3 23 EXTL 0 0 0 0 0 0 0 0 0 0 0 TOTAL 30.8 5.5 0.3 0.2 0.3 0.6 0.3 0.4 0 | 17.0 4.1 12.7 1.0 0.3 0.2 0.4 0.2 0.2 0.2 6.1 # Appendix C Year 2007 mode choice output vs. targets $Ref: O:\\ model\_dev\\ nest\_log\\ calibms\_2011-02sim\\ newSegSummSpurps2007.xlsx, targets i:\\ ateam\\ docum\\ FY11\\ Ver2.3\\ modelDoc\\ 01\_calib\\ newSegSummSpurps2007.xlsx, targets is the first of first$ Appendix C. Year 2007 mode choice output vs. targets | | | HBW HBS | | НВО | | NHW | , | NHO | | | | |---------------------------|------------------|------------|------------|--------|--------|--------|-----------|------------|------------|-----------|---------------| | Seg | Path # | Target | Model | Target | Model | Target | Model | Target | Model | Target | Model | | | DR ALONE | 16,449 | 16,478 | 10,146 | 10,164 | 27,305 | 27,311 | 38,952 | 38,954 | 15,768 | 15,781 | | | SR2 | 1,943 | 1,946 | 7,350 | 7,363 | 30,364 | 30,371 | 9,004 | 9,004 | 13,005 | 13,016 | | RE | SR3+ | 106 | 106 | 4,712 | 4,720 | 23,077 | 23,082 | 277 | 277 | 8,899 | 8,906 | | CORE / URBAN-DC CORE | WK-CR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 0 | | ပ္က | WK-BUS | 43,051 | 43,151 | 1,502 | 1,505 | 12,653 | 12,657 | 4,810 | 4,836 | 2,883 | 2,904 | | Ιż | WK-BU/MR | 16,438 | 16,501 | 279 | 279 | 3,640 | 3,639 | 2,342 | 2,222 | 898 | 894 | | BA | WK-MR | 51,755 | 51,555 | 664 | 665 | 14,539 | 14,543 | 20,682 | 20,816 | 4,423 | 4,455 | | R | PNR-CR | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E/ | KNR-CR | 15 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | S. | PNR-BUS | 964 | 967 | 0 | 4 | 72 | 72 | 55 | 55 | 61 | 61 | | S | KNR-BUS | 207 | 208 | 0 | 0 | 147 | 147 | 99 | 100 | 210 | 210 | | (1) DC | PNR-BU/MR | 1,011 | 1,010 | 0 | 0 | 47 | 47 | 119 | 118 | 75 | 75 | | Ξ | KNR-BU/MR | 332 | 332 | 0 | 0 | 52 | 52 | 225 | 219 | 45 | 45 | | | PNR-MR | 5,461 | 5,473 | 57 | 53 | 1,274 | 1,274 | 761 | 760 | 497 | 497 | | | KNR-MR | 1,922 | 1,930 | 14 | 14 | 269 | 269 | 723 | 728 | 300 | 300 | | | DR ALONE | 1,202 | 1,276 | 776 | 780 | 1,271 | 1,280 | 2,677 | 2,674 | 0 | 13 | | l | SR2 | 139 | 148 | 601 | 604 | 1,500 | 1,510 | 574 | 574 | 0 | 27 | | CORE | SR3+ | 6 | 6 | 409 | 411 | 1,218 | 1,227 | 20 | 20 | 0 | 193 | | ဗ | WK-CR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ۸ | WK-BUS | 503 | 664 | 0 | 5 | 50 | 49 | 0 | 249 | 10 | 15 | | Ż | WK-BU/MR | 2,410 | 2,755 | 0 | 10 | 555 | 527 | 681 | 578 | 255 | 225 | | ₹B/ | WK-MR | 6,734 | 6,039 | 145 | 120 | 2,448 | 2,212 | 3,135 | 3,003 | 1,410 | 1,062 | | 5 | PNR-CR | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ä. | KNR-CR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | (2) DC CORE / URBAN-VA | PNR-BUS | 0 | 21 | 0 | 0 | 0 | 5 | 0 | 1 | 0 | 0 | | ပွ | KNR-BUS | 0 | 1 | 0 | 0 | 8 | 8 | 0 | 0 | 0 | 2 | | ا<br>ا | PNR-BU/MR | 154 | 164 | 0 | 0 | 0 | 12 | 8 | 8 | 0 | 0 | | ۳ | KNR-BU/MR | 16 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | PNR-MR<br>KNR-MR | 503<br>155 | 564<br>177 | 0 | 3<br>7 | 81 | 237<br>76 | 113<br>344 | 111<br>342 | 14<br>191 | 11 | | | DR ALONE | 8,458 | 9,400 | 34,523 | 34,563 | 78,468 | 78,541 | 47,140 | 47,353 | 38,543 | 163<br>38,621 | | | SR2 | 949 | 1,055 | 25,040 | 25,069 | 86,825 | 86,906 | 11,341 | 11,392 | 33,815 | 33,883 | | l _ | SR3+ | 35 | 39 | 16,044 | 16,063 | 65,679 | 65,740 | 338 | 340 | 21,428 | 21,471 | | ¥ | WK-CR | 0 | 0 | 0 | 10,000 | 0 | 58 | 0 | 215 | 0 | 17 | | 1 24 | WK-BUS | 24,338 | 28,802 | 3,132 | 3,132 | 24,891 | 24,876 | 7,291 | 7,265 | 4,780 | 4,782 | | ž | WK-BU/MR | 14,825 | 16,380 | 1,167 | 1,165 | 5,167 | 5,164 | 2,810 | 2,785 | 971 | 971 | | BA | WK-MR | 27,917 | 20,293 | 2,365 | 2,360 | 10,030 | 10,016 | 13,087 | 13,028 | 4,667 | 4,668 | | <del>"</del> | PNR-CR | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CORE / URBAN-URBAN | KNR-CR | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ő | PNR-BUS | 225 | 281 | 0 | 16 | 133 | 133 | 26 | 26 | 107 | 107 | | 0 00 | KNR-BUS | 98 | 123 | 37 | 37 | 189 | 189 | 231 | 232 | 200 | 200 | | _ | PNR-BU/MR | 65 | 80 | 50 | 45 | 241 | 241 | 23 | 23 | 125 | 