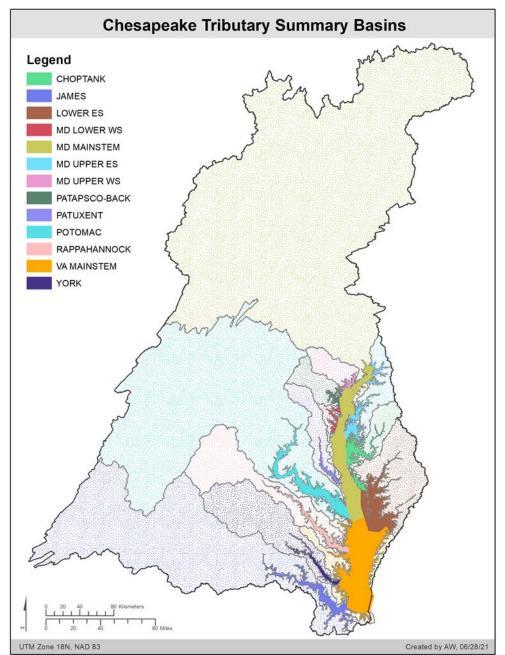
Update on Chesapeake Bay and Potomac River Tidal Monitoring Data

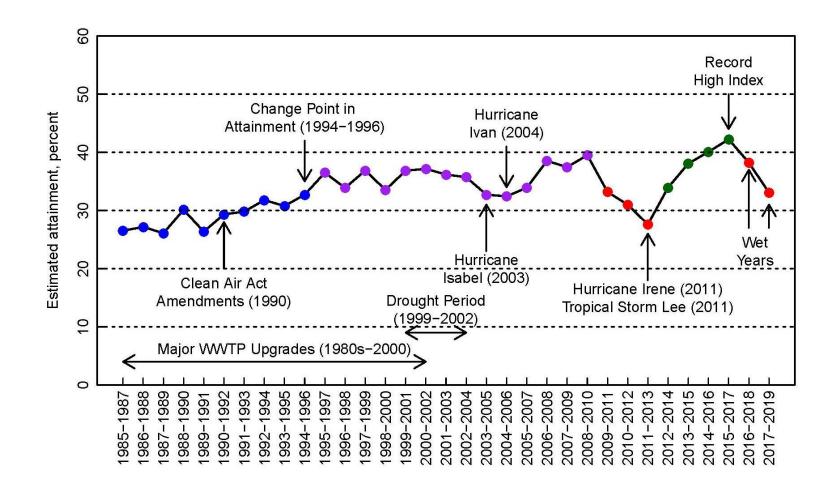

Nov. 5, 2021

COG Water Resources Technical Committee

Rebecca Murphy (UMCES at Chesapeake Bay Program)

In collaboration with CBP's Integrated Trends Team, including: Jeni Keisman (USGS), Renee Karrh (MDDNR), Qian Zhang (UMCES), Peter Tango (USGS), Jimmy Webber (USGS), and Olivia Devereux (Devereux Consulting)

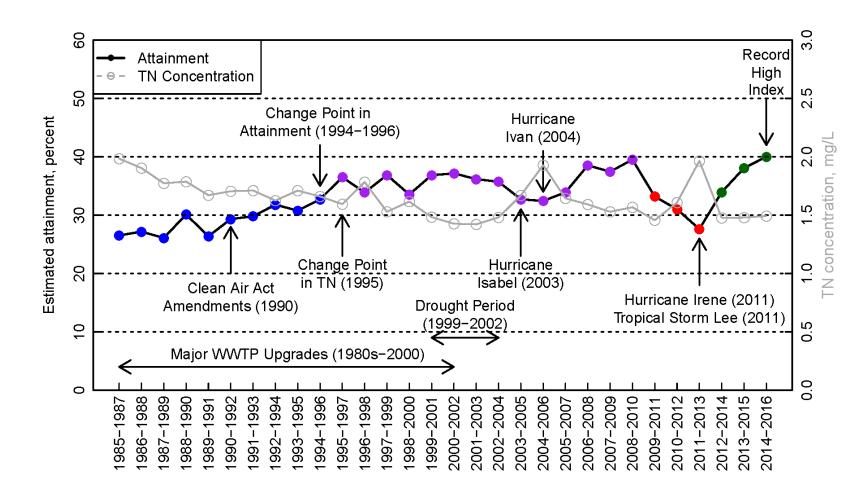
New ITAT leadership: Breck Sullivan (USGS) and Vanessa Van Note (EPA)


Outline

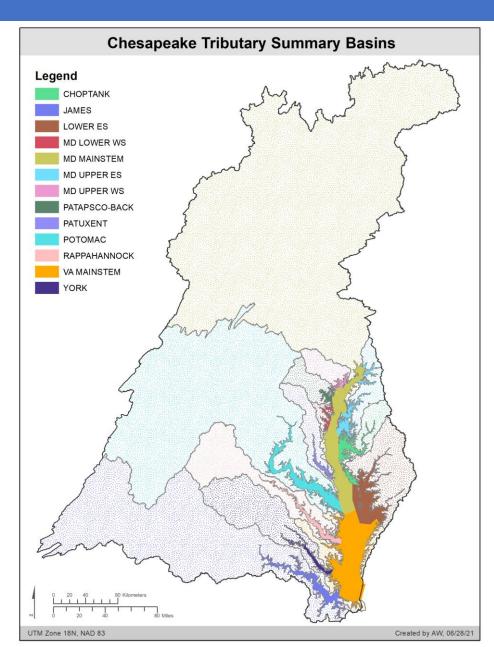
- Overview: Bay-wide attainment indicator
- Tributary Summaries
- Tidal Potomac data
- Tidal Maryland Mainstem data

Water quality standards attainment indicator

Long-term WQS indicator


- Reached its peak (42%) in 2015-2017 but dropped to 33% in 2017-2019.
- It is responsive to extreme weather events but can quickly recover afterwards.
- The indicator has a positive long-term trend (p < 0.05) in 1985-2019.

Slide from Qian Zhang (UMCES) and Peter Tango (UGSG)


Cause of the long-term improvement in the overall indicator?

- The improvement in the Baywide attainment was statistically linked to the decline of TN input from the watershed, suggesting the effectiveness of nutrient control actions.
- Additional factors (TP, flow, WTEMP, Secchi, etc.) are under investigation.

