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e Overview: Bay-wide attainment indicator
* Tributary Summaries

* Tidal Potomac data

* Tidal Maryland Mainstem data



Water quality standards attainment indicator

Long-term WQS indicator ) —
e Reached its peak (42%) in - Change Point in lurficae J
Attainment (1 994-1 996) van (2004)
2015-2017 but dropped to o

A ————————— .\L-----\L .................................

33%in 2017-20109.

* [tisresponsive to extreme
weather events but can

Estimated attainment, percent
20

Clean Air Act Isabel (2003) -
. A q s (1990 b ht Period Hurricane Irene (2011)
quickly recover afterwards. SRS {1 82) raught Perin Tropical Storm Lee (2011)
o S (1999:2002) ... ]
e The indicator has a positive < Major WWTP Upgrades (19803—2000)>

| | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | |
long-term trend (p < 0.05) " 5228595388538 3580388588 200 eer®0
: 2202200220222 3888 R8RSR ]R88%
in 1985-2019. boldddlddblibdloddldddbdlddbdliddibol
0 00 00 00 00 ) A A OO O OO OO0 OO0 000 «— — «— «— « « — o
O OOOOO OO0 OO0 00 000 0000 00000000000 0O 0O
vvvvvvvvvvvvvvv AN AN AN ANNANNNNNNNNNNNNN

Slide from Qian Zhang (UMCES) and Peter Tango (UGSG)



Cause of the long-term improvement in the overall indicator?
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13 Tributary Trend Summaries

Chesapeake Tributary Summary Basins
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Maryland Mainstem (The 5 Chesapeake Bay mainstem segments within the
MD state boundary. Drainage basins include the Susquehanna River and
upper Chesapeake shorelines)

Maryland Upper Eastern Shore (The Northeast, Bohemia, Elk, Back Creek,
Sassafras, and Chester Rivers, the C&D Canal, and Eastern Bay)

Choptank (the Choptank, Little Choptank, and Honga)

Maryland Upper Western Shore (Bush, Gunpowder, Middle Rivers)
Maryland Lower Western Shore (Magothy, Severn, South, Rhode, and West)
Patapsco & Back Rivers

Patuxent (includes the Western Branch tributary)

Potomac

Rappahannock (includes the Corrotoman tributary)

York (includes the Mattaponi and Pamunkey tributaries)

James (includes the Appomattox, Chickahominy, and Elizabeth tributaries)

Lower E. Shore (includes the Nanticoke, Manokin, Wicomico, Big
Annemessex, and Pocomoke rivers & Tangier Sound)

Virginia Mainstem (no summary but Appendices are provided)



Available for downloa

https://cast.chesapeakebay.net/

'S o Chesapeake Assessment Scenario Tool

#) LOG IN

HOME PUBLIC REPORTS LEARNING ABOUT CONTACTUS
New to CAST?
Rapidly develop scenarios for nitrogen, phosphorus, and sediment with varying best
managément practices to streamiine‘environmental planning.
Register for increased functionality and to stay updated....

Where To Start

RESOURCES

Chesapeake Assessment Seenario

DEVELOP A PLAN

Get answers to your questions about how to
use CAST to develop a plan

Develop A Plan

MAP TOOLS & SPATIAL DATA

View geographical information and
shapefiles

Leam More

SOURCE DATA

Download data tables including information
on load sources and agencies, BMPs,
animals, geographic references and delivery
factors.

View Source Data

COsTs

Download BMP costs data and view cost
profiles for each state and Chesapeake Bay
Watershed.

Lean More

Chesapeake Bay Program Office

Software Release 610 1

BMPS

View information on best manage
practices (BMPs) including calcula

quick reference guide, and protoc|
expert panel reports

Leamn More

TRACK PROGRESS

View helpful information on verifi
river trends, how to submit progress|
NEIEN, and modeling Federal fac|

Track Progress

HOME PUBLIC REPORTS LEARNING ABOUT CONTACTUS

The following information is available below:

« Phase 3 WIP BMP Information « Progress Ranadinn
« Trends Over Time o Phasqg
o BMPs implemented o Codeq l
o Loads delivered to the streams and o NEIEN
Bay o Docur]
o Wastewater o NEIEN
o Nutrients applied to the land o CAST]

o Animal numbers
o Septic systems

Tributary Summaries

The Chesapeake Bay Program and its partners compiled tributary basin summaries for 12 major tributaries or fributary groups in the Chesapeake Bay
Watershed. These documents summarize the following in one place: 1) How tidal water quality changes over time; 2) How factors that drive those changes
change over time; and, 3) Current state of the science on connecting change in aguatic conditions to its drivers.