125 | | (3) | KNR-BU/MR | 430 | 530 | 49 | 49 | 107 | 107 | 250 | 251 | 215 | 215 | | | PNR-MR | 1,636 | 1,977 | 105 | 94 | 764 | 765 | 635 | 638 | 28 | 28 | | | KNR-MR | 1,482 | 1,821 | 36 | 36 | 392 | 392 | 639 | 642 | 442 | 443 | | | DR ALONE | 21,079 | 24,367 | 17,425 | 17,735 | 23,158 | 23,433 | 36,661 | 37,302 | 20,067 | 20,758 | | | SR2 | 2,233 | 2,581 | 13,721 | 13,965 | 27,231 | 27,555 | 11,266 | 11,473 | 13,077 | 13,527 | | œ | SR3+ | 38 | 44 | 9,549 | 9,719 | 22,139 | 22,402 | 334 | 340 | 6,272 | 6,488 | | ᄬ | WK-CR | 64 | 73 | 21 | 20 | 134 | 134 | 0 | 234 | 235 | 209 | | ρ | WK-BUS | 3,667 | 4,150 | 682 | 651 | 1,273 | 1,288 | 322 | 352 | 427 | 453 | | (4) DC CORE / URBAN-OTHER | WK-BU/MR | 7,973 | 9,025 | 280 | 267 | 2,060 | 2,083 | 1,410 | 1,546 | 574 | 607 | | RB | WK-MR | 7,667 | 2,864 | 255 | 243 | 1,181 | 1,158 | 3,992 | 3,253 | 1,123 | 1,152 | | ٦ / | PNR-CR | 23 | 33 | 0 | 0 | 0 | 0 | 0 | 2 | 15 | 10 | | RE | KNR-CR | 10 | 14 | 0 | 0 | 24 | 23 | 0 | 0 | 130 | 114 | | Ö | PNR-BUS | 16 | 23 | 0 | 3 | 49 | 45 | 67 | 75 | 0 | 4 | | ŏ | KNR-BUS | 83 | 120 | 0 | 3 | 0 | 10 | 46 | 50 | 42 | 51 | | 4) [ | PNR-BU/MR | 189 | 275 | 0 | 9 | 0 | 15 | 76 | 85 | 0 | 3 | | ` ا | KNR-BU/MR | 412 | 596 | 0 | 24 | 75 | 73 | 39 | 43 | 55 | 66 | | | PNR-MR | 391 | 553 | 0 | 10 | 117 | 107 | 500 | 493 | 16 | 15 | | <u> </u> | KNR-MR | 443 | 625 | 0 | 26 | 115 | 111 | 181 | 190 | 64 | 77 | | ۷ż۱ | DR ALONE | 5,707 | 5,936 | 374 | 381 | 1,244 | 1,257 | 1,264 | 1,269 | 702 | 710 | Appendix C. Year 2007 mode choice output vs. targets | | HBW | | HBS | 3 | НВО | 1 | NHW | 1 | NHO | | | |----------------------|------------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|------------------|------------------| | Seg | Path # | Target | Model | Target | Model | Target | Model | Target | Model | Target | Model | | | SR2 | 680 | 708 | 265 | 270 | 1,375 | 1,390 | 311 | 312 | 501 | 507 | | | SR3+ | 36 | 37 | 167 | 170 | 1,039 | 1,050 | 8 | 8 | 299 | 302 | | | WK-CR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | WK-BUS | 1,387 | 1,559 | 25 | 24 | 374 | 394 | 136 | 137 | 50 | 51 | | | WK-BU/MR | 4,005 | 4,521 | 78 | 72 | 656 | 684 | 272 | 269 | 22 | 22 | | | WK-MR | 10,454 | 9,171 | 99 | 92 | 1,783 | 1,689 | 1,226 | 1,238 | 261 | 264 | | | PNR-CR | 0 | 81 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | KNR-CR | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | PNR-BUS | 24 | 25 | 0 | 1 | 0 | 49 | 0 | 4 | 0 | 3 | | | KNR-BUS | 102 | 109 | 0 | 0 | 0 | 5 | 0 | 0 | 0<br>34 | 0<br>33 | | | PNR-BU/MR<br>KNR-BU/MR | 218<br>197 | 217<br>200 | 0 | 0 | 165<br>24 | 144<br>22 | 63<br>0 | 61<br>0 | 0 | 0 | | | PNR-MR | 3,028 | 3,200 | 0 | 4 | 397 | 384 | 289 | 288 | 49 | 48 | | | KNR-MR | 961 | 1,024 | 0 | 10 | 94 | 95 | 103 | 103 | 51 | 51 | | | DR ALONE | 642 | 655 | 20 | 21 | 137 | 138 | 103 | 103 | 3 | 3 | | | SR2 | 67 | 68 | 17 | 18 | 163 | 164 | 30 | 30 | 8 | 8 | | | SR3+ | 3 | 3 | 22 | 23 | 133 | 134 | 358 | 359 | 92 | 95 | | ш | WK-CR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | OR | WK-BUS | 24 | 25 | 0 | 2 | 31 | 29 | 0 | 5 | 0 | 1 | | O 4 | WK-BU/MR | 302 | 325 | 0 | 5 | 65 | 60 | 42 | 36 | 0 | 2 | | \ <u>}</u> | WK-MR | 787 | 731 | 32 | 21 | 87 | 79 | 150 | 138 | 35 | 29 | | MA . | PNR-CR | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | (6) MD URBAN-VA CORE | KNR-CR | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ٥ | PNR-BUS | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ⊗ | KNR-BUS | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ۳ | PNR-BU/MR | 30 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | KNR-BU/MR | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | PNR-MR | 378 | 379 | 0 | 2 | 0 | 5 | 0 | 3 | 0 | 1 | | | KNR-MR<br>DR ALONE | 232 | 234<br>18,295 | 0<br>14,332 | 3<br>14,355 | 0<br>28,189 | 9 | 20,911 | 10<br>20,935 | 15 256 | 15,368 | | | SR2 | 18,052<br>2,063 | 2,091 | 10,313 | 10,330 | 31,330 | 28,201<br>31,343 | 5,904 | 5,911 | 15,356<br>12,452 | 12,462 | | | SR3+ | 2,003 | 99 | 6,562 | 6,573 | 23,814 | 23,824 | 232 | 232 | 8,528 | 8,535 | | | WK-CR | 0 | 0 | 0,302 | 0,575 | 0 | 4 | 0 | 8 | 0,020 | 0,000 | | A | WK-BUS | 6,421 | 6,539 | 690 | 640 | 3,496 | 3,501 | 694 | 693 | 534 | 529 | | RB | WK-BU/MR | 2,864 | 2,911 | 118 | 109 | 620 | 620 | 288 | 284 | 80 | 79 | | MD URBAN-URBAN | WK-MR | 4,729 | 4,389 | 92 | 85 | 2,179 | 2,140 | 882 | 882 | 187 | 185 | | BA | PNR-CR | 0 | 19 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | R | KNR-CR | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ₽ | PNR-BUS | 23 | 23 | 0 | 7 | 143 | 143 | 2 | 2 | 160 | 148 | | <u> </u> | KNR-BUS | 61 | 63 | 0 | 6 | 39 | 37 | 46 | 46 | 23 | 23 | | | PNR-BU/MR | 60 | 60 | 0 | 3 | 23 | 23 | 41 | 41 | 0 | 1 | | | KNR-BU/MR | 173 | 179 | 0 | 4 | 0 | 4 | 53 | 53 | 0 | 0 | | | PNR-MR | 584 | 585 | 0 | 11 | 122 | 122 | 47 | 47 | 0 | 18 | | | KNR-MR | 494 | 510 | 13.060 | 32 | 34 | 32 | 31 | 31 | 30 | 30<br>45 734 | | | DR ALONE<br>SR2 | 18,781<br>2,206 | 19,037<br>2,236 | 13,069<br>9,659 | 13,135<br>9,708 | 20,382<br>23,137 | 20,438<br>23,201 | 23,743<br>4,931 | 23,797<br>4,942 | 15,662<br>13,649 | 15,721<br>13,700 | | | SR3+ | 84 | 85 | 6,347 | 6,379 | 18,001 | 18,051 | 138 | 138 | 9,239 | 9,274 | | | WK-CR | 27 | 27 | 0,047 | 1 | 0 | 10,001 | 0 | 19 | 19 | 19 | | 띪 | WK-BUS | 3,003 | 3,016 | 288 | 264 | 1,519 | 1,491 | 1,363 | 1,352 | 891 | 876 | | ΙĔ | WK-BU/MR | 1,411 | 1,418 | 0 | 13 | 191 | 188 | 157 | 156 | 60 | 59 | | ż | WK-MR | 1,259 | 1,116 | 25 | 23 | 317 | 310 | 321 | 319 | 26 | 26 | | (8) MD URBAN-OTHER | PNR-CR | 0 | 7 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | | 품 | KNR-CR | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ₽ | PNR-BUS | 35 | 35 | 0 | 1 | 604 | 556 | 0 | 1 | 0 | 1 | | (8) | KNR-BUS | 57 | 59 | 77 | 69 | 17 | 16 | 0 | 1 | 60 | 55 | | | PNR-BU/MR | 45 | 46 | 0 | 4 | 0 | 38 | 0 | 1 | 0 | 2 | | | KNR-BU/MR | 72 | 75 | 0 | 3 | 11 | 11 | 0 | 2 | 0 | 1 | | | PNR-MR | 124 | 124 | 0 | 8 | 0 | 38 | 22 | 20 | 0 | 16 | | | KNR-MR | 21 | 22 | 0 | 6 | 0 | 3 | 38 | 35 | 0 | 6 | | E/<br>URB<br>AN- | DR ALONE | 3,754 | 4,521 | 944 | 957 | 2,260 | 2,320 | 4,039 | 4,048 | 0 | 1 | | □⊃¤ | SR2 | 430 | 518 | 666 | 675 | 2,374 | 2,438 | 996 | 998 | 0 | 10 | Appendix C. Year 2007 mode choice output vs. targets | | | нви | V | HBS | | | NHW | , | NHO | | | |------------------------------|------------------------|------------|------------|---------|---------|----------|----------|----------|----------|-----------|----------| | Seg | Path # | Target | Model | Target | Model | Target | Model | Target | Model | Target | Model | | | SR3+ | 24 | 29 | 412 | 418 | 1,695 | 1,741 | 26 | 26 | 0 | 385 | | | WK-CR | 4 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | WK-BUS | 2,502 | 4,212 | 0 | 8 | 251 | 292 | 0 | 194 | 40 | 51 | | | WK-BU/MR | 9,581 | 14,480 | 0 | 14 | 1,191 | 1,404 | 509 | 482 | 160 | 197 | | | WK-MR | 30,058 | 20,860 | 169 | 134 | 5,387 | 4,897 | 4,277 | 4,121 | 1,988 | 1,023 | | | PNR-CR | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | KNR-CR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | PNR-BUS | 315 | 457 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 5 | | | KNR-BUS | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | PNR-BU/MR<br>KNR-BU/MR | 228<br>215 | 318<br>299 | 0<br>28 | 1<br>23 | 72<br>87 | 78<br>89 | 79<br>27 | 78<br>27 | 31<br>45 | 28<br>26 | | | PNR-MR | 1,332 | 1,909 | 0 | 12 | 426 | 456 | 132 | 132 | 45<br>150 | 126 | | | KNR-MR | 2,020 | 2,864 | 0 | 6 | 275 | 302 | 403 | 404 | 126 | 120 | | | DR ALONE | 7,623 | 7,714 | 3,922 | 3,921 | 9,088 | 9,092 | 11,667 | 11,668 | 3,584 | 3,585 | | | SR2 | 892 | 903 | 2,779 | 2,778 | 9,599 | 9,603 | 2,446 | 2,446 | 2,389 | 2,390 | | ŽE | SR3+ | 49 | 50 | 1,742 | 1,742 | 6,942 | 6,945 | 68 | 68 | 1,434 | 1,435 | | Ö | WK-CR | 0 | 0 | 0 | 0 | 0 | 0,010 | 0 | 0 | 0 | 0 | | Ă | WK-BUS | 2,403 | 2,534 | 247 | 218 | 62 | 58 | 278 | 278 | 26 | 25 | | Ż | WK-BU/MR | 658 | 693 | 0 | 1 | 34 | 32 | 134 | 134 | 0 | 13 | | ВА | WK-MR | 3,675 | 3,394 | 0 | 23 | 842 | 751 | 2,353 | 2,353 | 432 | 401 | | UR | PNR-CR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E/ | KNR-CR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | (10) VA CORE / URBAN-VA CORE | PNR-BUS | 32 | 32 | 0 | 0 | 0 | 3 | 0 | 11 | 0 | 5 | | Č | KNR-BUS | 0 | 1 | 0 | 0 | 0 | 2 | 13 | 13 | 0 | 3 | | > | PNR-BU/MR | 0 | 8 | 0 | 0 | 0 | 0 | 31 | 28 | 0 | 0 | | <b>1</b> 0 | KNR-BU/MR | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 34 | | | PNR-MR | 166 | 165 | 0 | 1 | 0 | 6 | 128 | 119 | 0 | 17 | | | KNR-MR | 226 | 233 | 0 | 10 | 0 | 78 | 40 | 40 | 90 | 87 | | | DR ALONE | 18,974 | 20,643 | 22,528 | 22,584 | 36,698 | 36,740 | 29,161 | 29,183 | 17,920 | 17,971 | | | SR2 | 2,118 | 2,304 | 16,098 | 16,138 | 40,739 | 40,785 | 7,848 | 7,854 | 14,438 | 14,479 | | A | SR3+ | 98 | 107 | 10,151 | 10,176 | 30,907 | 30,942 | 261 | 261 | 9,063 | 9,088 | | (11) VA CORE / URBAN-URBAN | WK-CR | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 7 | WK-BUS | 5,065 | 6,244 | 793 | 718 | 2,410 | 2,431 | 1,016 | 1,018 | 640 | 600 | | BAI | WK-BU/MR | 3,733 | 4,580 | 59 | 54 | 953 | 948 | 548 | 544 | 111 | 104 | | URI | WK-MR | 10,467 | 6,438 | 525 | 464 | 1,973 | 1,923 | 2,843 | 2,851 | 1,262 | 1,154 | | E / | PNR-CR<br>KNR-CR | 1<br>7 | 0 | 0<br>0 | 0 | 0<br>0 | 0 | 0 | 0 | 0<br>0 | 0 | | OR | PNR-BUS | 86 | 109 | 0 | 2 | 0 | 26 | 0 | 6 | 0 | 48 | | Ö | KNR-BUS | 0 | 21 | 0 | 11 | 42 | 39 | 17 | 17 | 0 | 9 | | > | PNR-BU/MR | 80 | 101 | 0 | 0 | 60 | 52 | 31 | 30 | 0 | 2 | | (11) | KNR-BU/MR | 78 | 97 | 0 | 23 | 0 | 14 | 0 | 1 | 188 | 169 | | | PNR-MR | 282 | 357 | 20 | 16 | 129 | 111 | 114 | 109 | 0 | 110 | | | KNR-MR | 647 | 807 | 0 | 97 | 114 | 104 | 57 | 56 | 59 | 54 | | | DR ALONE | 29,839 | 30,633 | 16,329 | 16,423 | 23,268 | 23,374 | 27,329 | 27,442 | 15,307 | 15,424 | | | SR2 | 3,346 | 3,435 | 12,054 | 12,124 | 26,244 | 26,364 | 8,148 | 8,182 | 13,956 | 14,062 | | œ | SR3+ | 131 | 134 | 7,856 | 7,901 | 20,303 | 20,396 | 331 | 332 | 11,007 | 11,091 | | 뿓 | WK-CR | 0 | 6 | 0 | 0 | 19 | 19 | 0 | 30 | 21 | 19 | | Ģ | WK-BUS | 1,828 | 1,831 | 466 | 423 | 1,006 | 1,010 | 422 | 423 | 194 | 178 | | Ā | WK-BU/MR | 1,694 | 1,695 | 0 | 22 | 327 | 328 | 241 | 241 | 17 | 16 | | ВВ | WK-MR | 1,595 | 855 | 0 | 8 | 512 | 479 | 767 | 720 | 117 | 104 | | (12) VA CORE / URBAN-OTHER | PNR-CR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ä | KNR-CR | 0 | 0 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 0 | | ဝ | PNR-BUS | 57 | 59 | 0 | 6 | 0 | 3 | 33 | 34 | 0 | 18 | | <b>₹</b> | KNR-BUS | 65 | 76 | 0 | 3 | 7 | 7 | 48 | 49 | 25 | 22 | | 2) | PNR-BU/MR | 0 | 19 | 0 | 1 | 0 | 0 | 50 | 51 | 0 | 9 | | Ξ | KNR-BU/MR | 65 | 77 | 0 | 8 | 0 | 33 | 20 | 20 | 0 | 2 | | | PNR-MR | 90 | 92 | 0 | 1 | 20 | 17 | 109 | 106 | 0 | 5 | | | KNR-MR | 79 | 92 | 0 | 4 | 73 | 69 | 13 | 13 | 0 | 1 | | отнек-<br><sub>DC</sub> | DR ALONE | 120,604 | 123,956 | 2,478 | 2,560 | 11,804 | 11,876 | 8,687 | 8,824 | 3,716 | 3,888 | | ĔΞ | SR2 | 13,429 | 13,802 | 1,728 | 1,785 | 12,682 | 12,759 | 2,238 | 2,273 | 1,830 | 1,914 | | 0 | SR3+ | 657 | 675 | 1,024 | 1,058 | 9,219 | 9,275 | 130 | 132 | 824 | 862 | Appendix C. Year 2007 mode choice output vs. targets | | | нвพ | | HB | s | НВ | 0 | NHV | v | NHO | | | |---------------------|----------------------|------------------|------------------|--------------------|----------------|-----------------|----------------|--------------------|----------------|---------------|---------------|--| | Seg | Path # | Target | Model | Target | Model | Target | Model | Target | Model | Target | Model | | | | WK-CR | 958 | 919 | 0 | 0 | 42 | 40 | 0 | 1 | 54 | 32 | | | | WK-BUS | 7,510 | 7,203 | 48 | 48 | 1,349 | 1,341 | 180 | 182 | 101 | 116 | | | | WK-BU/MR | 16,167 | 15,524 | 80 | 79 | 1,381 | 1,374 | 655 | 664 | 72 | 83 | | | | WK-MR | 12,772 | 9,895 | 0 | 13 | 1,828 | 1,717 | 1,066 | 1,055 | 79 | 91 | | | | PNR-CR | 7,875 | 8,203 | 0 | 1 | 207 | 208 | 0 | 32 | 167 | 175 | | | | KNR-CR | 470 | 473 | 0 | 1 | 11 | 11 | 0 | 18 | 12 | 13 | | | | PNR-BUS | 1,073 | 1,125 | 32 | 33<br>0 | 194 | 195 | 0 | 0 | 0 | 0 | | | | KNR-BUS<br>PNR-BU/MR | 337<br>7,428 | 341<br>5,080 | 0<br>18 | 19 | 0<br>486 | 1<br>477 | 19<br>371 | 19<br>322 | 8<br>40 | 8<br>41 | | | | KNR-BU/MR | 1,742 | 1,751 | 38 | 39 | 165 | 165 | 119 | 117 | 77 | 80 | | | | PNR-MR | 54,824 | 57,079 | 78 | 81 | 4,916 | 4,941 | 1,775 | 1,830 | 263 | 276 | | | | KNR-MR | 10,972 | 10,972 | 83 | 86 | 574 | 575 | 516 | 509 | 93 | 98 | | | | DR ALONE | 13,163 | 13,317 | 413 | 423 | 1,681 | 1,692 | 2,173 | 2,187 | 5 | 5 | | | | SR2 | 1,531 | 1,549 | 316 | 323 | 2,039 | 2,052 | 146 | 147 | 21 | 21 | | | | SR3+ | 74 | 75 | 212 | 217 | 1,779 | 1,790 | 5 | 5 | 471 | 479 | | | Ä | WK-CR | 12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | CORE | WK-BUS | 241 | 237 | 0 | 0 | 0 | 16 | 0 | 5 | 0 | 1 | | | ₹ | WK-BU/MR | 1,489 | 1,462 | 27 | 23 | 82 | 78 | 127 | 125 | 0 | 3 | | | (14) MD OTHER-VA | WK-MR | 846 | 776 | 0 | 4 | 187 | 171 | 71 | 70 | 35 | 29 | | | 뽀 | PNR-CR | 314 | 320 | 0 | 0 | 0 | 8 | 0 | 2 | 11 | 16 | | | 0 | KNR-CR | 10 | 10 | 0 | 0 | 0 | 9 | 0 | 3 | 74 | 73 | | | Δ | PNR-BUS | 192 | 194 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | | | 4 | KNR-BUS | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | ٦ | PNR-BU/MR | 1,358 | 1,268 | 0 | 0 | 102 | 97 | 0 | 0 | 76 | 37 | | | | KNR-BU/MR | 318 | 314 | 0 | 0 | 29 | 28 | 25 | 24 | 0 | 1 | | | | PNR-MR<br>KNR-MR | 8,255<br>1,037 | 8,330<br>1,027 | 0 | 1 | 590<br>446 | 588<br>437 | 195<br>75 | 195<br>73 | 47<br>52 | 70<br>53 | | | | DR ALONE | 158,636 | 161,525 | 29,871 | 30,089 | 85,824 | 86,121 | 41,290 | 41,584 | 29,647 | 29,952 | | | | SR2 | 17,783 | 18,107 | 21,296 | 21,451 | 92,704 | 93,024 | 10,200 | 10,273 | 25,060 | 25,318 | | | | SR3+ | 706 | 719 | 13,260 | 13,357 | 68,737 | 68,975 | 331 | 333 | 16,709 | 16,881 | | | _ | WK-CR | 323 | 312 | 0 | 10,007 | 0 | 7 | 0 | 6 | 16 | 15 | | | OTHER-URBAN | WK-BUS | 16,313 | 15,730 | 1,269 | 1,277 | 8,934 | 8,959 | 1,331 | 1,340 | 1,136 | 1,149 | | | 1 24 | WK-BU/MR | 11,985 | 11,578 | 149 | 150 | 2,190 | 2,196 | 640 | 643 | 187 | 189 | | | <u> </u> | WK-MR | 6,961 | 5,782 | 235 | 236 | 967 | 970 | 523 | 528 | 117 | 118 | | | ᅵ뿓 | PNR-CR | 1,869 | 1,914 | 0 | 0 | 53 | 53 | 0 | 4 | 15 | 15 | | | O | KNR-CR | 213 | 218 | 0 | 0 | 56 | 56 | 0 | 23 | 0 | 4 | | | (15) MD | PNR-BUS | 2,199 | 2,240 | 0 | 3 | 284 | 285 | 44 | 44 | 0 | 7 | | | 15) | KNR-BUS | 788 | 804 | 0 | 2 | 638 | 640 | 358 | 349 | 97 | 97 | | | ` | PNR-BU/MR | 3,628 | 3,701 | 0 | 4 | 509 | 511 | 194 | 193 | 105 | 102 | | | | KNR-BU/MR | 1,355 | 1,383 | 21 | 19 | 339 | 340 | 137 | 133 | 259 | 259 | | | | PNR-MR | 17,059 | 17,370 | 92 | 84 | 1,935 | 1,942 | 551 | 553 | 64 | 62 | | | | KNR-MR<br>DR ALONE | 5,369<br>987,367 | 5,449<br>989,742 | 13 | 12<br>631,563 | 573<br>990,544 | 575<br>991,299 | 206 | 201<br>448,333 | 81<br>606,964 | 81<br>607,365 | | | | SR2 | 112,358 | 112,628 | 630,940<br>450,423 | 450,868 | 1,089,599 | 1,090,430 | 447,625<br>112,677 | 112,855 | 484,900 | 485,219 | | | | SR3+ | 5,476 | 5,489 | 285,565 | 285,846 | 822,607 | 823,232 | 4,682 | 4,689 | 305,780 | 305,981 | | | | WK-CR | 122 | 122 | 0 | 5 | 15 | 15 | 0 | 44 | 17 | 19 | | | Ë | WK-BUS | 25,851 | 25,774 | 5,231 | 5,214 | 17,871 | 17,887 | 3,358 | 3,321 | 2,606 | 2,480 | | | ΙĖ | WK-BU/MR | 5,666 | 5,655 | 72 | 72 | 1,517 | 1,520 | 267 | 265 | 73 | 83 | | | 8 | WK-MR | 1,110 | 1,095 | 33 | 33 | 241 | 241 | 227 | 225 | 14 | 13 | | | Ӗ | PNR-CR | 706 | 712 | 0 | 0 | 0 | 204 | 0 | 0 | 0 | 66 | | | 0 | KNR-CR | 194 | 196 | 0 | 10 | 56 | 81 | 0 | 51 | 0 | 8 | | | ₩ | PNR-BUS | 2,643 | 2,654 | 27 | 21 | 1,081 | 699 | 22 | 18 | 1,180 | 977 | | | (16) MD OTHER-OTHER | KNR-BUS | 1,049 | 1,053 | 81 | 72 | 597 | 563 | 441 | 404 | 80 | 68 | | | _ | PNR-BU/MR | 1,220 | 1,226 | 0 | 14 | 51 | 275 | 13 | 27 | 0 | 210 | | | | KNR-BU/MR | 739 | 742 | 0 | 4 | 156 | 169 | 97 | 89 | 0 | 7 | | | | PNR-MR | 1,636 | 1,642 | 0 | 0 | 134 | 87 | 56 | 46 | 0 | 40 | | | <u></u> | KNR-MR | 1,159 | 1,163 | 0 | 4 | 90 | 85 | 24 | 22 | 0 | 3 | | | ₹ġπ | DR ALONE | 81,498 | 85,596 | 2,584 | 2,645 | 10,114 | 10,232 | 4,250 | 4,356 | 522 | 596 | | | OTHER-DC | SR2<br>SR3+ | 8,093<br>674 | 8,503<br>709 | 1,807<br>1,074 | 1,850<br>1,099 | 10,546<br>7,428 | 