## Furniture Zone



Positioned between curb and pedestrian zones

## Furniture Zone



- Ensures pedestrian zone is free of obstacles
- Contains:
- Fire hydrants and utility poles
- Pedestrian amenities such as benches, bus shelters, driveway aprons, sign supports, and vending machines


## Furniture Zone



- Minimum width is 24 inches (610mm)
- Serves as a buffer between roadway and pedestrian zone


## Furniture Zone

## Sectioned-Off Street Cafe



## Furniture Zone

36 inches ( 915 mm ) recommended in areas of on-street parallel parking so that car doors may be opened without obstructing pedestrian zone

Greater width may be required for trees (to grow and spread roots

- minimum 48 inches)



Greater width may be required for plowed snow accumulation

## Bus Pads and Shelters



Greater width for bus pads and shelters

## Bus Pads and Shelters

It is important that highway and transit agencies work together to provide adequate space and design



## Curb Zone



## Curb Zone



- Minimum width 6 inches ( 152 mm )
- Integral to the drainage system and prevents excess water from collecting in the sidewalk corridor


## Curb Zone



- Discourages motor vehicles from driving onto the sidewalk
- Is a valuable cue used by people with vision impairments

DESIGNING PEDESTRIANFACILITIESFOR ACCESSIBILITY

## Curb Ramps



## Curb Ramps



- First required by the Rehabilitation Act of 1973, Section 504
- The implementing regulations under Title II of the ADA specifically require curb ramps for existing facilities, as well as for all new construction


## Curb Ramps



ADA installation priorities for existing facilities:

- Access to government facilities
- Transportation facilities
- Public accommodations
- Places of employment


## Curb Ramps

To be included at all transitions:

- Transition from on-street parking
- Loading zones
- Bus stops
- Mid-block crossings
- Roundabouts
- Shared-use paths
- Sidewalks


## Curb Ramp Benefits and Drawbacks

- Curb ramps provide access for people who use wheelchairs
- However the lack of a curb can create major information barriers for people with vision impairments who rely on the curb


## Curb Ramp Benefits and Drawbacks

Curb ramps have taken away the reliable cue about the street edge, and should be designed to maximize detectability for people with vision impairments

## Curb Ramp Components



## Curb Ramp Design Specifications



- Placement - approach must be perpendicular to the face of the curb
- Ramp grade - maximum 8.33\%
- Length of both sides of the ramp must be equal to minimize warping


## Curb Ramp Design Specifications



- Ramp cross slope - maximum 1:48, $2 \%$
- Gutter slope - counter slope (2\%) and cross slope (2\%)
- Change in grade 11\% (13\% maximum)
- Ramp width - minimum 48 inches


## Curb Ramp Design Specifications



- Top and bottom landing (48 x 48 inches min.)
- Flares or vertical or return curbs
- Changes in level
- Detectable warnings (truncated domes)


## Curb Ramp Design Specifications

Environment will determine:

- Change of grade combinations
- Returned curbs and flares
- Curb ramp placement at an intersection
- Length of ramp
- Type of ramp installed


## Direction of Travel - Ramp Aligned with Crosswalk



## Ramp Approach and Warping



The bottom and top of the curb ramp must be perpendicular to the curb and top landing so the wheels of a wheelchair can stay on the ground at all times

## Good Ramp Placement

A pair of perpendicular curb ramps placed in the optimal design for small to medium curb radii


## Good Ramp Placement



Additional right of way can provide needed access

## Poor Curb Ramp Placement at Intersection



Diagonal ramps create a variety of problems because pedestrians using the ramp are directed towards the center of the intersection

## Curb Ramp Placement at an Intersection

Curb extensions and raised crosswalks are good solutions to limited sidewalk width


## Curb Ramp Surfaces



Gratings, access covers, and similar surfaces should not be located on curb ramps, transition ramps, landings, or adjacent gutter pans

## Ramp Grade



- Maximum 1:12 grade (8.3\%) allowed
- Maximum 1:14 grade (7.1\%) is recommended to allow a construction tolerance
- Least slope possible is preferred


## Ramp Length

- Ramp length $=$ (curb height $\times 12$ ) + rise due to cross slope
- The greater the vertical change in elevation, the longer the ramp will have to be in order to meet the recommended grade specification
- Sidewalk area can be gradually sloped down to shorten vertical curb and sidewalk height


## Ramp Cross Slope



The ramp cross slope should not exceed 2.0 percent (1:48)

## Ramp <br> Cross Slope



- People with mobility impairments often have difficulty in negotiating a grade and cross slope simultaneously
- Since the grade of the ramp will be significant, the cross slope should be minimized


## Gutter Slope



- Definition: Parallel to the curb and the roadway
- Is a cross slope for the pedestrian
- Slope should not exceed 1:48 (2\%) at the curb ramp


