Summary of NRC Recommendations from Urban Stormwater Report, October 15, 2008

## Summary Chapter:

S-1. EPA's current approach to regulating stormwater is unlikely to produce an accurate or complete picture of the extent of the problem, nor is it likely to adequately control stormwater's contribution to waterbody impairment. The lack of rigorous end-ofpipe monitoring, coupled with EPA's failure to use flow or alternative measures for regulating stormwater, make it difficult for EPA to develop enforceable requirements for stormwater dischargers. Instead, the stormwater permits leave a great deal of discretion to the regulated community to set their own standards and to self-monitor. Current statistics on the states' implementation of the stormwater program, discharger compliance with stormwater requirements, and the ability of states and EPA to incorporate stormwater permits with Total Maximum Daily Loads are uniformly discouraging. Radical changes to the current regulatory program (see Chapter 6) appear necessary to provide meaningful regulation of stormwater dischargers in the future.

\*S-2. Flow and related parameters like impervious cover should be considered for use as proxies for stormwater pollutant loading. These analogs for the traditional focus on the "discharge" of "pollutants" have great potential as a federal stormwater management tool because they provide specific and measurable targets, while at the same time they focus regulators on water degradation resulting from the increased volume as well as increased pollutant loadings in stormwater runoff. Without these more easily measured parameters for evaluating the contribution of various stormwater sources, regulators will continue to struggle with enormously expensive and potentially technically impossible attempts to determine the pollutant loading from individual dischargers or will rely too heavily on unaudited and largely ineffective self-reporting, self-policing, and paperwork enforcement.

S-3. **EPA** should engage in much more vigilant regulatory oversight in the national licensing of products that contribute significantly to stormwater pollution. De-icing chemicals, materials used in brake linings, motor fuels, asphalt sealants, fertilizers, and a variety of other products should be examined for their potential contamination of stormwater. Currently, EPA does not apparently utilize its existing licensing authority to regulate these products in a way that minimizes their contribution to stormwater contamination. States can also enact restrictions on or tax the application of pesticides or other particularly toxic products. Even local efforts could ultimately help motivate broader scale, federal restrictions on particular products.

S-4. The federal government should provide more financial support to state and local efforts to regulate stormwater. State and local governments do not have adequate financial support to implement the stormwater program in a rigorous way. At the very least, Congress should provide states with financial support for engaging in more meaningful regulation of stormwater discharges. EPA should also reassess its allocation of funds within the NPDES program. The agency has traditionally directed funds to focus

on the reissuance of NPDES wastewater permits, while the present need is to advance the NPDES stormwater program because NPDES stormwater permittees outnumber wastewater permittees more than five fold, and the contribution of diffuse sources of pollution to degradation of the nation's waterbodies continues to increase.

S-5. There is a direct relationship between land cover and the biological condition of downstream receiving waters. The possibility for the highest levels of aquatic biological condition exists only with very light urban transformation of the landscape. Conversely, the lowest levels of biological condition are inevitable with extensive urban transformation of the landscape, commonly seen after conversion of about one-third to one-half of a contributing watershed into impervious area. Although not every degraded waterbody is a product of intense urban development, all highly urban watersheds produce severely degraded receiving waters.

S-6. The protection of aquatic life in urban streams requires an approach that incorporates all stressors. Urban Stream Syndrome reflects a multitude of effects caused by altered hydrology in urban streams, altered habitat, and polluted runoff. Focusing on only one of these factors is not an effective management strategy. For example, even without noticeably elevated pollutant concentrations in receiving waters, alterations in their hydrologic regimes are associated with impaired biological condition. More comprehensive biological monitoring of waterbodies will be critical to better understanding the cumulative impacts of urbanization on stream condition.

S-7. The full distribution and sequence of flows (i.e., the flow regime) should be taken into consideration when assessing the impacts of stormwater on streams. Permanently increased stormwater volume is only one aspect of an urban-altered storm hydrograph. It contributes to high in-stream velocities, which in turn increase streambank erosion and accompanying sediment pollution of surface water. Other hydrologic changes, however, include changes in the sequence and frequency of high flows, the rate of rise and fall of the hydrograph, and the season of the year in which high flows can occur. These all can affect both the physical and biological conditions of streams, lakes, and wetlands. Thus, effective hydrologic mitigation for urban development cannot just aim to reduce post-development peak flows to predevelopment peak flows.

S-8. Roads and parking lots can be the most significant type of land cover with respect to stormwater. They constitute as much as 70 percent of total impervious cover in ultra-urban landscapes, and as much as 80 percent of the directly connected impervious cover. Roads tend to capture and export more stormwater pollutants than other land covers in these highly impervious areas, especially in regions of the country having mostly small rainfall events. As rainfall amounts become larger, pervious areas in most residential land uses become more significant sources of runoff, sediment, nutrients, and landscaping chemicals. In all cases, directly connected impervious surfaces (roads, parking lots, and roofs that are directly connected to the drainage system) produce the first runoff observed at a storm-drain inlet and outfall because their travel times are the quickest.