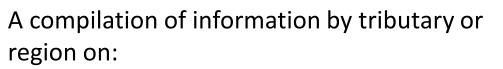
Slide from Qian Zhang (UMCES) and Peter Tango (UGSG)

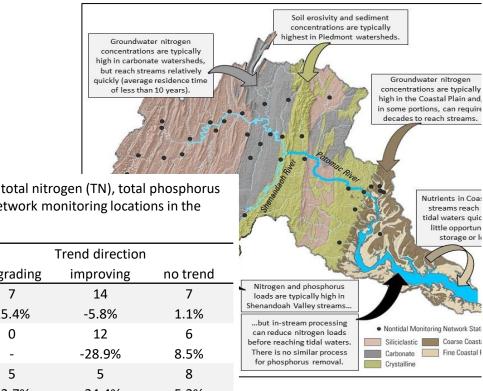
13 Tributary Trend Summaries

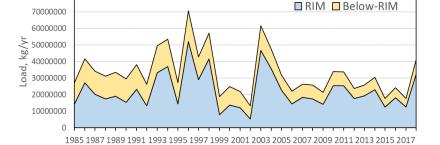
- Maryland Mainstem (The 5 Chesapeake Bay mainstem segments within the MD state boundary. Drainage basins include the Susquehanna River and upper Chesapeake shorelines)
- Maryland Upper Eastern Shore (The Northeast, Bohemia, Elk, Back Creek, Sassafras, and Chester Rivers, the C&D Canal, and Eastern Bay)
- Choptank (the Choptank, Little Choptank, and Honga)
- Maryland Upper Western Shore (Bush, Gunpowder, Middle Rivers)
- Maryland Lower Western Shore (Magothy, Severn, South, Rhode, and West)
- Patapsco & Back Rivers
- Patuxent (includes the Western Branch tributary)
- Potomac
- Rappahannock (includes the Corrotoman tributary)
- York (includes the Mattaponi and Pamunkey tributaries)
- James (includes the Appomattox, Chickahominy, and Elizabeth tributaries)
- Lower E. Shore (includes the Nanticoke, Manokin, Wicomico, Big Annemessex, and Pocomoke rivers & Tangier Sound)
- Virginia Mainstem (no summary but Appendices are provided)

Available for download

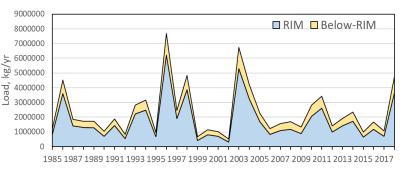
https://cast.chesapeakebay.net/ **Chesapeake Assessment Scenario Tool** DI LOG IN 2 HOME PUBLIC REPORTS LEARNING ABOUT CONTACT US **Chesapeake Assessment Scenario** RESOURCES HOME PUBLIC REPORTS LEARNING ABOUT CONTACT US DEVELOP A PLAN SOURCE DATA BMPS Get answers to your guestions about how to Download data tables including information View information on best man use CAST to develop a plan. practices (BMPs) including calcu on load sources and agencies, BMPs, animals, geographic references and delivery quick reference quide, and prot factors. expert panel reports. The following information is available below: Develop A Plan **View Source Data** Learn More Phase 3 WIP BMP Information Progress Trends Over Time · Phase MAP TOOLS & SPATIAL DATA COSTS TRACK PROGRES · BMPs implemented Code: View geographical information and Download BMP costs data and view cost View helpful information on ver · Loads delivered to the streams and NEIEN profiles for each state and Chesapeake Bay river trends, how to submit progres shapefiles. NEIEN, and modeling Federal fa Watershed. Bay Docur Wastewater NEIEI Learn More Learn More rack Progre · CAST Nutrients applied to the land Animal numbers Septic systems Chesapeake Bay Program Office Software Release: 6.10.1 **Tributary Summaries** Estuary Summaries Tributary Summaries The Chesapeake Bay Program and its partners compiled tributary basin summaries for 12 major tributaries or tributary groups in the Chesapeake Bay River Trends Watershed. These documents summarize the following in one place: 1) How tidal water quality changes over time; 2) How factors that drive those changes change over time; and, 3) Current state of the science on connecting change in aquatic conditions to its drivers. · Choptank (includes the Choptank, Little Choptank, and Honga) Summary, Appendix · Potomac: Summary, Appendices, Story Map · Maryland Mainstem (includes the five Chesapeake Bay mainstem segments within the Maryland state boundary. Drainage basins include the Susquehanna River and upper Chesapeake Bay shorelines) Summary, Appendix · Maryland Upper Eastern Shore (includes the Northeast, Bohemia, Elk, Back Creek, Sassafras, and Chester Rivers, the Chesapeake & Delaware Canal, and Eastern Bay) Summary, Appendix · Maryland Upper Western Shore (includes the Bush, Gunpowder, and Middle rivers) Summary, Appendix · Maryland Lower Western Shore (includes the Magothy, Severn, South, Rhode, and West rivers) Summary, Appendix · Patapsco and Back Summary, Appendix · Patuxent (includes the Western Branch tributary) Summary, Appendix · Rappahannock (includes the Corrotoman tributary) Summary, Appendices · York (includes the Mattaponi and Pamunkey tributaries) Summary, Appendices James (includes the Appomattox, Chickahominy, and Elizabeth Tributaries) Summary, Appendix · Lower E. Shore (includes the Nanticoke, Manokin, Wicomico, Big Annemessex, and Pocomoke Rivers, and Tangier Sound) Summary, Appendix · Virginia Mainstem: Summary not available, Appendices


What are the Tributary Summaries?


What are the Tributary Summaries?