## Gutter Counter Slope



- Definition: Slope opposite the ramp grade
- Is the running grade for the pedestrian
- Slope should not exceed 1:20 (5\%) at the curb ramp


## Change of Grade



Abrupt changes of grade are difficult for wheelchairs to maneuver and can cause wheelchairs to flip over

## Counter Grade Change

Provide foot rest clearance where gutter and curb ramp create a counter grade change


ALGEBRAIC DIFFERENCE
GREATER THAN $11 \%$ NOT
PERMITTED


PROVIDE 24" LEVEL STRIP IF ALGEBRAIC DIFFERENCE EXCEEDS $11 \%$

## Change of Grade (11\% example)



Change of grade needs to be gradual and less than 11 percent ( $13 \%$ maximum)

- Add opposing grades
- Subtract grades in same direction


## Ramp Width

- Recommended minimum clear width of a curb ramp is 48 inches ( 1.22 m )
- ADAAG minimum width is 36 inches ( 915 mm ). This does not provide enough width for walker and crutch users


## Landing Dimension and Slope

- Landings may serve multiple ramps or overlap with other landings
- $48 \times 48$ inches is the ADAAG requirement
- Landings are preferred to be a 60 -inch square or 60 -inch circle to allow a wheelchair to turn around
- Maximum landing slope is 2.0 percent (1:48) in any direction


## Landing Dimension



36 inch landing dimension does not provide adequate turning space

## Out of Compliance Curb Ramp



Curb radius is too small for diagonal curb ramp - no $48 \times 48$ maneuvering space

## Flares



- Not part of the access route
- Flares must be used where pedestrians have less than 48 inches width of travel path around ramp
- Flares shall have a slope of 1:10 max. (measured at the face of the curb)


## Returned Curbs



Curb ramps located where pedestrians would not travel (furniture zone) may have return curbs

## Changes in Level at Adjacent Components



Transition points between curb ramp, landing, gutter, and street should be flush

## Changes in Level at Adjacent Components

Transition points between curb ramp, landing, gutter, and street should be flush

- $1 / 4$ inch ( 6.94 mm ) max
- $1 / 2$ inch ( 13 mm ) beveled max
- Bevel cannot be steeper than 1:2 (45 degrees)


## Detectable Warnings

While gradual slopes are desirable for people who use wheelchairs, a detectable warning at the bottom of the curb ramps warns blind pedestrians about sidewalk/street transition.


## Low Grade Ramps

## Raised crosswalks and depressed corners can make the street transition undetectable



## Detectable Warnings

- Required by ADAAG where/at:
- Curb ramps (4.7.7)
- Hazardous vehicular areas
-Medians and islands
—Rail systems
- Requirement was temporarily suspended suspension over 7.26.01
- Truncated domes the standard detectable warning


## Detectable Warnings Placement



## Perpendicular ramp

## Detectable Warnings Placement



## Parallel ramp

## Detectable Warnings Placement



Diagonal ramp

## Detectable Warnings

The detectable warning should be placed across all curb ramps 68 inches from the bottom of the ramp.


## Detectable Warnings



Surrounding surfaces need to be smooth and free of textures for easy detectability of the domes

## Design Specifications Dome Dimensions



## Design Specifications Dome Spacing



Truncated domes are highly detectable because of unique design

## Design Specifications Dome Alignment



## Noncompliant Detectable Warnings

Grooves are not effective: too similar to joints, cracks, and other defects


## Noncompliant Detectable Warnings



Exposed aggregate is not a compliant surface. Can you identify other problems here?

## Bottom Landing



## Curb Ramp Types

- Categorized by their structural design and position relative to the sidewalk or street
- Types:
- Perpendicular curb ramps
- Diagonal curb ramps
- Parallel curb ramps
- Combined parallel and perpendicular curb ramp
- Built-up curb ramps
- Depressed corners


## Perpendicular Curb Ramp

Aligned perpendicular to traffic


## Advantages of Perpendicular Curb Ramps



- Provide a straight path of travel on small and medium radius corners at crossings
- Positioned within crosswalk
- Located at the expected crossing location


## Disadvantages of <br> Perpendicular Curb Ramps



- Difficult to provide a straight path of travel on large radius corners
- A wide sidewalk or curb extension may be needed to accommodate the curb ramp and the level landing


## Diagonal Curb Ramp

A single curb ramp that is located at the apex of the corner at an intersection perpendicular to curb


## Diagonal Curb Ramp Disadvantage



Curb radius must be large enough to comply with the $48 \times 48$ inches of level maneuvering space outside the parallel direction of vehicle travel (ADAAG 4.7.10)

## Diagonal Curb Ramp Disadvantage

Path of travel will lead into the center of the intersection on small radius corners creating conflicts with motorists