S-9. Because of a 10-year effort to collect and analyze monitoring data from MS4s nationwide, the quality of stormwater from urbanized areas is well characterized. These results come from many thousands of storm events, systematically compiled and widely accessible; they form a robust dataset of utility to theoreticians and practitioners alike. These data make it possible to accurately estimate stormwater pollutant concentrations from various land uses. Additional data are available from other stormwater permit holders that were not originally included in the database and from ongoing projects, and these should be acquired to augment the database and improve its value in stormwater management decision-making.

S-10. Industry should monitor the quality of stormwater discharges from certain critical industrial sectors in a more sophisticated manner, so that permitting authorities can better establish benchmarks and technology-based effluent guidelines. Many of the benchmark monitoring requirements and effluent guidelines for certain industrial subsectors are based on inaccurate and old information. Furthermore, there has been no nationwide compilation and analysis of industrial benchmark data, as has occurred for MS4 monitoring data, to better understand typical stormwater concentrations of pollutants from various industries.

S-11. Continuous, flow-weighted sampling methods should replace the traditional collection of stormwater data using grab samples. Data obtained from too few grab samples are highly variable, particularly for industrial monitoring programs, and subject to greater uncertainly because of experimenter error and poor data-collection practices. In order to use stormwater data for decision making in a scientifically defensible fashion, grab sampling should be abandoned as a credible stormwater sampling approach for virtually all applications. It should be replaced by more accurate and frequent continuous sampling methods that are flow weighted. Flow-weighted composite monitoring should continue for the duration of the rain event. Emerging sensor systems that provide high temporal resolution and real-time estimates for specific pollutants should be further investigated, with the aim of providing lower costs and more extensive monitoring systems to sample both streamflow and constituent loads.

S-12. Watershed models are useful tools for predicting downstream impacts from urbanization and designing mitigation to reduce those impacts, but they are incomplete in scope and do not offer definitive causal links between polluted discharges and downstream degradation. Every model simulates only a subset of the multiple interconnections between physical, chemical, and biological processes found in any watershed, and they all use a grossly simplified representation of the true spatial and temporal variability of a watershed. To speak of a "comprehensive watershed model" is thus an oxymoron, because the science of stormwater is not sufficiently far advanced to determine causality between all sources, resulting stressors, and their physical, chemical, and biological responses. Thus, it is not yet possible to create a protocol that mechanistically links stormwater dischargers to the quality of receiving waters. The utility of models with more modest goals, however, can still be high—as long as the

questions being addressed by the model are in fact relevant and important to the functioning of the watershed to which that model is being applied, and sufficient data are available to calibrate the model for the processes included therein.

S-13. Individual controls on stormwater discharges are inadequate as the sole solution to stormwater in urban watersheds. SCM implementation needs to be designed as a system, integrating structural and nonstructural SCMs and incorporating watershed goals, site characteristics, development land use, construction erosion and sedimentation controls, aesthetics, monitoring, and maintenance. Stormwater cannot be adequately managed on a piecemeal basis due to the complexity of both the hydrologic and pollutant processes and their effect on habitat and stream quality. Past practices of designing detention basins on a site-by-site basis have been ineffective at protecting water quality in receiving waters and only partially effective in meeting flood control requirements.

S-14. Nonstructural SCMs such as product substitution, better site design, downspout disconnection, conservation of natural areas, and watershed and landuse planning can dramatically reduce the volume of runoff and pollutant load from a new development. Such SCMs should be considered first before structural practices. For example, lead concentrations in stormwater have been reduced by at least a factor of 4 after the removal of lead from gasoline. Not creating impervious surfaces or removing a contaminant from the runoff stream simplifies and reduces the reliance on structural SCMs.

S-15. SCMs that harvest, infiltrate, and evapotranspirate stormwater are critical to reducing the volume and pollutant loading of small storms. Urban municipal separate stormwater conveyance systems have been designed for flood control to protect life and property from extreme rainfall events, but they have generally failed to address the more frequent rain events (<2.5 cm) that are key to recharge and baseflow in most areas. These small storms may only generate runoff from paved areas and transport the "first flush" of contaminants. SCMs designed to remove this class of storms from surface runoff (runoff-volume-reduction SCMs— rainwater harvesting, vegetated, and subsurface) can also help address larger watershed flooding issues.

S-16. Performance characteristics are starting to be established for most structural and some nonstructural SCMs, but additional research is needed on the relevant hydrologic and water quality processes within SCMs across different climates and soil conditions. Typical data such as long-term load reduction efficiencies and pollutant effluent concentrations can be found in the International Stormwater BMP Database. However, understanding the processes involved in each SCM is in its infancy, making modeling of these SCMs difficult. Seasonal differences, the time between storms, and other factors all affect pollutant loadings emanating from SCMs. Research is needed that moves away from the use of percent removal and toward better simulation of SCM performance. Research is particularly important for nonstructural SCMs, which in many cases are more effective, have longer life spans, and require less maintenance than structural SCMs. EPA should be a leader in SCM research, both directly by improving its internal modeling efforts and by funding state efforts to monitor and report back on the success of SCMs in the field.