Potomac TN Load

80000000



- Tidal water quality and trends,
- Watershed characteristics and changes

Potomac SS Load

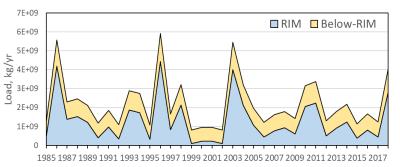
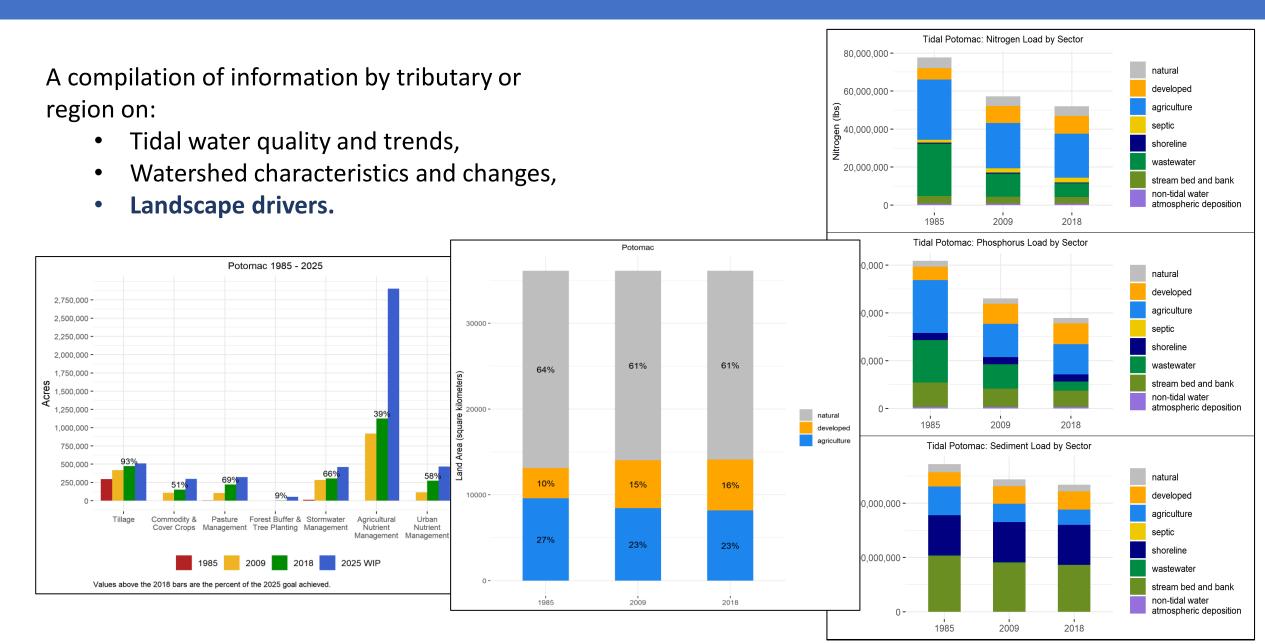
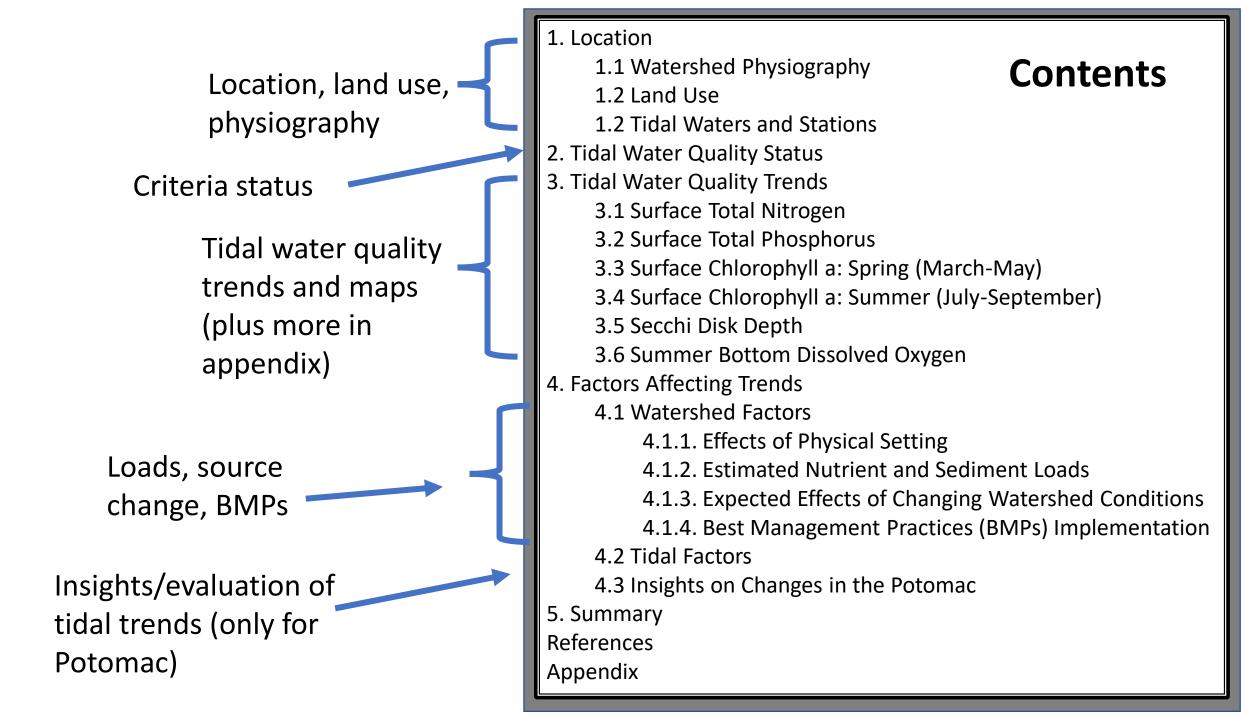




Table 3. Trends (2009 – 2018) in flow normalized total nitrogen (TN), total phosphorus (TP), and suspended sediment (SS) for nontidal network monitoring locations in the Potomac River watershed.

Parameter	No. of	Value	Trend direction					
Farameter	stations	value	degrading	improving	no trend			
TN	20	n	7	14	7	_ t		
TN	28	median %	15.4%	-5.8%	1.1%			
TD	10	n	0	0 12 6				
ТР	18	median %	-	-28.9%	8.5%			
555	10	n	5	5	8			
SSC	18	median %	23.7%	-24.4%	5.2%			

What are the Tributary Summaries?

Audience

Technical managers within jurisdiction agencies Local watershed organizations Federal, state, and academic researchers

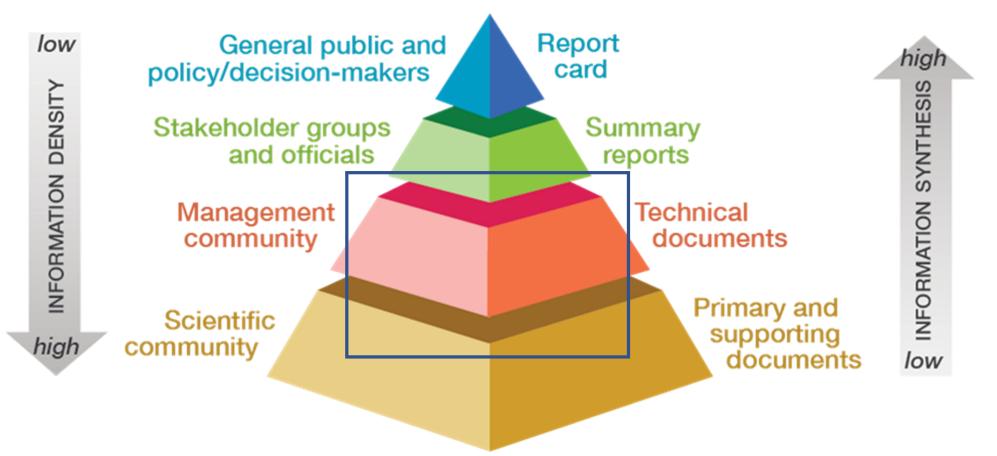
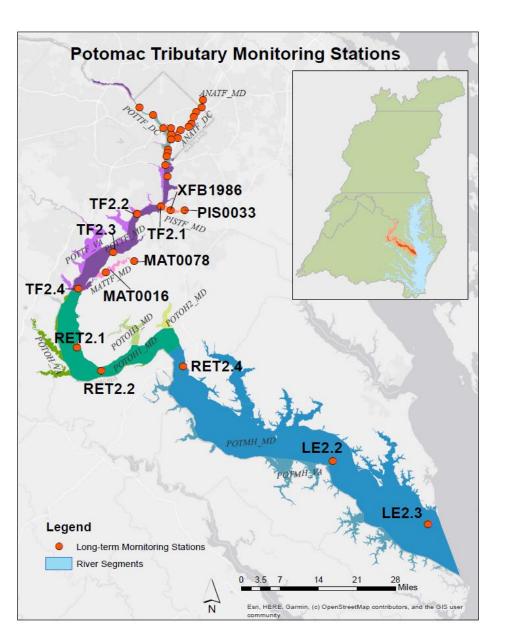