## Diagonal Curb Ramp Disadvantage



Creates safety problems for people with using mobility devices

## Limited Pedestrian Advantages of Diagonal Curb Ramps

Easier for pedestrians with vision impairments who use the curb (rather than the curb ramp when crossing) to detect the end of sidewalk


## Non-Pedestrian Advantages of Diagonal Curb Ramps

- Requires less space
- Only one curb ramp per corner
- Are less expensive for alterations


## Parallel Curb Ramp



Consists of two ramps leading down towards a center level landing with a level landing at the top of each ramp

## Parallel Curb Ramp



Oriented so that the path of travel on the ramp is parallel to the adjacent vehicular path of travel

## Advantages of Parallel Curb Ramps

Provides:

- The connection to the street within the crosswalk
- A level maneuvering area at the bottom and top of the ramp
- Edges on the sides of the ramp that are clearly defined for people with visual impairments
- Limited right-of-way needed


## Inaccessible Ramp



Parallel ramp could be a solution to this non-compliant ramp

## Possible Solution to Inaccessible Ramp



Parallel ramp could be a solution to this non-compliant ramp

# Disadvantages of Parallel Curb Ramps 



Requires:

- Users continuing along the sidewalk negotiate ramp grades
- Careful attention must be given to the construction of the center level landing to limit the accumulation of water and/or debris


## 2 Parallel Curb Ramps



Disadvantage: Travelers staying on the sidewalk must negotiate 4 ramp grades

## Single Parallel Curb Ramp



Disadvantage: Travelers crossing are led into the center of the intersection

## Combined Parallel and Perpendicular Curb Ramps



- Lowers elevation of landing
- Perpendicular ramps connect landing and the street


## Combined Parallel and Perpendicular Curb Ramps

Enhances access where the sidewalk:

- Has a steep grade
- Has a high curb


## Advantages of Combined Parallel and Perpendicular Curb Ramps

- Provide the connection to the street within the marked crosswalk
- Are aligned with the crossing direction
- Provide the level maneuvering areas at the top and bottom of the ramps


## Disadvantages of Combined Parallel and Perpendicular Curb Ramps

- Generally require more space than a parallel curb ramp
- Require more extensive alterations in retrofit situations
- Require sidewalk users continuing along the sidewalk to negotiate the ramps


## Built-up Curb Ramps



## Built-up Curb Ramps

- Built-up curb ramps project from the curb into the gutter and street
- Usually oriented in the same direction as perpendicular curb ramps
- Are not commonly installed on sidewalks
- Frequently installed in parking lots


## Disadvantages of Built-up Curb Ramps

- Users are more exposed to cars in the roadway
- No clear boundary exists between the ramp and the street
- Adequate drainage may be difficult to achieve or may require more extensive alterations to the gutter and the street
- Edges can be hazardous


## Disadvantages of Built-up Curb Ramps

- Need to be protected by a parking lane
- Must not intrude on space for bicyclists nor interfere with bicycle travel
- Requires more maintenance, especially if driven over by cars parking


## Depressed Blended Corners



Designed as an expanded diagonal curb ramp that extends around the entire corner at the intersection

## Depressed Blended Corners



The level of the sidewalk, through an almost undetectable change in slope is lowered to meet the grade of the street

## Disadvantages of Depressed Blended Corners



Does not provide adequate information about the change from pedestrian to vehicular use - should only be installed with detectable warning on the full width of ramp

## Disadvantages of Depressed Blended Corners

- Allows large trucks to encroach onto the sidewalk to make tight turns, which puts pedestrians at risk
- Gives children and people with cognitive impairments the illusion that the sidewalk and the street are a unified pedestrian space (an unsafe illusion)


## Disadvantages of Depressed Blended Corners

- Guide animals may not distinguish the boundary and continue walking
- Motorists may encroach on the sidewalk, enabling them to turn at higher speeds and making it less likely that they will notice or be able to quickly stop for pedestrians


## Drainage

- To prevent standing water and debris from collecting at the bottom of curb ramps:
-The running grade of the ramp must be steeper than the counter grade of the gutter
-A steeper counter grade for the gutter can resume outside the ramp width


## Drainage

- To prevent standing water and debris from collecting at the bottom of curb ramps:
- Widen the gutter pan and flatten at the ramp
-Place inlets upstream of ramps


## Drainage Solution



Ramp running grade must be steeper than the counter grade of the gutter

## Drainage Solution



Steeper gutter counter grade can resume outside ramp width

## Drainage Solution



## Drainage Solution



Inlets need to be placed upstream of curb ramps


## Evaluating Curb Ramps



Curb ramp placement and design, as well as drainage and utilities, all need to be evaluated for optimum usability


What's wrong with this picture?