S-17. The retrofitting of urban areas presents both unique opportunities and challenges. Promoting growth in these areas is desirable because it takes pressure off the suburban fringes, thereby preventing sprawl, and it minimizes the creation of new impervious surfaces. However, it is more expensive than Greenfields development because of the existence of infrastructure and the limited availability and affordability of land. Both innovative zoning and development incentives, along with the careful selection SCMs, are needed to achieve fair and effective storm-water management in these areas. For example, incentive or performance zoning could be used to allow for greater densities on a site, freeing other portions of the site for SCMs. Publicly owned, consolidated SCMs should be strongly considered as there may be insufficient land to have small, on-site systems. The performance and maintenance of the former can be overseen more effectively by a local government entity. The types of SCMs that are used in consolidated facilities—particularly detention basins, wet/dry ponds, and stormwater wetlands—perform multiple functions, such as prevention of streambank erosion, flood control, and large-scale habitat provision.

S-18. Base all stormwater and other wastewater discharge permits on watershed boundaries instead of political boundaries. There are numerous innovative regulatory strategies that could be used to improve the EPA's stormwater program. The course of action most likely to check and reverse degradation of the nation's aquatic resources would be to base all stormwater and other wastewater discharge permits on watershed boundaries instead of political boundaries. Watershed-based permitting is the regulated allowance of discharges of water and wastes borne by those discharges to waters of the United States, with due consideration of: (1) the implications of those discharges for preservation or improvement of prevailing ecological conditions in the watershed's aquatic systems, (2) cooperation among political jurisdictions sharing a watershed, and (3) coordinated regulation and management of all discharges having the potential to modify the hydrology and water quality of the watershed's receiving waters.

Responsibility and authority for implementation of watershed-based permits would be centralized with a municipal lead permittee working in partnership with other municipalities in the watershed as co-permittees. Permitting authorities (designated states or, otherwise, EPA) would adopt a minimum goal in every watershed to avoid any further loss or degradation of designated beneficial uses in the watershed's component waterbodies and additional goals in some cases aimed at recovering lost beneficial uses. Permittees, with support by the states or EPA, would then move to comprehensive impact source analysis as a foundation for targeting solutions. The most effective solutions are expected to lie in isolating, to the extent possible, receiving waterbodies from exposure to those impact sources. In particular, low-impact design methods, termed Aquatic Resources Conservation Design in this report, should be employed to the fullest extent feasible and backed by conventional SCMs when necessary.

The approach gives municipal co-permittees more responsibility, with commensurately greater authority and funding, to manage all of the sources discharging, directly or through municipally owned conveyances, to the waterbodies comprising the watershed. This report also outlines a new monitoring program structured to assess progress toward meeting objectives and the overlying goals, diagnosing reasons for any lack of progress, and determining compliance by dischargers. The proposal further includes market-based trading of credits among dischargers to achieve overall compliance in the most efficient manner and adaptive management to determine additional actions if monitoring demonstrates failure to achieve objectives.

As a first step to taking the proposed program nationwide, a pilot program is recommended that will allow EPA to work through some of the more predictable impediments to watershed-based permitting, such as the inevitable limits of an urban municipality's authority within a larger watershed.

Short of adopting watershed-based permitting, other smaller-scale changes to the EPA stormwater program are possible. These recommendations do not preclude watershed-based permitting at some future date, and indeed they lay the groundwork in the near term for an eventual shift to watershed-based permitting.

S-19. Integration of the three permitting types is necessary, such that construction and industrial sites come under the jurisdiction of their associated municipalities. Federal and state NPDES permitting authorities do not presently have, and can never reasonably expect to have, sufficient personnel to inspect and enforce stormwater regulations on more than 100,000 discrete point source facilities discharging stormwater. A better structure would be one where the NPDES permitting authority empowers the MS4 permittees to act as the first tier of entities exercising control on stormwater discharges to the MS4 to protect water quality. The National Pretreatment Program, EPA's successful treatment program for municipal and industrial wastewater sources, could serve as a model for integration.

S-20. To improve the industrial, construction, and MS4 permitting programs in their current configuration, EPA should (1) issue guidance for MS4, industrial, and construction permittees on what constitutes a design storm for water quality purposes; (2) issue guidance for MS4 permittees on methods to identify high-risk industrial facilities for program prioritization such as inspections; (3) support the compilation and collection of quality industrial stormwater effluent data and SCM effluent quality data in a national database; and (4) develop numerical expressions of the MS4 standard of "maximum extent practicable." Each of these issues is discussed in greater detail in Chapter 6.