Figure courtesy UMCES Integration and Application Network, ian.umces.edu

Questions the tributary summaries can answer

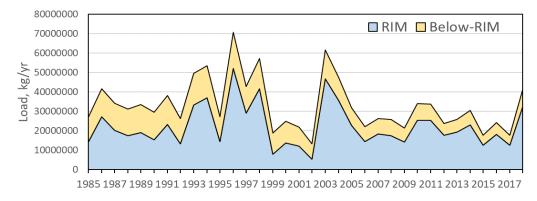

- 1. Have water quality indicators in my river been improving or degrading over time?
- 2. How have landscape factors that drive water quality change in my watershed changed over time?
- 3. What clues do they provide that might explain observed water quality change (or lack of change)?
- 4. What should I target to turn a degrading trend around or maintain improvements for future water quality and living resource conditions?
- 5. What should scientists focus our analyses on to provide better answers in the future?

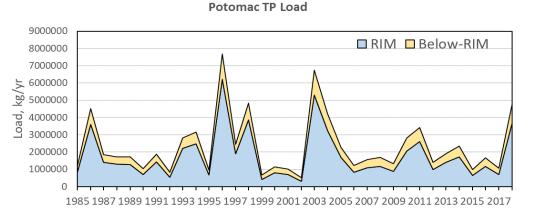
Potomac Tributary Report

- Completed Dec, 2020.
- Uses data from 1985-2018.

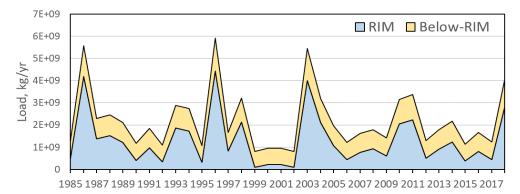
Keisman, J., Murphy, R. R., Devereux, O.H., Harcum, J., Karrh, R., Lane, M., Perry, E., Webber, J., Wei, Z., Zhang, Q., Petenbrink, M. 2020. Potomac Tributary Report: A summary of trends in tidal water quality and associated factors. Chesapeake Bay Program, Annapolis MD.

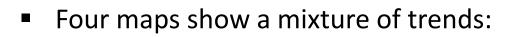
 Story Map produced by USGS: <u>https://wim.usgs.gov/geonarrative/potomactrib/</u>



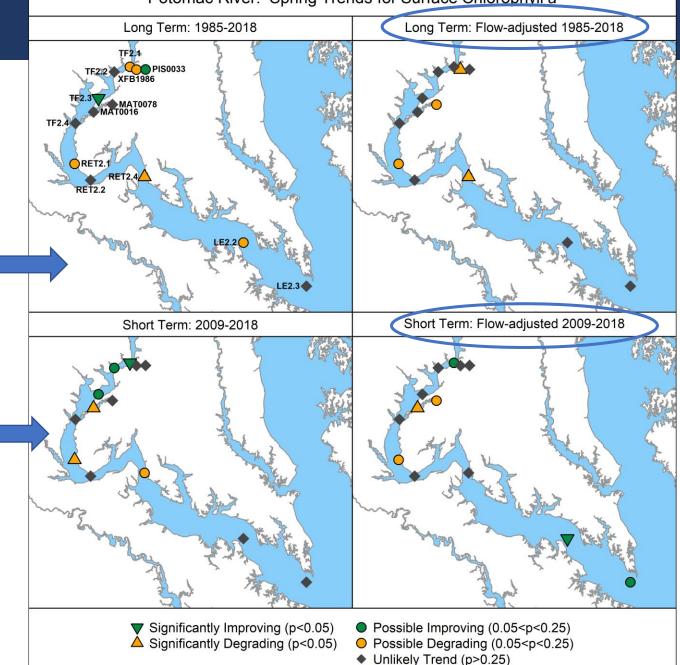

Potomac: Loads

- True condition loads are highly variable due to freshwater flow,
- BUT these are what directly impact estuarine water quality.
 - Trend results show that total TN has decreased, total TP has no trend.
 - Point source loads have decreased for both.
- Note that "flow-normalized" loads are mostly decreasing in the watershed.


Total estimate of observed loads to tidal Potomac

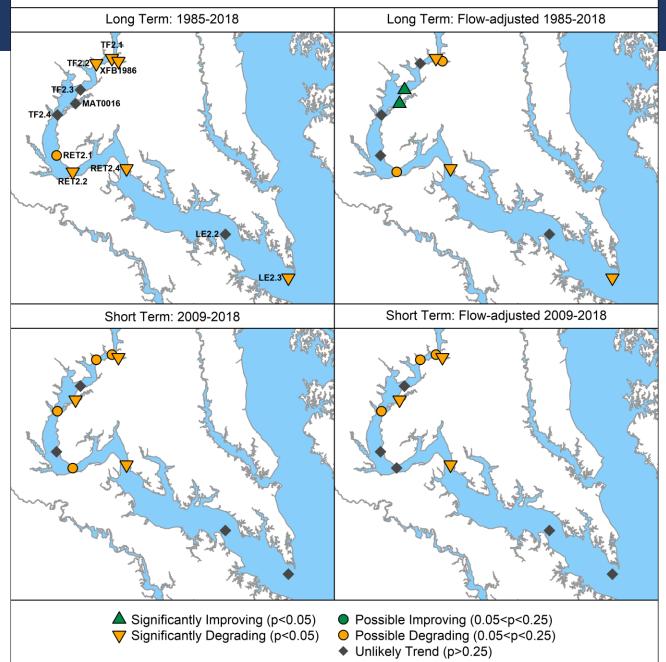


Potomac SS Load



Potomac: Chlorophyll *a*

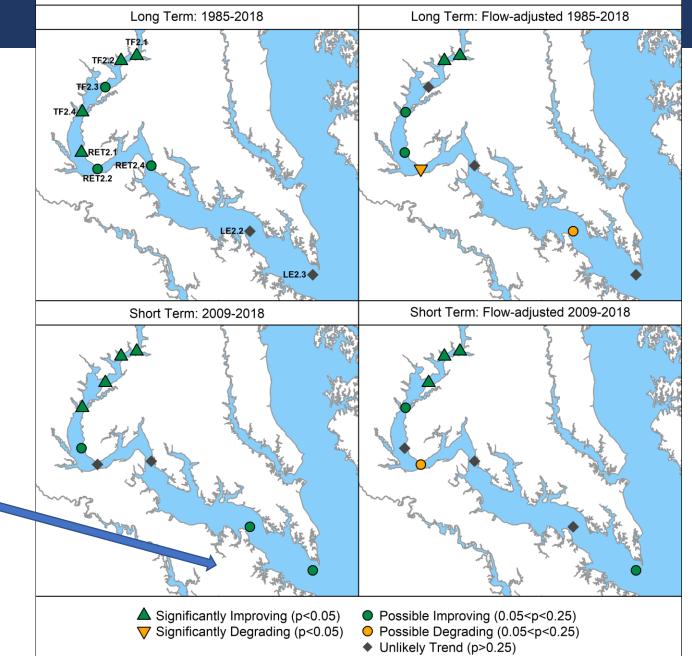
Potomac River: Spring Trends for Surface Chlorophyll a


- Long term observed change
- Long term flow-adjusted change (i.e., if flow had been average)
- Recent 10-year observed change
- 10-year flow-adjusted

Potomac: Secchi

Potomac River: Annual Trends for Surface Secchi

- Secchi as a measure of visibility through the water shows mostly degradation or no trend.
- Fairly consistent with chlorophyll *a*.