10,669 | 1,117<br>15 | 1,146 | 158 | 180 | | | Ėξο | | 674<br>114 | | 1,074 | | 7,428 | 7,515 | 15<br>0 | 15 | 13<br>0 | 15 | | | | WK-CR | 114 | 106 | 0 | 0 | 0 | 10 | 0 | 3 | 0 | 0 | | | | | HBW HBS | | НВ | 0 | NH | W | NHO | | | | |-----------------------|---------------------|------------------|------------------|-----------|-----------|------------------|-----------------|----------------|-----------|-----------------|-----------------| | Seg | Path # | Target | Model | Target | Model | Target | Model | Target | Model | Target | Model | | | WK-BUS | 2,601 | 2,419 | 20 | 16 | 241 | 238 | 74 | 73 | 0 | 36 | | | WK-BU/MR | 16,081 | 14,819 | 0 | 18 | 1,157 | 1,144 | 504 | 495 | 123 | 116 | | | WK-MR | 9,604 | 5,801 | 95 | 66 | 1,110 | 991 | 360 | 305 | 123 | 90 | | | PNR-CR | 1,303 | 1,360 | 0 | 1 | 0 | 13 | 0 | 11 | 0 | 0 | | | KNR-CR | 136 | 139 | 0 | 1 | 0 | 10 | 0 | 7 | 0 | 0 | | | PNR-BUS | 3,622 | 3,769 | 0 | 1 | 204 | 204 | 10 | 10 | 0 | 2 | | | KNR-BUS | 567 | 580 | 0 | 0 | 0 | 3 | 0 | 9 | 0 | 2 | | | PNR-BU/MR | 5,957 | 5,408 | 44 | 40 | 528 | 526 | 261 | 258 | 52 | 57 | | | KNR-BU/MR | 1,417 | 1,443 | 0 | 1 | 241 | 239 | 79 | 78 | 81 | 89 | | | PNR-MR | 26,121 | 27,130 | 59 | 55 | 2,970 | 2,969 | 1,313 | 1,320 | 284 | 315 | | | KNR-MR | 8,507 | 8,588 | 0 | 17 | 741 | 732 | 619 | 608 | 90 | 100 | | | DR ALONE | 27,293 | 27,849 | 3,079 | 3,085 | 7,199 | 7,215 | 5,816 | 5,836 | 2,259 | 2,272 | | | SR2 | 2,859 | 2,918 | 2,200 | 2,204 | 7,433 | 7,449 | 1,020 | 1,024 | 1,028 | 1,034 | | | SR3+ | 203 | 207 | 1,397 | 1,400 | 5,250 | 5,261 | 9 | 9 | 577 | 580 | | Ä | WK-CR | 49 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ပ္ပ | WK-BUS | 2,850 | 2,684 | 17 | 6 | 100 | 100 | 26 | 26 | 34 | 31 | | ₹ > | WK-BU/MR | 3,140 | 2,963 | 0 | 14 | 94 | 94 | 53 | 53 | 68 | 61 | | Ę. | WK-MR | 1,467 | 1,164 | 0 | 0 | 259 | 248 | 43 | 43 | 0 | 9 | | (18) VA OTHER-VA CORE | PNR-CR | 1,146 | 1,153 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 0 | KNR-CR | 92 | 93 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | ₹ | PNR-BUS | 2,500 | 2,512 | 4 | 5 | 5 | 5 | 4 | 4 | 0 | 0 | | 18) | KNR-BUS | 242 | 243 | 0 | 0 | 0 | 7 | 0 | 12 | 0 | 0 | | _ | PNR-BU/MR | 1,099 | 1,097 | 0 | 0 | 22 | 22 | 21 | 21 | 0 | 0 | | | KNR-BU/MR<br>PNR-MR | 275 | 277 | 0 | 0 | 53<br>471 | 49 | 53<br>301 | 50<br>302 | 0<br>21 | 0<br>19 | | | KNR-MR | 6,304<br>2,248 | 6,337<br>2,247 | 0 | 2 | 47 I<br>57 | 470<br>53 | 175 | 166 | 0 | 5 | | | DR ALONE | 110,136 | 112,576 | 23,614 | 24,064 | 45,934 | 46,262 | 25,665 | 25,764 | 13,477 | 13,688 | | | SR2 | 11,542 | 11,799 | 17,005 | 17,329 | 48,836 | 49,184 | 4,062 | 4,078 | 11,407 | 11,585 | | | SR3+ | 501 | 512 | 10,623 | 10,826 | 35,127 | 35,377 | 79 | 79 | 6,772 | 6,878 | | | WK-CR | 118 | 109 | 0,023 | 0 | 0 | 2 | 0 | 2 | 0,772 | 0,070 | | N A | WK-BUS | 4,876 | 4,493 | 282 | 233 | 1,549 | 1,536 | 383 | 381 | 238 | 243 | | RB | WK-BU/MR | 9,040 | 8,357 | 157 | 141 | 1,359 | 1,338 | 429 | 427 | 258 | 262 | | ٦-<br>- | WK-MR | 3,779 | 2,693 | 100 | 80 | 908 | 841 | 482 | 427 | 75 | 76 | | 뽀 | PNR-CR | 2,650 | 2,680 | 0 | 0 | 0 | 46 | 0 | 5 | 0 | 6 | | ο | KNR-CR | 235 | 238 | 0 | 44 | 0 | 30 | 0 | 6 | 0 | 7 | | (19) VA OTHER-URBAN | PNR-BUS | 1,499 | 1,513 | 0 | 0 | 114 | 112 | 0 | 6 | 0 | 9 | | 6 | KNR-BUS | 258 | 261 | 0 | 7 | 104 | 101 | 0 | 7 | 0 | 9 | | Ξ | PNR-BU/MR | 3,997 | 4,038 | 0 | 7 | 279 | 275 | 72 | 70 | 21 | 21 | | | KNR-BU/MR | 983 | 995 | 0 | 24 | 297 | 289 | 51 | 49 | 0 | 3 | | | PNR-MR | 9,446 | 9,535 | 58 | 46 | 1,274 | 1,252 | 230 | 227 | 130 | 117 | | | KNR-MR | 4,200 | 4,217 | 0 | 18 | 378 | 367 | 191 | 184 | 149 | 132 | | | DR ALONE | 805,979 | 807,990 | 471,589 | 472,454 | 717,796 | 718,321 | 355,920 | 356,370 | 410,469 | 410,811 | | | SR2 | 90,169 | 90,393 | 339,473 | 340,094 | 794,421 | 795,002 | 91,514 | 91,627 | 338,386 | 338,669 | | | SR3+ | 5,823 | 5,837 | 217,493 | 217,891 | 602,333 | 602,772 | 3,141 | 3,145 | 232,773 | 232,969 | | ~ | WK-CR | 50 | 48 | 0 | 21 | 0 | 120 | 0 | 32 | 0 | 57 | | 뽀 | WK-BUS | 17,400 | 16,540 | 3,741 | 2,366 | 8,984 | 7,417 | 