Chapter 1: Urbanization and Its Impacts: No conclusions

Chapter 2: The Challenge of Regulating Stormwater

2-1. EPA's current approach to regulating stormwater is unlikely to produce an accurate or complete picture of the extent of the problem, nor is it likely to adequately control stormwater's contribution to waterbody impairment. The lack of rigorous end-ofpipe monitoring, coupled with EPA's failure to use flow or alternative measures for regulating stormwater, make it difficult for EPA to develop enforceable requirements for stormwater dischargers. Instead, under EPA's program, the stormwater

permits leave a great deal of discretion to the regulated community to set their own standards and self-monitor.

Implementation of the federal program has also been incomplete. Current statistics on the states' implementation of the stormwater program, discharger compliance with stormwater requirements, and the ability of states and EPA to incorporate stormwater permits with TMDLs are uniformly discouraging. Radical changes to the current regulatory program (see Chapter 6) appear necessary to provide meaningful regulation of stormwater dischargers in the future.

2-2. Future land development and its potential increases in stormwater must be considered and addressed in a stormwater regulatory program. The NPDES permit program governing stormwater discharges does not provide for explicit consideration of future land use. Although the TMDL program expects states to account for future growth in calculating loadings, even these more limited requirements for degraded waters may not always be implemented in a rigorous way. In the future, EPA stormwater programs should include more direct and explicit consideration of future land developments. For example, stormwater permit programs could be predicated on rigorous projections of future growth and changes in impervious cover within an MS4. Regulators could also be encouraged to use incentives to lessen the impact of land development (e.g., by reducing needless impervious cover within future developments).

2-3. Flow and related parameters like impervious cover should be considered for use as proxies for stormwater pollutant loading. These analogs for the traditional focus on the "discharge" of "pollutants" have great potential as a federal stormwater management tool because they provide specific and measurable targets, while at the same time they focus regulators on water degradation resulting from the increased volume as well as increased pollutant loadings in stormwater runoff. Without these more easily measured parameters for evaluating the contribution of various stormwater sources, regulators will continue to struggle with enormously expensive and potentially technically impossible attempts to determine the pollutant loading from individual dischargers or will rely too heavily on unaudited and largely ineffective self-reporting, self-policing, and paperwork enforcement.

2-4 Local building and zoning codes, and engineering standards and practices that guide the development of roads and utilities, frequently do not promote or allow the most innovative stormwater management. Fortunately, a variety of regulatory innovations—from more flexible and thoughtful zoning to using design review incentives to guide building codes to having separate ordinances for new versus infill development can be used to encourage more effective stormwater management. These are particularly important to promoting redevelopment in existing urban areas, which reduces the creation of new impervious areas and takes pressure off of the development of lands at the urban fringe (i.e., reduces sprawl).

2-5. **EPA should provide more robust regulatory guidelines for state and local government efforts to regulate stormwater discharges**. There are a number of ambiguities in the current federal stormwater program that complicate the ability of state

and local governments to rigorously implement the program. EPA should issue clarifying guidance on several key areas. Among the areas most in need of additional federal direction are the identification of industrial dischargers that constitute the highest risk with regard to stormwater pollution and the types of permit requirements that should apply to these high-risk sources. EPA should also issue more detailed guidance on how state and local governments might prioritize monitoring and enforcement of the numerous and diverse stormwater permits could be drafted to produce more easily enforced requirements that enable oversight and enforcement not only by government officials, but also by citizens. Further detail is found in Chapter 6.

2-6. **EPA should engage in much more vigilant regulatory oversight in the national licensing of products that contribute significantly to stormwater pollution**. De-icing chemicals, materials used in brake linings, motor fuels, asphalt sealants, fertilizers, and a variety of other products should be examined for their potential contamination of stormwater. Currently, EPA does not apparently utilize its existing licensing authority to regulate these products in a way that minimizes their contribution to stormwater contamination. States can also enact restrictions on or tax the application of pesticides or even ban particular pesticides or other particularly toxic products. Austin, for example, has banned the use of coal-tar sealants within city boundaries. States and localities have also experimented with alternatives to road salt that are less environmentally toxic. These local efforts are important and could ultimately help motivate broader scale, federal restrictions on particular products.

2-7. The federal government should provide more financial support to state and local efforts to regulate stormwater. State and local governments do not have adequate financial support to implement the stormwater program in a rigorous way. At the very least, Congress should provide states with financial support for engaging in more meaningful regulation of stormwater discharges. EPA should also reassess its allocation of funds within the NPDES program. The agency has traditionally directed funds to focus on the reissuance of NPDES wastewater permits, while the present need is to advance the NPDES stormwater program because NPDES stormwater permittees outnumber wastewater permittees more than five fold, and the contribution of diffuse sources of pollution to degradation of the nation's waterbodies continues to increase.

