Stream Conductivity Monitoring at State Roads in Maryland

Jay Kilian Maryland Department of Natural Resources

Salts Workshop April 1,2019

Research Questions

- Does salt application to any SHA roads contribute measurably to stream conductivity?
- Is stream conductivity higher downstream from a road crossing than upstream?
 - During base flow?
 - After road salt application?
- What is the ionic composition of streams before, during, and after a snow event?
- What is the relationship between road salt application (lbs/lane mile/inch of snow) and stream conductivity?
- Are biological conditions downstream of a road crossing different than upstream?

Study Design

- SHA-maintained roads on DNR lands in MS4 Counties
- No influence of other local confounding factors
 - Other roads (county, etc..)
 - Parking lots
 - Tributaries
- Representative sample of conditions in the state
 - Physiographic province
 - Stream size
 - Environmental setting (rural and urban)

Study Design

- 19 road crossings selected for study
- Loggers deployed one upstream, one downstream
- Sites located in:
 - Cecil
 - Harford
 - Baltimore
 - Anne Arundel
 - Howard
 - Charles
 - Montgomery
 - Frederick

Conductivity Logger Deployment/Downloads

- Hourly conductivity monitoring since November 2016
- Over <u>532,000</u> conductivity measurements as of Sept.2018
- Maximum conductivity measured during the study = $3,377 \mu$ S/cm
- Minimum conductivity measured during the study = 7.3μ S/cm

Ion Matrix Sampling

- Characterized ionic composition of study streams
 - Pre-salt application baseline: collected in fall of each year
 - Post-salt application baseline collected in spring of each year
 - Snow storm event: collected at times of elevated (above baseline) conductivity levels during snow events

Ion Matrix Sampling

- 215 ion samples collected as of November 2018
- All samples analyzed at UMCES Appalachian Laboratory
- Ions measured: Chloride, Bromide, Nitrate, Sodium, Magnesium, Calcium, Potassium, Bicarbonate, Sulfate, Ammonia, as well as pH, ANC, Alkalinity

Biological Monitoring

- Biological monitoring has been conducted at all road crossings
 - Benthic macroinvertebrate sampling conducted upstream and downstream in spring 2017 and 2018

• Fish sampling conducted at four select road crossings in 2017 and 2018

• Physical habitat quality assessed upstream and downstream at all crossings

Provisional Results - Conductivity Monitoring

- Documented increased conductivity downstream compared to upstream during snow events at <u>some</u> road crossings
 - Response varied by snow event

Gramies Run @ MD 273 (Telegraph Road)

Gramies Run @ MD 273 (Telegraph Road)

Gramies Run @ MD 273 (Telegraph Road)

Provisional Results - Conductivity Monitoring

- Documented increased conductivity during snow events downstream of <u>some</u> road crossings
 - Response varied by snow event

• Documented increased conductivities upstream and downstream of some road crossings – especially in larger watersheds

James Run@ MD 7 (Old Philadelphia Road)

UT Muddy Run @ US 15

Downstream

Snow event

Fall and Spring baseline (2017,2018)

UT Muddy Run @ US 15

Downstream

Fall pre-application baseline

Snow event

March 15,2018 Snow Event

Provisional Results - Biological Monitoring

Benthic Macroinvertebrate Index of Biotic Integrity Scores from 2017 (0 (poor) – 5 (good) scale)

Road Crossing	Downstream	Between	Upstream
Gramies Run @ MD 273	3.67		2.67
Big Elk Creek @ MD 273	3.67		3.67
James Run @ MD 7	3.00		3.33
Little Gunpowder @ MD 147	4.67		4.00
Gunpowder Falls @ US 1	2.33		2.33
Gunpowder Falls @ I-83 & MD 45	4.67	4.67	4.33
Severn Run @ I-97 & MD 5461	4.14		4.14
UT Mattawoman Creek @ MD 224	4.71		5.00
Marbury Run @ MD 224	4.71		4.71
UT Mallows Bay @ MD 224	5.00		4.71
Patuxent River @ MD 97	4.67		3.67
Patuxent River @ MD 94	3.33		3.67
Long Draught Branch @ MD 119	2.25		2.25
Great Seneca Creek @ MD 119	2.25		2.50
Great Seneca Creek @ MD 117	2.00		2.75
UT Muddy Run @ US 15	3.00		3.25
Little Hunting Creek @ US 15 & MD 806	3.25	4.00	4.25

What is next?

• Why do we see different timing of response at the same road crossings? i.e., what roles do application technique and timing, temperature, precipitation play?

What is next?

• What other factors influence conductivity at each site?

Potential variables influencing results?

Environmental Setting:

- Land use
- Stream size (Upstream catchment area)
- Physiography
- Stream gradient

Site-scale Factors:

- Road size
- Run-off catchment (area of road draining to stream)
- Valley width
- Valley slope
- Soils/geology
- Hydrology

Event Factors:

- Amount of precipitation
- Salt application technique
- Salt application timing
- Ambient temperatures
- Duration and timing of thaw

Potential sources of variability :

- Hobo instrument error
- In situ meter instrument error

- Correction faction/equation error (i.e., converting from raw conductivity to Specific Conductance)
- Biofouling correction
- Temporal variability (e.g., time lag error related to logger measurement vs. in-situ measurement)
- Spatial variability

Other DNR Conductivity Monitoring

- Core Trend (Long-term monitoring at fixed stations)
- Sentinel Site Network (long-term monitoring at minimally-impacted, 'reference' sites)
- Stream Restoration
- Natural Trout Waters

UT Muddy Run @ US 15

Downstream

Fall pre-application baseline

Spring post-application baseline

Snow event

February 5, 2018 Snow Event

UT Muddy Run @ US 15

Downstream

Fall pre-application baseline

Snow event

February 7, 2018 Snow Event

UT Muddy Run @ US 15

Downstream

Fall pre-application baseline

Spring post-application baseline

Snow event

March 22, 2018 Snow Event

Spatial Variability

Big Gunpowder Falls @ US 1

In situ measurements of conductivity taken within 15 minutes of each other following March 14-15, 2017 snow event (approx. 4.5 inches accumulation)