Choptank (includes the Choptank, Little Choptank, and Honga) Summary, Appendix

Potomac: Summary, Appendices, Story Map

Maryland Mainstem (includes the five Chesapeake Bay mainstem segments within the Maryland state boundary. Drainage basins include the Susquehanna
River and upper Chesapeake Bay shorelines) Summary, Appendix

IMaryland Upper Eastern Shore (includes the Northeast, Bohemia, Elk, Back Creek, Sassafras, and Chester Rivers, the Chesapeake & Delaware Canal, and
Eastern Bay) Summary, Appendix

IMaryland Upper Western Shere (includes the Bush, Gunpowder, and Middle rivers) Summary, Appendix

IMaryland Lower Western Shere (includes the Magothy. Severn, South, Rhode, and West rivers) Summary, Appendix

Patapsco and Back Summary, Appendix

Patuxent (includes the Westemn Branch tributary) Summary, Appendix

Rappahannock (includes the Corrotoman tributary) Summary, Appendices

York (includes the Mattaponi and Pamunkey tributaries) Summary, Appendices

James (includes the Appomattox, Chickahominy, and Elizabeth Tributaries) Summary, Appendix

Lower E. Shore (includes the Nanticoke, Manokin, Wicomico, Big Annemessex, and Pocomoke Rivers, and Tangier Sound) Summary, Appendix

Virginia Mainstem: Summary not available, Appendices



https://cast.chesapeakebay.net/

What are the Tributary Summaries?

A compilation of information by tributary or

region on:

* Tidal water quality and trends

Potomac River: Annual Trends for Surface Total Nitrogen

Long Term: 1985-2018

Long Term: Flow-adjusted 1985-2018
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What are the Tributary Summaries?

Potomac TN Load
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What are the Tributary Summaries?

A compilation of information by tributary or

region on:

* Tidal water quality and trends,
 Watershed characteristics and changes,

* Landscape drivers.
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1. Location

i 1.1 Watershed Physiography
Location, land use, L5 Land Use Contents
physiography 1.2 Tidal Waters and Stations
2. Tidal Water Quality Status
Criteria status 3. Tidal Water Quality Trends

3.1 Surface Total Nitrogen
3.2 Surface Total Phosphorus
3.3 Surface Chlorophyll a: Spring (March-May)

Tidal water quality

trends and maps 3.4 Surface Chlorophyll a: Summer (July-September)

(plus more in 3.5 Secchi Disk Depth

appendix) 3.6 Summer Bottom Dissolved Oxygen

4. Factors Affecting Trends
4.1 Watershed Factors
4.1.1. Effects of Physical Setting

Loads, source 4.1.2. Estimated Nutrient and Sediment Loads
change, BMPs 4.1.3. Expected Effects of Changing Watershed Conditions

4.1.4. Best Management Practices (BMPs) Implementation
4.2 Tidal Factors

Insights/evaluation of/ 4.3 Insights on Changes in the Potomac

tidal trends (only for >- Summary
References

Potomac) Appendix
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Figure courtesy UMCES Integration and Application Network, ian.umces.edu



http://ian.umces.edu/

Questions the tributary summaries can answer

. Have water quality indicators in my river been improving or degrading over time?

. How have landscape factors that drive water quality change in my watershed
changed over time?

. What clues do they provide that might explain observed water quality change (or
lack of change)?

. What should | target to turn a degrading trend around or maintain improvements
for future water quality and living resource conditions?

. What should scientists focus our analyses on to provide better answers in the
future?



Potomac Tributary Report

Completed Dec, 2020.

Uses data from 1985-2018.