Chapter 3 Effects of Urbanization on Watersheds

**3-1. There is a direct relationship between land cover and the biological condition of downstream receiving waters.** The possibility for the highest levels of aquatic biological condition exists only with very light urban transformation of the landscape. Even then, alterations to biological communities have been documented at such low levels of imperviousness, typically associated with roads and the clearing of native vegetation, that there has been no real "urban development" at all. Conversely, the lowest levels of biological condition are inevitable with extensive urban transformation of the landscape, commonly seen after conversion of about one-third to one-half of a

contributing watershed into impervious area. Although not every degraded waterbody is a product of intense urban development, all highly urban watersheds produce severely degraded receiving waters. Because of the close and, to date, inexorable linkage between land cover and the health of downstream waters, stormwater management is an unavoidable offshoot of watershed-based land-use planning (or, more commonly, its absence).

3-2. The protection of aquatic life in urban streams requires an approach that incorporates all stressors. Urban Stream Syndrome reflects a multitude of effects caused by altered hydrology in urban streams, altered habitat, and polluted runoff. Focusing on only one of these factors is not an effective management strategy. For example, even without noticeably elevated pollutant concentrations in receiving waters, alterations in their hydrologic regimes are associated with impaired biological condition. Achieving the articulated goals for stormwater management under the CWA will require a balanced approach that incorporates hydrology, water quality, and habitat considerations.

3-3. The full distribution and sequence of flows (i.e., the flow regime) should be taken into consideration when assessing the impacts of stormwater on streams. Permanently increased stormwater volume is only one aspect of an urban-altered storm hydrograph. It contributes to high in-stream velocities, which in turn increase streambank erosion and accompanying sediment pollution of surface water. Other hydrologic changes, however, include changes in the sequence and frequency of high flows, the rate of rise and fall of the hydrograph, and the season of the year in which high flows can occur. These all can affect both the physical and biological conditions of streams, lakes, and wetlands. Thus, effective hydrologic mitigation for urban development cannot just aim to reduce post-development peak flows to predevelopment peak flows.

3-4. A single design storm cannot adequately capture the variability of rain and how that translates into runoff or pollutant loadings, and thus is not suitable for addressing the multiple objectives of stormwater management. Of particular importance to the types of problems associated with urbanization is the size of rain events. The largest and most infrequent rains cause near-bank-full conditions and may be most responsible for habitat destruction; these are the traditional "design storms" used to design safe drainage systems. However, moderate-sized rains are more likely to be associated with most of the annual mass discharges of stormwater pollutants, and these can be very important to the eutrophication of lakes and nearshore waters. Water quality standards for bacterial indicators and total recoverable heavy metals are exceeded for almost every rain in urban areas. Therefore, the whole distribution of storm size needs to be evaluated for most urban receiving waters because many of these problems coexist.

3-5. Roads and parking lots can be the most significant type of land cover with respect to stormwater. They constitute as much as 70 percent of total impervious cover in ultra-urban landscapes, and as much as 80 percent of the directly connected impervious cover. Roads tend to capture and export more stormwater pollutants than other land covers in these highly impervious areas because of their close proximity to the variety of

pollutants associated with automobiles. This is especially true in areas of the country having mostly small rainfall events (as in the Pacific Northwest). As rainfall amounts become larger, pervious areas in most residential land uses become more significant sources of runoff, sediment, nutrients, and landscaping chemicals. In all cases, directly connected impervious surfaces (roads, parking lots, and roofs that are directly connected to the drainage system) produce the first runoff observed at a storm-drain inlet and outfall because their travel times are the quickest.

3-6. Generally, the quality of stormwater from urbanized areas is well characterized, with the common pollutants being sediment, metals, bacteria, nutrients, pesticides, trash, and polycyclic aromatic hydrocarbons. These results come from many thousands of storm events from across the nation, systematically compiled and widely accessible; they form a robust data set of utility to theoreticians and practitioners alike. These data make it possible to accurately estimate pollutant concentrations, which have been shown to vary by land cover and by region across the country. However, characterization data are relatively sparse for individual industrial operations, which makes these sources less amenable to generalized approaches based on reliable assumptions of pollutant types and loads. In addition, industrial operations vary greatly from site to site, such that it may be necessary to separate them into different categories in order to better understand industrial stormwater quality.

3-7. Nontraditional sources of stormwater pollution must be taken into consideration when assessing the overall impact of urbanization on receiving waterbodies. These nontraditional sources include atmospheric deposition, snowmelt, and dry weather discharges, which can constitute a significant portion of annual pollutant loadings from storm systems in urban areas (such as metals in Los Angeles). For example, atmospheric deposition of metals is a very significant component of contaminant loading to waterbodies in the Los Angeles region relative to other point and nonpoint sources. Similarly, much of the sediment found in receiving waters following watershed urbanization can come from streambank erosion as opposed to being contributed by polluted stormwater.

3-8. **Biological monitoring of waterbodies is critical to better understanding the cumulative impacts of urbanization on stream condition.** Over 25 years ago, individual states developed the concept of regional reference sites and developed multimetric indices to identify and characterize degraded aquatic assemblages in urban streams. Biological assessments respond to the range of non-chemical stressors identified as being important in urban waterways including habitat degradation, hydrological alterations, and sediment and siltation impacts, as well as to the influence of nutrients and other chemical stressors where chemical criteria do not exist or where their effects are difficult to measure directly (e.g., episodic stressors). The increase in biological monitoring has also helped to frame issues related to exotic species, which are locally of critical importance but completely unrecognized by traditional physical monitoring programs.