2,001 | 1,858 | 1,634 | 886 | | ρ | WK-BU/MR | 2,680 | 2,542 | 21 | 125 | 457 | 378 | 308 | 283 | 31 | 111 | | Ë | WK-MR | 529 | 431 | 19 | 12 | 126 | 103 | 92 | 81 | 54 | 4 | | Ŧ | PNR-CR | 738 | 829 | 0 | 91 | 0 | 252 | 0 | 27 | 0 | 0 | | (20) VA ОТНЕR-ОТНЕR | KNR-CR | 87 | 102 | 0 | 69 | 23 | 72 | 0 | 54 | 0 | 155 | | > | PNR-BUS | 462 | 481 | 19 | 656 | 147 | 519 | 92 | 81 | 15 | 65 | | (20 | KNR-BUS | 639 | 692 | 4 | 134 | 216 | 709 | 108 | 96 | 135 | 369 | | | PNR-BU/MR | 758 | 718 | 0 | 306 | 115 | 457 | 29 | 51 | 0 | 85 | | | KNR-BU/MR | 429 | 420 | 0 | 26 | 97 | 329 | 35 | 49 | 0 | 110 | | | PNR-MR | 364 | 342 | 0 | 4 | 118 | 25 | 0 | 6<br>2 | 0 | 0 | | | KNR-MR<br>DR ALONE | 620<br>2,455,236 | 603<br>2,481,505 | 1,298,956 | 1,301,902 | 130<br>2,122,364 | 14<br>2,125,142 | 0<br>1,134,980 | | 13<br>1,209,971 | 16<br>1,212,533 | | ι | SR2 | 274,830 | 277,693 | 932,811 | 934,947 | 2,122,304 | 2,123,142 | | 286,541 | 980,080 | 982,013 | | All 20<br>Segments | SR3+ | 14,822 | 14,964 | 594,621 | 595,988 | | 1,769,730 | 10,783 | 10,811 | 640,180 | 641,907 | | ₩<br>B | WK-CR | 1,849 | 1,794 | 21 | 60 | 210 | 419 | 0 | 593 | 400 | 387 | | Š | WK-BUS | 171,834 | 177,809 | 18,433 | 16,750 | 87,044 | 85,570 | | 23,988 | 16,224 | 15,404 | | | WK-BU/MR | 132,142 | 138,182 | 2,487 | 2,635 | 23,696 | 23,800 | 12,417 | 12,233 | 3,960 | 4,097 | Appendix C. Year 2007 mode choice output vs. targets | | | HBW | | HBS | | НВ | 0 | NH | IW | NHO | | |-----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Seg | Path # | Target | Model | Target | Model | Target | Model | Target | Model | Target | Model | | | WK-MR | 194,165 | 155,343 | 4,853 | 4,683 | 46,904 | 45,481 | 56,579 | 55,455 | 16,428 | 14,954 | | | PNR-CR | 16,647 | 17,357 | 0 | 93 | 260 | 788 | 0 | 84 | 208 | 288 | | | KNR-CR | 1,472 | 1,531 | 0 | 126 | 197 | 293 | 0 | 162 | 216 | 373 | | | PNR-BUS | 15,967 | 16,522 | 82 | 759 | 3,030 | 3,058 | 355 | 379 | 1,523 | 1,476 | | | KNR-BUS | 4,553 | 4,786 | 199 | 344 | 2,004 | 2,483 | 1,426 | 1,404 | 880 | 1,129 | | | PNR-BU/MR | 27,525 | 24,863 | 112 | 454 | 2,700 | 3,291 | 1,482 | 1,467 | 559 | 831 | | | KNR-BU/MR | 9,248 | 9,730 | 136 | 248 | 1,733 | 2,014 | 1,210 | 1,205 | 1,003 | 1,109 | | | PNR-MR | 137,984 | 143,144 | 469 | 486 | 15,657 | 15,796 | 7,271 | 7,306 | 1,563 | 1,793 | | | KNR-MR | 42,794 | 44,606 | 146 | 391 | 4,436 | 4,379 | 4,378 | 4,361 | 1,831 | 1,833 | | | TOTALS | 3,501,068 | 3,509,828 | 2,853,326 | 2,859,865 | 6,416,803 | 6,424,442 | 1,540,339 | 1,543,880 | 2,875,026 | 2,880,128 | Appendix C. Year 2007 mode choice output vs. targets Total person trips by market segment | Market | НВ | w | HE | s | HE | 30 | NH | lW | NE | Ю | ALL | | | |---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|--| | Segment | Target | Model | Target | Model | Target | Model | Target | Model | Target | Model | Target | Model | | | 1 | 139,654 | 139,689 | 24,724 | 24,767 | 113,439 | 113,464 | 78,049 | 78,088 | 47,102 | 47,144 | 402,968 | 403,153 | | | 2 | 11,822 | 11,834 | 1,931 | 1,941 | 7,131 | 7,141 | 7,552 | 7,560 | 1,880 | 1,712 | 30,316 | 30,189 | | | 3 | 80,458 | 80,803 | 82,548 | 82,641 | 272,886 | 273,128 | 83,811 | 84,190 | 105,321 | 105,533 | 625,024 | 626,296 | | | 4 | 44,288 | 45,345 | 41,933 | 42,676 | 77,556 | 78,439 | 54,894 | 55,439 | 42,097 | 43,534 | 260,768 | 265,433 | | | 5 | 26,799 | 26,812 | 1,008 | 1,025 | 7,151 | 7,163 | 3,672 | 3,689 | 1,969 | 1,991 | 40,599 | 40,681 | | | 6 | 2,465 | 2,467 | 91 | 95 | 616 | 617 | 590 | 592 | 138 | 141 | 3,900 | 3,912 | | | 7 | 35,623 | 35,764 | 32,107 | 32,157 | 89,989 | 89,997 | 29,131 | 29,166 | 37,350 | 37,379 | 224,200 | 224,462 | | | 8 | 27,127 | 27,305 | 29,465 | 29,613 | 64,179 | 64,353 | 30,713 | 30,784 | 39,606 | 39,756 | 191,090 | 191,810 | | | 9 | 50,485 | 50,493 | 2,219 | 2,247 | 14,018 | 14,020 | 10,488 | 10,512 | 2,540 | 1,980 | 79,750 | 79,252 | | | 10 | 15,724 | 15,728 | 8,690 | 8,693 | 26,567 | 26,570 | 17,158 | 17,160 | 7,993 | 7,996 | 76,132 | 76,147 | | | 11 | 41,644 | 41,818 | 50,174 | 50,283 | 114,025 | 114,114 | 41,896 | 41,930 | 