Potomac: Bottom DO

Potomac River: Summer Trends for Bottom DO

 Summer (June-Sept) bottom DO is improving at many stations overall.

 Possible improvements over the shortterm at the deepest stations are a good sign too (and consistent with other deep places in the Bay).

Potomac: WQ Criteria

Open Water Summer Criteria Status

- We include a record of the evaluation results indicating whether different Potomac segments have met or not met specific WQ criteria for DO.
- Open Water summer

time period	ANATF_ DC	ANATF_ MD	PISTF	MATTF	POTTF_ DC	POTTF_M D	POTTF_ VA	POTOH1_ MD	POTOH2_ MD	РОТОН3_ МD	РОТОН_V А	POTMH_ MD	POTMH_ VA
1985-1987							ND		ND	ND	ND		ND
1986-1988							ND		ND	ND	ND		ND
1987-1989							ND		ND	ND	ND		ND
1988-1990							ND		ND	ND	ND		ND
1989-1991							ND		ND	ND	ND		ND
1990-1992							ND		ND	ND	ND		ND
1991-1993							ND		ND	ND	ND		ND
1992-1994							ND		ND	ND	ND		ND
1993-1995							ND		ND	ND	ND		ND
1994-1996							ND		ND	ND	ND		ND
1995-1997							ND		ND	ND	ND		ND
1996-1998							ND		ND	ND	ND		ND
1997-1999							ND		ND	ND	ND		ND
1998-2000							ND		ND	ND	ND		ND
1999-2001							ND		ND	ND	ND		ND
2000-2002							ND		ND	ND	ND		ND
2001-2003							ND		ND	ND	ND		ND
2002-2004									ND	ND			
2003-2005									ND	ND			
2004-2006													
2005-2007													
2006-2008													
2007-2009													
2008-2010													
2009-2011									ND	ND			
2010-2012									ND	ND			
2011-2013									ND	ND			
2012-2014									ND	ND			
2013-2015									ND	ND			
2014-2016									ND	ND			
2015-2017									ND	ND			
2016-2018									ND	ND			

Potomac: WQ Criteria

 Also deep channel and deep water criteria status over time for Potomac segments

Deep Water and Channel Status

	Deep Water		Deep Channel		
	Deep ∑ ⊇				
time period	POTM H_MD	POTM H_VA	POTM H_MD	POTM H_VA	
1985-1987		ND		ND	
1986-1988		ND		ND	
1987-1989		ND		ND	
1988-1990		ND		ND	
1989-1991		ND		ND	
1990-1992		ND		ND	
1991-1993		ND		ND	
1992-1994		ND		ND	
1993-1995		ND		ND	
1994-1996		ND		ND	
1995-1997		ND		ND	
1996-1998		ND		ND	
1997-1999		ND		ND	
1998-2000		ND		ND	
1999-2001		ND		ND	
2000-2002		ND		ND	
2001-2003		ND		ND	
2002-2004				ND	
2003-2005				ND	
2004-2006					
2005-2007					
2006-2008					
2007-2009					
2008-2010					
2009-2011					
2010-2012		ND		ND	
2011-2013				ND	
2012-2014				ND	
2013-2015				ND	
2014-2016				ND	
2015-2017				ND	
2016-2018				ND	

Potomac: Criteria

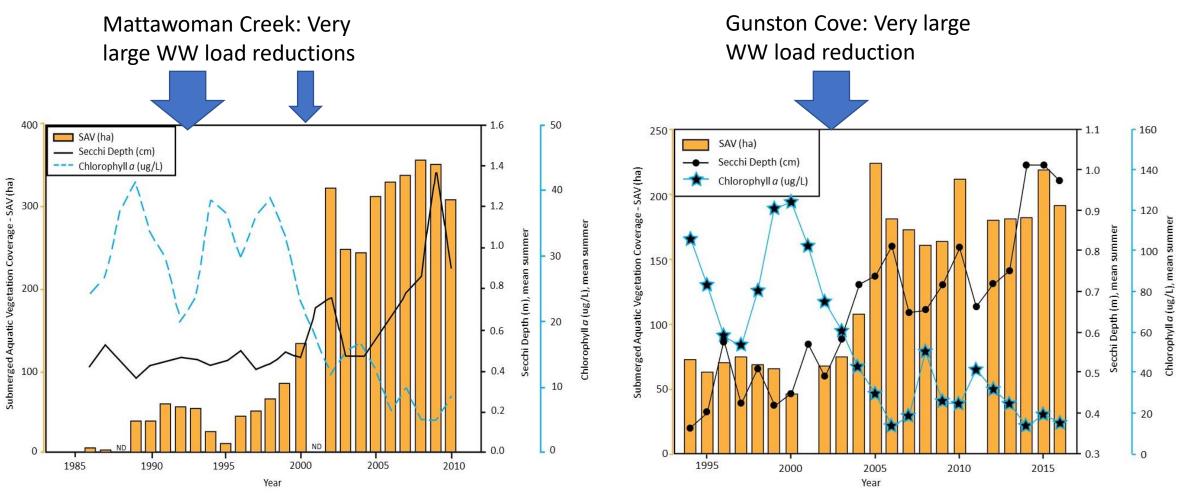
Open Water DO Status ('16-'18) and Deep Channel DO Status ('16-'18) and Trends for Summer Surface DO ('85-'18) Trends for Summer Bottom DO ('85-'18) Status Type of trend Significant (p<0.05) Possible (0.05<p<0.25) Not meeting criterion Degrading Degrading Meeting criterion 25 50 Improving Improving Not applicable

Unlikely (p>0.25)