3-9. Epidemiological studies on the human health risks of swimming in freshwater and marine waters contaminated by urban stormwater discharges in temperate and warm climates are needed. Unlike with aquatic organisms, there is little information on the health risks of urban stormwater to humans. Standardized watershed assessment methods to identify the sources of human pathogens and indicator organisms in receiving waters need to be developed, especially for those waters with a contact-recreation use designation that have had multiple exceedances of pathogen or indicator criteria in a relatively short period of time. Given their difficulty and expense, epidemiological studies should be undertaken only after careful characterization of water quality and stormwater flows in the study area.

Chapter 4: Monitoring and Modeling

4-1. Because of a ten-year effort to collect and analyze monitoring data from MS4s nationwide, the quality of stormwater from urbanized areas is well characterized. These results come from many thousands of storm events, systematically compiled and widely accessible; they form a robust dataset of utility to theoreticians and practitioners alike. These data make it possible to accurately estimate the EMC of many pollutants. Additional data are available from other stormwater permit holders that were not originally included in the database Urban Stormwater Management in the United States and from ongoing projects, and these should be acquired to augment the database and improve its value in stormwater management decision-making.

4-2. Industry should monitor the quality of stormwater discharges from certain critical industrial sectors in a more sophisticated manner, so that permitting authorities can better establish benchmarks and technology-based effluent guidelines. Many of the benchmark monitoring requirements and effluent guidelines for certain industrial subsectors are based on inaccurate and old information. Furthermore, there has been no nationwide compilation and analysis of industrial benchmark data, as has occurred for MS4 monitoring data, to better understand typical stormwater concentrations of pollutants from various industries. The absence of accurate benchmarks and effluent guidelines for critical industrial sectors discharging stormwater may explain the lack of enforcement by permitting authorities, as compared to the vigorous enforcement within the wastewater discharge program.

4-3. **Industrial monitoring should be targeted to those sites having the greatest risk associated with their stormwater discharges**. Many industrial sites have no or limited exposure to runoff and should not be required to undertake extensive monitoring. Visual inspections should be made, and basic controls should be implemented at these areas. medium-risk industrial sites should conduct monitoring so that a sufficient number of storms are measured over the life of the permit for comparison to regional benchmarks. Again, visual inspections and basic controls are needed for these sites, along with specialized controls to minimize discharges of the critical pollutants. Stormwater from high-risk industrial sites needs to be continuously monitored, similar to current point source monitoring practices. The use of a regionally calibrated stormwater model and random monitoring of the lower-risk areas will likely require additional monitoring.

4-4. **Continuous, flow-weighted sampling methods should replace the traditional collection of stormwater data using grab samples.** Data obtained from too few grab samples are highly variable, particularly for industrial monitoring programs, and subject to greater uncertainly because of experimenter error and poor data-collection practices. In order to use stormwater data for decision making in a scientifically defensible fashion, grab sampling should be abandoned as a credible stormwater sampling approach for virtually all applications. It should be replaced by more accurate and frequent continuous sampling methods that are flow weighted. Flow-weighted composite monitoring should continue for the duration of the rain event. Emerging sensor systems that provide high temporal resolution and real-time estimates for specific pollutants should be further investigated, with the aim of providing lower costs and more extensive monitoring systems to sample both streamflow and constituent loads.

4-5. Flow monitoring and on-site rainfall monitoring need to be included as part of stormwater characterization monitoring. The additional information associated with flow and rainfall data greatly enhance the usefulness of the much more expensive water quality monitoring. Flow monitoring should also be correctly conducted, with adequate verification and correct base-flow subtraction methods applied. Using regional rainfall data from locations distant from the monitoring location is likely to be a major source of error when rainfall factors are being investigated. The measurement, quality assurance, and maintenance of long-term precipitation records are both vital and nontrivial to stormwater management.

4-6. Whether a first flush of contaminants occurs at the start of a rainfall event depends on the intensity of rainfall, the land use, and the specific pollutant. First flushes are more common for smaller sites with greater imperviousness and thus tend to be associated with more intense land uses such as commercial areas. Even though a site may have a first flush of a constituent of concern, it is still important that any SCM be designed to treat as much of the runoff from the site as possible. In many situations, elevated discharges may occur later in an event associated with delayed periods of peak rainfall intensity.

Stormwater runoff in arid and semi-arid climates demonstrates a seasonal firstflush effect (i.e., the dirtiest storms are the first storms of the season). In these cases, it is important that SCMs are able to adequately handle these flows. As an example, early spring rains mixed with snowmelt may occur during periods when wet detention ponds are still frozen, hindering their performance. The first fall rains in the southwestern regions of the United States may occur after extended periods of dry weather. Some SCMs, such as street cleaning targeting leaf removal, may be more effective before these rains than at other times of the year.