Keisman, J., Murphy, R. R., Devereux, O.H., Harcum, J., Karrh,
R., Lane, M., Perry, E., Webber, J., Wei, Z., Zhang, Q.,
Petenbrink, M. 2020. Potomac Tributary Report: A summary
of trends in tidal water quality and associated factors.
Chesapeake Bay Program, Annapolis MD.

Story Map produced by USGS:
https://wim.usgs.gov/geonarrative/potomactrib/

Potomac Tributary Monitoring Stations
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https://wim.usgs.gov/geonarrative/potomactrib/

Total estimate of observed loads to tidal Potomac

Potomac: Loads
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h I h | I Potomac River: Spring Trends for Surface Chlorophyll a
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Potomac River: Annual Trends for Surface Secchi
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Potomac: Bottom DO

Summer (June-Sept) bottom DO is
improving at many stations overall.

Possible improvements over the short-
term at the deepest stations are a good
sign too (and consistent with other deep
places in the Bay).

Potomac River: Summer Trends for Bottom DO
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Long Term: Flow-adjusted 1985-2018
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Potomac: WQ Crite ria Open Water Summer Criteria Status
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POtOmaC: WQ Crite ria Deep Water and Channel Status
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Potomac: Criteria

= Status and trends in
relevant DO combined
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Potomac: Insights section

— How do tidal waters respond to actions in the watershed?

Two important findings:

1. Local response to large nutrient reductions happens and is clearly shown
with the data.

2. Long-term response to watershed-wide nutrient reductions is happening in
the tidal waters.
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1) Local response to large nutrient reductions happens
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Submerged Aquatic Vegetation Coverage - SAV (ha)
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What this tells us: This data clearly shows that investment in large-scale nutrient reductions

is successful for improving water quality dramatically in local systems.




2) Long-term response to watershed changes is happening

* Over the long-term, nutrient loads have
decreased across the Potomac watershed.

 Tidal nutrient concentrations have
decreased at almost all tidal stations.

Table 3. Trends (2009 — 2018) in flow normalized total nitrogen (TN), total phosphorus
(TP), and suspended sediment (SS) for nontidal network monitoring locations in the
Potomac River watershed.

Surface Total Nitrogen (TN)

Long Term: 1985-2018

Surface Total Phosphorus (TP)
Long Term: 1985-2018

No. of Trend direction
Parameter . Value . i .
stations degrading improving no trend
n 7 14 7
TN 28 .
median % 15.4% -5.8% 1.1%
n 0 12 6
TP 18 .
median % - -28.9% 8.5%
n 5 5 8
SSC 18

median % 23.7% -24.4% 5.2%
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W Significantly Improving (p<0.05)
A Significantly Degrading (p<0.05)

@ Possible Improving (0.05<p<0.25)
© Possible Degrading (0.05<p<0.25)
@ Unlikely Trend (p>0.25)




2) Long-term response to watershed changes is happening

* These tidal trends are not just local
response, but have been shown to be

impacted by loads from many types of Surface Total Nitrogen (TN) Surface Total Phosphorus (TP)
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atmospheric deposition, and nitrification, based on an isotope mixing model, with distance
down-estuary from wastewater treatment plant output. Adapted from Pennino et al. (2016).



2) Large-scale, long-term response is happening
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2) Large-scale, long-term response is happening

. Spring Chlorophyll a
e Other water quality responses are not as clear Long Term: 1985.2018
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What this tells us: The data shows that watershed-wide nutrient reductions have improved

nutrients in the Potomac. The science supports the conclusion that with more reductions,
improvements will continue.




Potomac Summary

 Nutrient load and concentration reductions have occurred, but
may have slowed in recent years.

 Response in the estuary is clear:
* Nutrient trends,
 Some DO improvement, and
* Local case studies with large improvements.

 More improvement is expected with continued action.



Maryland Mainstem Tributary Summary

=  Focused on fixed-station monitoring in
MD mainstem.

= Watershed graphics/summaries are
mostly for Susquehanna watershed plus
some near-tidal regions.

= Although we know that these waters
are influenced by much of the whole
Bay watershed.
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MD Mainstem: Loads

Just like the Potomac, huge variability
year-to-year of inputs to the estuary.