43,681 | 43,788 | 291,420 | 291,933 | | | 12 | 38,789 | 39,006 | 36,705 | 36,924 | 71,806 | 72,099 | 37,511 | 37,643 | 40,644 | 40,950 | 225,455 | 226,622 | | | 13 | 256,818 | 256,997 | 5,607 | 5,802 | 44,858 | 44,955 | 15,756 | 15,979 | 7,336 | 7,677 | 330,375 | 331,410 | | | 14 | 28,840 | 28,899 | 968 | 991 | 6,935 | 6,968 | 2,817 | 2,837 | 792 | 802 | 40,352 | 40,497 | | | 15 | 245,187 | 246,833 | 66,206 | 66,687 | 263,743 | 264,654 | 55,805 | 56,209 | 73,493 | 74,250 | 704,434 | 708,632 | | | 16 | 1,147,296 | 1,149,893 | 1,372,372 | 1,373,726 | 2,924,559 | 2,926,786 | 569,489 | 570,389 | 1,401,614 | 1,402,540 | 7,415,330 | 7,423,335 | | | 17 | 166,295 | 166,370 | 5,683 | 5,810 | 35,280 | 35,494 | 8,602 | 8,694 | 1,446 | 1,599 | 217,306 | 217,968 | | | 18 | 51,767 | 51,791 | 6,697 | 6,718 | 20,943 | 20,977 | 7,521 | 7,546 | 3,987 | 4,013 | 90,915 | 91,045 | | | 19 | 163,260 | 164,015 | 51,839 | 52,819 | 136,159 | 137,011 | 31,644 | 31,713 | 32,527 | 33,035 | 415,429 | 418,594 | | | 20 | 926,727 | 927,966 | 1,032,359 | 1,034,249 | 2,124,963 | 2,126,491 | 453,240 | 453,762 | 983,510 | 984,306 | 5,520,799 | 5,526,774 | | | Total Person | 3,501,068 | 3,509,828 | 2,853,326 | 2,859,865 | 6,416,803 | 6,424,442 | 1,540,339 | 1,543,880 | 2,875,026 | 2,880,128 | 17,186,562 | 17,218,143 | | | Total Transit | 756,180 | 735,666 | 26,938 | 27,029 | 187,871 | 187,372 | 108,803 | 108,638 | 44,795 | 43,674 | 1,124,587 | 1,102,380 | | | Transit Pct | 21.6% | 21.0% | 0.9% | 0.9% | 2.9% | 2.9% | 7.1% | 7.0% | 1.6% | 1.5% | 6.5% | 6.4% | | #### Transit person trips by market segment | Market | HB\ | V | HBS | ; | НВ | 0 | NHN | W | NHO | ) | AL | L | |---------------|---------|---------|--------|--------|---------|---------|---------|---------|--------|--------|-----------|-----------| | Segment | Target | Model | Target | Model | Target | Model | Target | Model | Target | Model | Target | Model | | 1 | 121,156 | 121,158 | 2,516 | 2,520 | 32,693 | 32,700 | 29,816 | 29,854 | 9,430 | 9,442 | 195,611 | 195,674 | | 2 | 10,475 | 10,404 | 145 | 145 | 3,142 | 3,125 | 4,281 | 4,292 | 1,880 | 1,480 | 19,923 | 19,445 | | 3 | 71,016 | 70,310 | 6,941 | 6,946 | 41,914 | 41,942 | 24,992 | 25,105 | 11,535 | 11,557 | 156,398 | 155,860 | | 4 | 20,938 | 18,352 | 1,238 | 1,257 | 5,028 | 5,049 | 6,633 | 6,323 | 2,681 | 2,761 | 36,518 | 33,742 | | 5 | 20,376 | 20,131 | 202 | 204 | 3,493 | 3,466 | 2,089 | 2,100 | 467 | 472 | 26,627 | 26,374 | | 6 | 1,753 | 1,740 | 32 | 32 | 183 | 182 | 192 | 192 | 35 | 36 | 2,195 | 2,183 | | 7 | 15,410 | 15,280 | 900 | 899 | 6,656 | 6,628 | 2,084 | 2,088 | 1,014 | 1,015 | 26,064 | 25,909 | | 8 | 6,056 | 5,947 | 390 | 391 | 2,659 | 2,663 | 1,901 | 1,906 | 1,056 | 1,061 | 12,062 | 11,968 | | 9 | 46,277 | 45,426 | 197 | 198 | 7,689 | 7,521 | 5,427 | 5,440 | 2,540 | 1,585 | 62,130 | 60,168 | | 10 | 7,160 | 7,062 | 247 | 252 | 938 | 930 | 2,977 | 2,977 | 586 | 585 | 11,908 | 11,807 | | 11 | 20,454 | 18,764 | 1,397 | 1,386 | 5,681 | 5,647 | 4,626 | 4,632 | 2,260 | 2,250 | 34,418 | 32,679 | | 12 | 5,473 | 4,803 | 466 | 476 | 1,991 | 1,965 | 1,703 | 1,687 | 374 | 373 | 10,007 | 9,304 | | 13 | 122,128 | 118,564 | 377 | 399 | 11,153 | 11,045 | 4,701 | 4,750 | 966 | 1,014 | 139,325 | 135,771 | | 14 | 14,072 | 13,958 | 27 | 29 | 1,436 | 1,433 | 493 | 498 | 295 | 297 | 16,323 | 16,214 | | 15 | 68,062 | 66,482 | 1,779 | 1,791 | 16,478 | 16,534 | 3,984 | 4,018 | 2,077 | 2,099 | 92,380 | 90,924 | | 16 | 42,095 | 42,034 | 5,444 | 5,449 | 21,809 | 21,826 | 4,505 | 4,512 | 3,970 | 3,974 | 77,823 | 77,795 | | 17 | 76,030 | 71,562 | 218 | 216 | 7,192 | 7,079 | 3,220 | 3,177 | 753 | 808 | 87,413 | 82,841 | | 18 | 21,412 | 20,816 | 21 | 29 | 1,061 | 1,052 | 676 | 677 | 123 | 126 | 23,293 | 22,701 | | 19 | 41,081 | 39,128 | 597 | 600 | 6,262 | 6,189 | 1,838 | 1,791 | 871 | 885 | 50,649 | 48,591 | | 20 | 24,756 | 23,746 | 3,804 | 3,811 | 10,413 | 10,396 | 2,665 | 2,620 | 1,882 | 1,857 | 43,520 | 42,429 | | Total Transit | 756,180 | 735,666 | 26,938 | 27,029 | 187,871 | 187,372 | 108,803 | 108,638 | 44,795 | 43,674 | 1,124,587 | 1,102,380 |