Not sufficient data

km

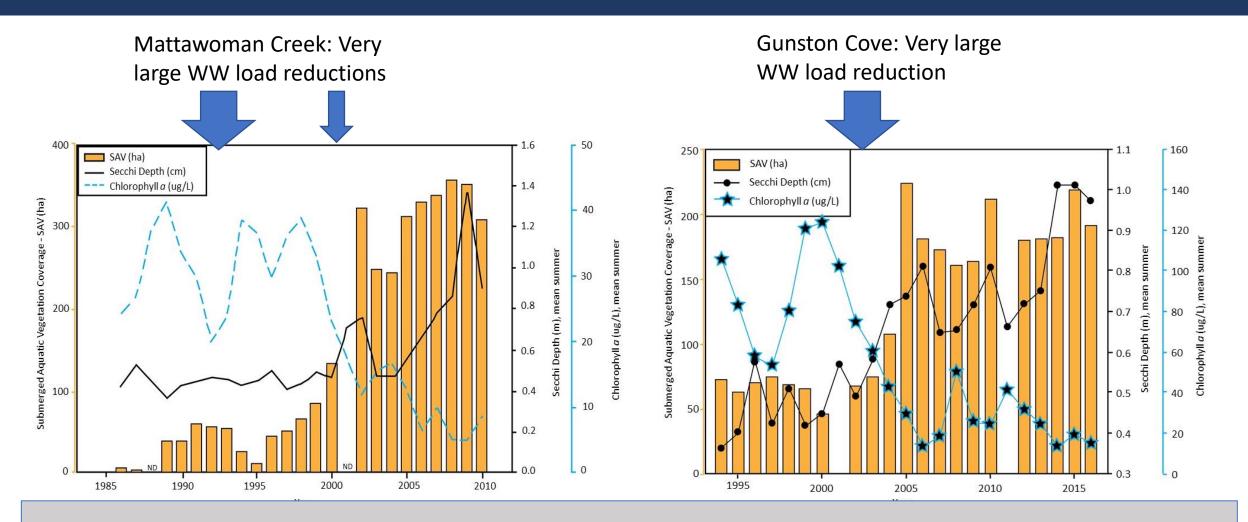
 Status and trends in relevant DO combined


Potomac: Insights section

\rightarrow How do tidal waters respond to actions in the watershed?

Two important findings:

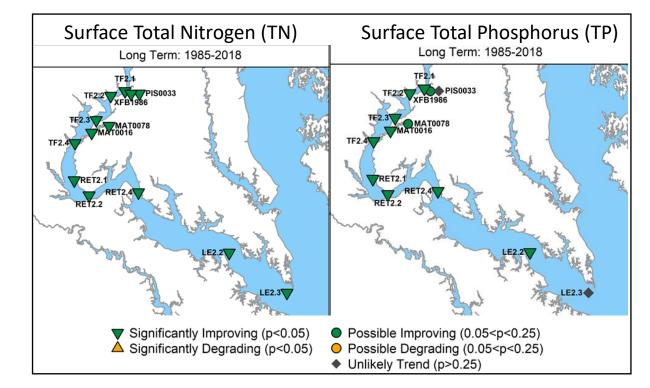
- 1. Local response to large nutrient reductions happens and is clearly shown with the data.
- 2. Long-term response to watershed-wide nutrient reductions is happening in the tidal waters.


1) Local response to large nutrient reductions happens

Algal biomass (as chlorophyll *a*), Secchi depth, and SAV acreage for the period 1994 – 2016 in Gunston Cove. From Jones *et al.* (2017).

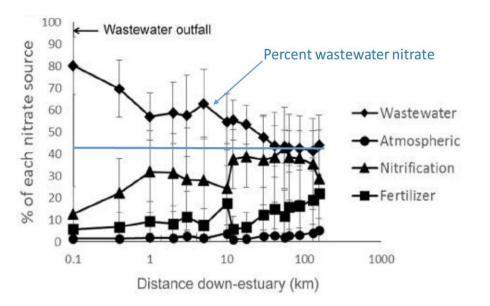
SAV coverage (ha), water clarity (Secchi disk depth), and algal biomass (chlorophyll *a* concentration) in Mattawoman Creek. From Boynton *et al.* (2014).

1) Local response to large nutrient reductions happens

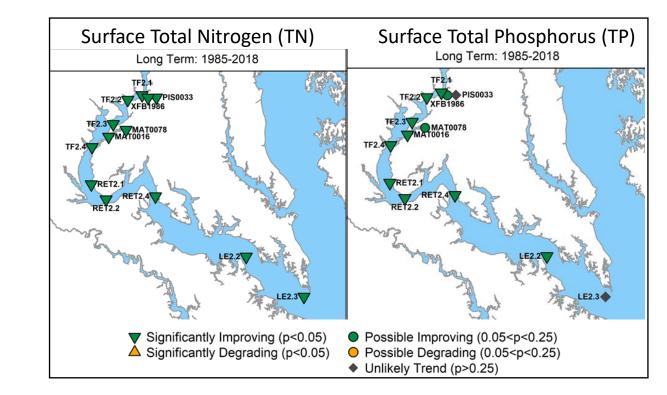

<u>What this tells us:</u> This data clearly shows that investment in large-scale nutrient reductions is successful for improving water quality dramatically in local systems.

2) Long-term response to watershed changes is happening

- Over the long-term, nutrient loads have decreased across the Potomac watershed.
- Tidal nutrient concentrations have decreased at almost all tidal stations.

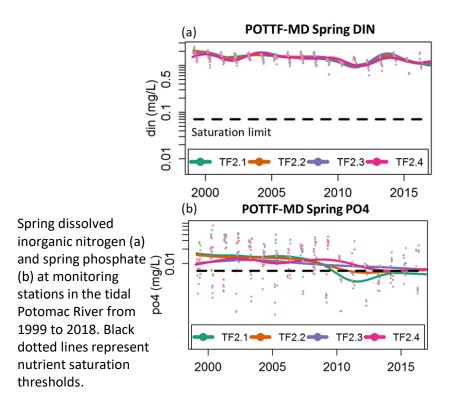

Table 3. Trends (2009 – 2018) in flow normalized total nitrogen (TN), total phosphorus (TP), and suspended sediment (SS) for nontidal network monitoring locations in the Potomac River watershed.

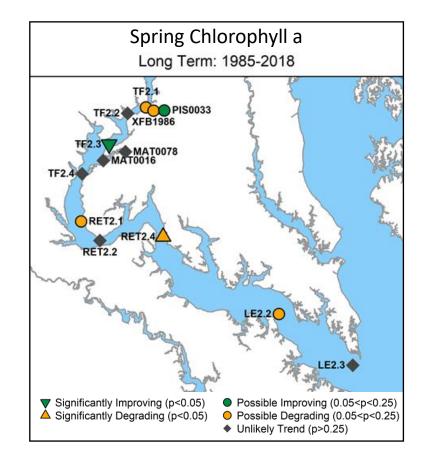
Parameter	No. of	Value	Trend direction			
Faranieter	stations	value	degrading	improving	no trend	
	20	n	7	14	7	
TN	28	median %	15.4%	-5.8%	1.1%	
тр	10	n	0	12	6	
TP	18	median %	-	-28.9%	8.5%	
550	10	n	5	5	8	
SSC	18	median %	23.7%	-24.4%	5.2%	



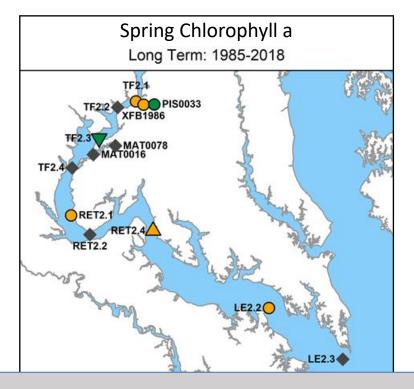
2) Long-term response to watershed changes is happening

 These tidal trends are not just local response, but have been shown to be impacted by loads from many types of sources.