But flow-normalized decrease in TN and
increase in TP over this period.

Loads to tidal MD Mainstem (primarily Susquehanna)
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MD Mainstem: Chlorophyll a

MD Mainstem: Spring Trends for Surface Chlorophyll a

Long Term: 1985-2018

Long Term: Flow-adjusted 1985-2018

= Long term decrease in tidal fresh but

increase in saltier regions.

>

= Short-term, many increases have become

“no trend.”

>

Short Term: 2009-2018

Y{
N ¥

W Significantly Improving (p<0.05)
A Significantly Degrading (p<0.05)

@ Possible Improving (0.05<p<0.25)
© Possible Degrading (0.05<p<0.25)
4 Unlikely Trend (p>0.25)




Long Term: Flow-adjusted 1985-2018

. . h . MD Mainstem: Annual Trends for Surface Secchi
MD Mainstem: Secchi

= Secchilong-term fairly similar to

chlorophyll a. —

= But short-term is showing even more
improvements after accounting for flow.

A Significantly Improving (p<0.05) @ Possible Improving (0.05<p<0.25)
¥ Significantly Degrading (p<0.05) O Possible Degrading (0.05<p<0.25)
4 Unlikely Trend (p>0.25)




. . MD Mainstem: Summer Trends for Bottom DO
M D M a I n Ste m . B Otto m D O Long Term: 1985-2018 Long Term: Flow-adjusted 1985-2018

f f?‘_‘}: ,.,-‘. ‘-‘”;;
= This is June-Sept bottom DO. SRR .‘ .

= Many long- and short-term improvements
across these stations.

A Significantly Improving (p<0.05)
¥V Significantly Degrading (p<0.05)

@ Possible Improving (0.05<p<0.25)
© Possible Degrading (0.05<p<0.25)
4 Unlikely Trend (p>0.25)




M D IVI ad | nSte m: Crite ria Open Water Summer Criteria Status

Time Period CB1TF CB20OH CB3MH CB4MH CB5MH_MD
1985-1987
1986-1988
1987-1989
1988-1990
1989-1991

1990-1992

. . 1991-1993

= Open water summer DO status is fairly 1992-1994
. 1993-1995
consistent across segments. TErTT

1995-1997
1996-1998
1997-1999
1998-2000
1999-2001
2000-2002
2001-2003
2002-2004
2003-2005
2004-2006
2005-2007
2006-2008
2007-2009
2008-2010
2009-2011
2010-2012
2011-2013
2012-2014
2013-2015
2014-2016
2015-2017
2016-2018




Deep water and channel criteria have
never been met.

Deep Water and Deep Channel Summer DO

Time Period

Deep Water

Deep Channel

CB3MH

CB4MH

CB5MH_MD

CB3MH

CB4MH

CB5MH_MD

1985-1987

1986-1988

1987-1989

1988-1990

1989-1991

1990-1992

1991-1993

1992-1994

1993-1995

1994-1996

1995-1997

1996-1998

1997-1999

1998-2000

1999-2001

2000-2002

2001-2003

2002-2004

2003-2005

2004-2006

2005-2007

2006-2008

2007-2009

2008-2010

2009-2011

2010-2012

2011-2013

2012-2014

2013-2015

2014-2016

2015-2017

2016-2018




MD Mainstem: Criteria

= |mprovements in segments that are not
meeting the criteria is promising.
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Summary and research questions

= Key unexplained changes: Increasing chlorophyll a and lack of improvement in

Secchi depth.
= We see this in multiple tributaries.
= Nutrient concentrations are still high despite reductions, meaning limitation of

algae growth is not occurring all the time.

= But:
= Nutrient loads have gone down from sources in the watershed, and we see

decreasing nutrient concentrations in the estuary.
= Oxygen is responding in some places, particularly in the mesohaline Potomac

and the mainstem bay.



= Rebecca Murphy, UMCES/CBP:
rmurphy@chesapeakebay.net

= New ITAT leadership and coordination of Trib Summaries:
= Breck Sullivan, USGS: bsullivan@chesapeakebay.net
= Vanessa Van Note, EPA: VanNote.Vanessa@epa.gov