4-7. Watershed models are useful tools for predicting downstream impacts from urbanization and designing mitigation to reduce those impacts, but they are incomplete in scope and typically do not offer definitive causal links between **polluted discharges and downstream degradation.** Every model simulates only a subset of the multiple interconnections between physical, chemical, and biological processes found in any watershed, and they all use a grossly simplified representation of the true spatial and temporal variability of a watershed. To speak of a "comprehensive watershed model" is thus an oxymoron, because the science of stormwater is not sufficiently far advanced to determine causality between all sources, resulting stressors, and their physical, chemical, and biological responses. Thus, it is not yet possible to create a protocol that mechanistically links stormwater dischargers to the quality of receiving waters. The utility of models with more modest goals, however, can still be high—as long as the questions being addressed by the model are in fact relevant and important to the functioning of the watershed to which that model is being applied, and sufficient data are available to calibrate the model for the processes included therein.

4-8. EPA needs to ensure that the modeling and monitoring capabilities of the nation are continued and enhanced to avoid losing momentum in understanding and eliminating stormwater pollutant discharges. There is a need to extend, develop, and support current modeling capabilities, emphasizing (1) the impacts of flow energy, sediment transport, contaminated sediment, and acute and chronic toxicity on biological systems in receiving waterbodies; (2) more mechanistic representation (physical, chemical, biological) of SCMs; and (3) coupling between a set of functionally specific models to promote the linkage of source, transport and transformation, and receiving water impacts of stormwater discharges. Stormwater models have typically not incorporated interactions with groundwater and have treated infiltration and recharge of groundwater as a loss term with minimal consideration of groundwater contamination or transport to receiving waterbodies. Emerging distributed modeling paradigms that simulate interactions of surface and subsurface flowpaths provide promising tools that should be further developed and tested for applications in stormwater analysis.

Chapter 5: Urban Stormwater Management

5-1. Individual controls on stormwater discharges are inadequate as the sole solution to stormwater in urban watersheds. SCM implementation needs to be designed as a system, integrating structural and nonstructural SCMs and incorporating watershed goals, site characteristics, development land use, construction erosion and sedimentation controls, aesthetics, monitoring, and maintenance. Stormwater cannot be adequately managed on a piecemeal basis due to the complexity of both the hydrologic and pollutant processes and their effect on habitat and stream quality. Past practices of designing detention basins on a site-by-site basis have been ineffective at protecting water quality in receiving waters and only partially effective in meeting flood control requirements.

5-2. Nonstructural SCMs such as product substitution, better site design, downspout disconnection, conservation of natural areas, and watershed and landuse planning can dramatically reduce the volume of runoff and pollutant load from a new development. Such SCMs should be considered first before structural practices. For example, lead concentrations in stormwater have been reduced by at least a factor of 4 after the removal of lead from gasoline. Not creating impervious surfaces or removing a contaminant from the runoff stream simplifies and reduces the reliance on structural SCMs.

5-3. SCMs that harvest, infiltrate, and evapotranspirate stormwater are critical to reducing the volume and pollutant loading of small storms. Urban municipal separate stormwater conveyance systems have been designed for flood control to protect life and property from extreme rainfall events, but they have generally failed to address the more frequent rain events (<2.5 cm) that are key to recharge and baseflow in most areas. These small storms may only generate runoff from paved areas and transport the "first flush" of contaminants. SCMs designed to remove this class of storms from surface runoff (runoff-volume-reduction SCMs— rainwater harvesting, vegetated, and subsurface) can also address larger watershed flooding issues.

5-4. Performance characteristics are starting to be established for most structural and some nonstructural SCMs, but additional research is needed on the relevant hydrologic and water quality processes within SCMs across different climates and soil conditions. Typical data such as long-term load reduction efficiencies and pollutant effluent concentrations can be found in the International Stormwater BMP Database. However, understanding the processes involved in each SCM is in its infancy, making modeling of these SCMs difficult. Seasonal differences, the time between storms, and other factors all affect pollutant loadings emanating from SCMs. Research is needed that moves away from the use of percent removal and toward better simulation of SCM performance. Hydrologic models of SCMs that incorporate soil physics (moisture, wetting fronts) and groundwater processes are only now becoming available. Research is particularly important for nonstructural SCMs, which in many cases are more effective, have longer life spans, and require less maintenance than structural SCMs. EPA should be a leader in SCM research, both directly by improving its internal modeling efforts and by funding state efforts to monitor and report back on the success of SCMs in the field.

5-5. Research is needed to determine the effectiveness of suites of SCMs at the watershed scale. In parallel with learning more about how to quantify the unit processes of both structural and nonstructural practices, research is needed to develop surrogates or guidelines for modeling SCMs in lumped watershed models. Design formulas and criteria for the most commonly used SCMs, such as wet ponds and grass swales, are based on extensive laboratory and/or field testing. There are limited data for other SCMs, such as bioretention and proprietary filters. Whereas it is important to continue to do rigorous evaluations of individual SCMs, there is also a role for more simple methods to gain an approximate idea about how SCMs are performing. The scale factor is a problem for watershed managers and modelers, and there is a need to provide guidance on how to simulate a watershed of SCMs, without modeling thousands of individual sites.