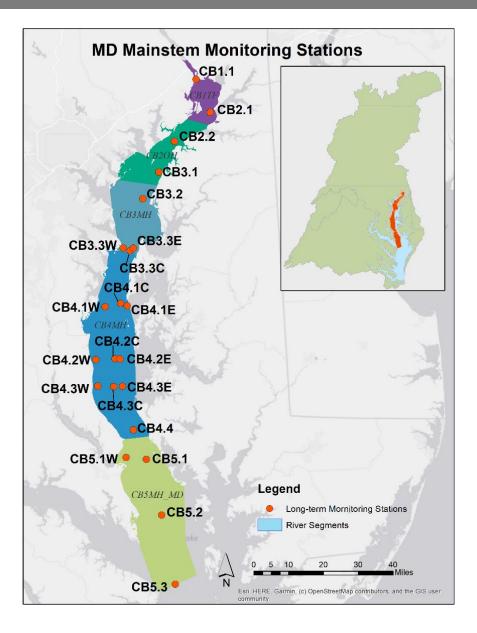

Mean annual change in the percent contribution of nitrate from wastewater, fertilizer, atmospheric deposition, and nitrification, based on an isotope mixing model, with distance down-estuary from wastewater treatment plant output. Adapted from Pennino *et al.* (2016).

2) Large-scale, long-term response is happening


- Other water quality responses are not as clear
- But research shows there is a reason: Nutrients have improved, but still need to be lower to limit phytoplankton growth in most places.

2) Large-scale, long-term response is happening

- Other water quality responses are not as clear
- But research shows there is a reason: Nutrients have improved, but still need to be lower to limit phytoplankton growth in most places.

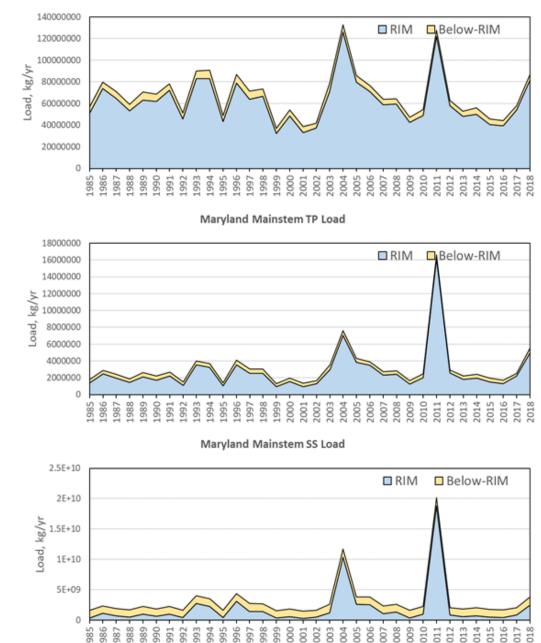

<u>What this tells us:</u> The data shows that watershed-wide nutrient reductions have improved nutrients in the Potomac. The science supports the conclusion that with more reductions, improvements will continue.

Potomac Summary

- Nutrient load and concentration reductions have occurred, but may have slowed in recent years.
- Response in the estuary is clear:
 - Nutrient trends,
 - Some DO improvement, and
 - Local case studies with large improvements.
- More improvement is expected with continued action.

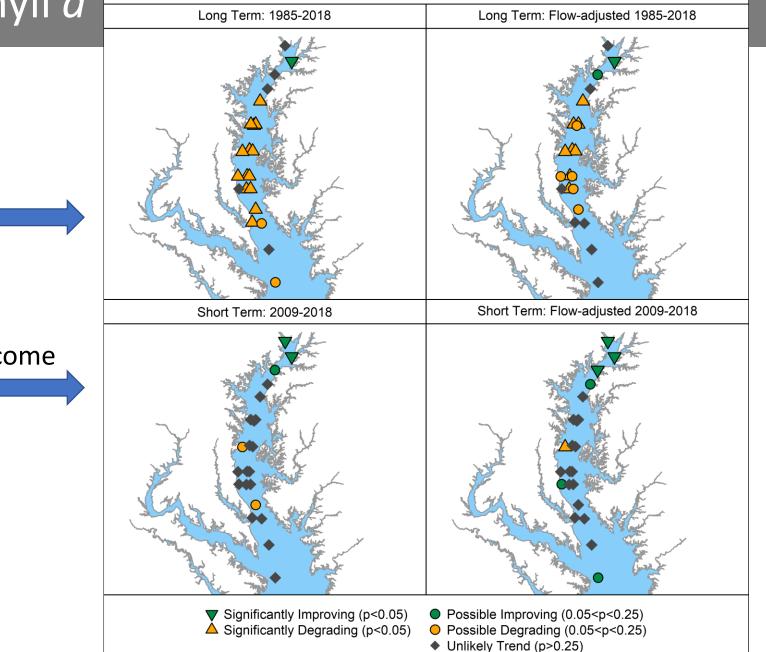
Maryland Mainstem Tributary Summary

- Focused on fixed-station monitoring in MD mainstem.
- Watershed graphics/summaries are mostly for Susquehanna watershed plus some near-tidal regions.
 - Although we know that these waters are influenced by much of the whole Bay watershed.



MD Mainstem: Loads

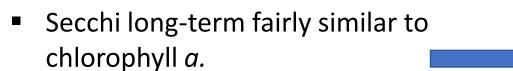
- Just like the Potomac, huge variability year-to-year of inputs to the estuary.
- But flow-normalized decrease in TN and increase in TP over this period.


Loads to tidal MD Mainstem (primarily Susquehanna)

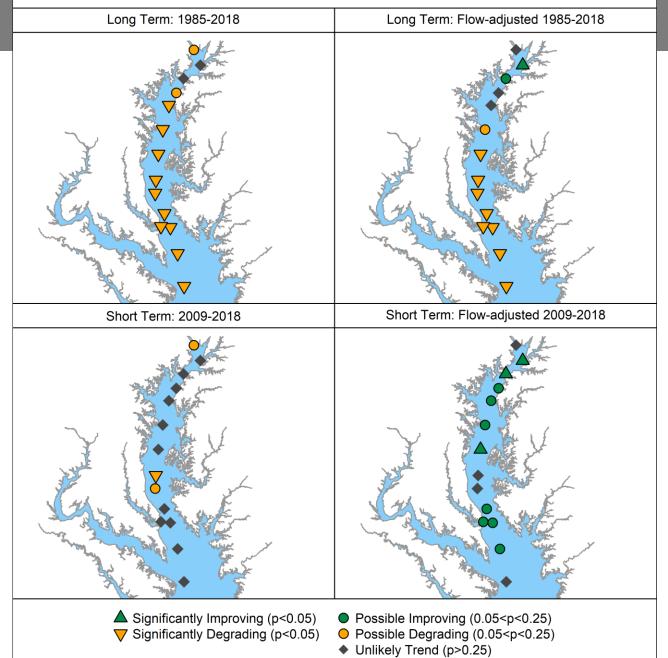
Maryland Mainstem TN Load

MD Mainstem: Chlorophyll a

MD Mainstem: Spring Trends for Surface Chlorophyll a

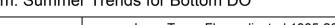


Long term decrease in tidal fresh but increase in saltier regions.

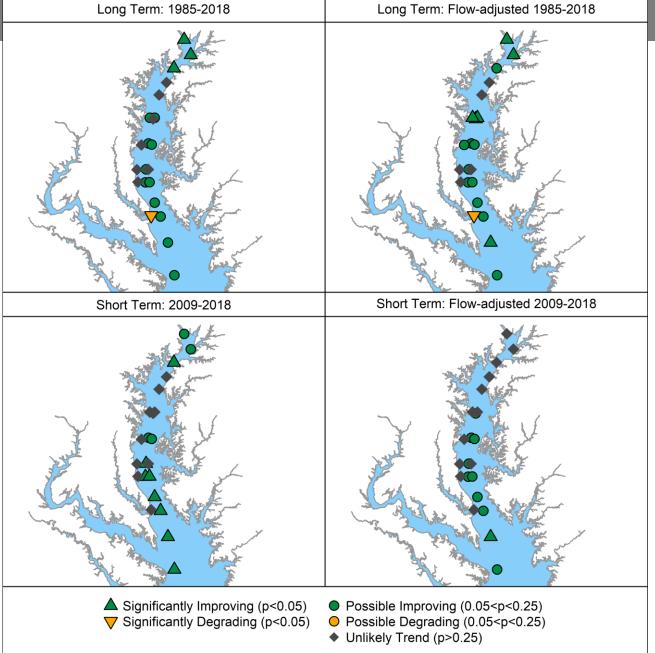

 Short-term, many increases have become "no trend."

MD Mainstem: Secchi

MD Mainstem: Annual Trends for Surface Secchi



 But short-term is showing even more improvements after accounting for flow.


MD Mainstem: Bottom DO

MD Mainstem: Summer Trends for Bottom DO

This is June-Sept bottom DO.

 Many long- and short-term improvements across these stations.

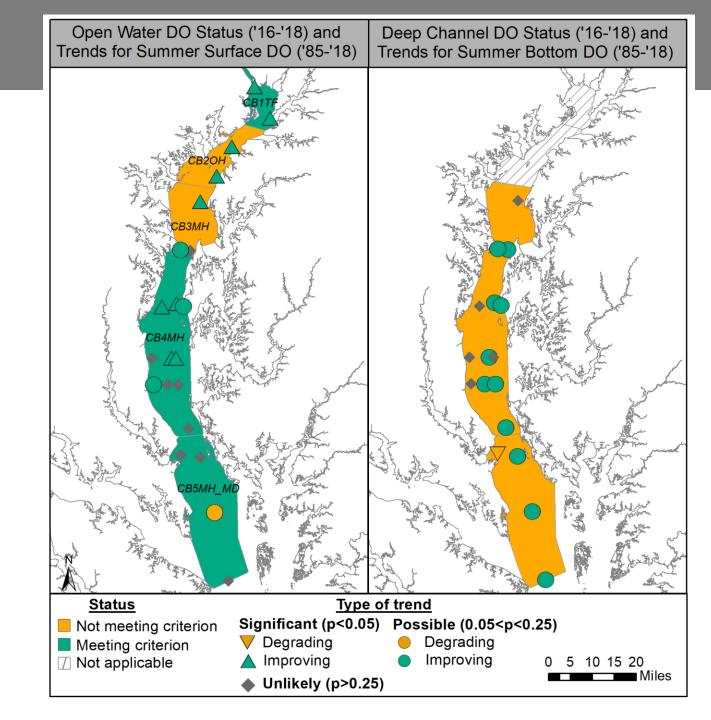
MD Mainstem: Criteria

Open water summer DO status is fairly consistent across segments.

Open Water Summer C	Criteria Status
---------------------	-----------------

Time Period	CB1TF	CB2OH	CB3MH	CB4MH	CB5MH_MD
1985-1987					
1986-1988					
1987-1989					
1988-1990					
1989-1991					
1990-1992					
1991-1993					
1992-1994					
1993-1995					
1994-1996					
1995-1997					
1996-1998					
1997-1999					
1998-2000					
1999-2001					
2000-2002					
2001-2003					
2002-2004					
2003-2005					
2004-2006					
2005-2007					
2006-2008					
2007-2009					
2008-2010					
2009-2011					
2010-2012					
2011-2013					
2012-2014					
2013-2015					
2014-2016					
2015-2017					
2016-2018					

MD Mainstem: Criteria


Deep Water and Deep Channel Summer DO

 Deep water and channel criteria have never been met.

Time Period	d Deep Water			Deep Channel				
	CB3MH	CB4MH	CB5MH_MD	СВЗМН	CB4MH	CB5MH_MD		
1985-1987								
1986-1988								
1987-1989								
1988-1990								
1989-1991								
1990-1992								
1991-1993								
1992-1994								
1993-1995								
1994-1996								
1995-1997								
1996-1998								
1997-1999								
1998-2000								
1999-2001								
2000-2002								
2001-2003								
2002-2004								
2003-2005								
2004-2006								
2005-2007								
2006-2008								
2007-2009								
2008-2010								
2009-2011								
2010-2012								
2011-2013								
2012-2014								
2013-2015								
2014-2016								
2015-2017								
2016-2018								

MD Mainstem: Criteria

 Improvements in segments that are not meeting the criteria is promising.

Summary and research questions

- **Key unexplained changes:** Increasing chlorophyll *a* and lack of improvement in Secchi depth.
 - We see this in multiple tributaries.
 - Nutrient concentrations are still high despite reductions, meaning limitation of algae growth is not occurring all the time.
- But:
 - Nutrient loads have gone down from sources in the watershed, and we see decreasing nutrient concentrations in the estuary.
 - Oxygen is responding in some places, particularly in the mesohaline Potomac and the mainstem bay.

- Rebecca Murphy, UMCES/CBP: rmurphy@chesapeakebay.net
- New ITAT leadership and coordination of Trib Summaries:
 - Breck Sullivan, USGS: bsullivan@chesapeakebay.net
 - Vanessa Van Note, EPA: VanNote.Vanessa@epa.gov