5-6. **Improved guidance for the design and selection of SMCs is needed to improve their implementation**. Progress in implementing SCMs is often handicapped by the lack of design guidance, particularly for many of the non-traditional SCMs. Existing design

guidance is often icomplete, outdated, or lacking key details to ensure proper on-theground implementation. In other cases, SCM design guidance has not been disseminated to the full population of MS4 communities. Nationwide guidance on SCM design and implementation may not be advisable or applicable to all physiographic, climatic, and ecoregions of the country. Rather, EPA and the states should encourage the development of regional design guidance that can be readily adapted and adopted by municipal and industrial permittees. As our understanding of the relevant hydrologic, environmental, and biological processes increases, SCM design guidance should be improved to incorporate more direct consideration of the parameters of concern, how they move across the landscape, and the issues in receiving waters.

## 5-7. The retrofitting of urban areas presents both unique opportunities and

**challenges.** Promoting growth in these areas is desirable because it takes pressure off the suburban fringes, thereby preventing sprawl, and it minimizes the creation of new impervious surfaces. However, it is more expensive than Greenfields development because of the existence of infrastructure and the limited availability of land. Both innovative zoning and development incentives, along with the selection of SCMs that work well in the urban setting, are needed to achieve fair and effective stormwater management in these areas. For example, incentive or performance zoning could be used to allow for greater densities on a site, freeing other portions of the site for SCMs. Publicly owned, consolidated SCMs should be strongly considered as there may be insufficient land to have small, on-site systems. The performance and maintenance of the former can be overseen more effectively by a local government entity. The types of SCMs that are used in consolidated facilities—particularly detention basins, wet/dry ponds, and stormwater wetlands— perform multiple functions, such as prevention of streambank erosion, flood control, and large-scale habitat provision.

Chapter 6 Innovative Stormwater Management and Regulatory Permitting

6-1. The greatest improvement to the EPA's Stormwater Program would be to convert the current piecemeal system into a watershed-based permitting system. The proposed system would encompass coordinated regulation and management of all discharges (wastewater, stormwater, and other diffuse sources), existing and anticipated from future growth, having the potential to modify the hydrology and water quality of the watershed's receiving waters.

The committee proposes centralizing responsibility and authority for implementation of watershed-based permits with a municipal lead permittee working in partnership with other municipalities in the watershed as co-permittees, with enhanced authority and funding commensurate with increased responsibility. Permitting authorities would adopt a minimum goal in every watershed to avoid any further loss or degradation of designated beneficial uses in the watershed's component waterbodies and additional goals in some cases aimed at recovering lost beneficial uses. The framework envisions the permitting authorities and municipal copermittees working cooperatively to define careful, complete, and clear specific objectives aimed at meeting goals. Permittees, with support from the permitting authority, would then move to comprehensive scientific and technically based watershed analysis as a foundation for targeting solutions. The most effective solutions are expected to lie in isolating, to the extent possible, receiving waterbodies from exposure to those impact sources. In particular, low-impact design methods, termed Aquatic Resources Conservation Design in this report, should be employed to the full extent feasible and backed by conventional SCMs when necessary. This report also outlines a monitoring program structured to assess progress toward meeting objectives and the overlying goals, diagnosing reasons for any lack of progress, and determining compliance by dischargers. The new concept further includes market-based trading of credits among dischargers to achieve overall compliance in the most efficient manner and adaptive management to program additional actions if monitoring demonstrates failure to achieve objectives.

6-2. Integration of the three permitting types, such that construction and industrial sites come under the jurisdiction of their associated municipalities, would greatly improve many deficient aspects of the stormwater program. Federal and state NPDES permitting authorities do not presently have, and can never reasonably expect to have, sufficient personnel to inspect and enforce stormwater regulations on more than 100,000 discrete point source facilities discharging stormwater. A better structure would be one where the NPDES permitting authority empowers the MS4 permittees to act as the first tier of entities exercising control on stormwater discharges to the MS4 to protect water quality. The National Pretreatment Program, EPA's successful treatment program for municipal and industrial wastewater sources, could serve as a model for integration.

Short of adopting watershed-based permitting or integration, a variety of other smallerscale changes to the EPA stormwater program could be made now, as outlined below.

6-3. **EPA should issue guidance for MS4, MSGP, and CGP permittees on what constitutes a design storm for water quality purposes**. Precipitation events occur across a spectrum from small, more frequent storms to larger and more extreme storms, with the latter being a more typical focus of guidance manuals to date. Permittees need guidance from regional EPA offices on what water quality considerations to design SCMs for beyond issues such as safety of human life and property. In creating the guidance there should be a good faith effort to integrate water quality requirements with existing stormwater quantity requirements.

6-4. **EPA should issue guidance for MS4 permittees on methods to identify highrisk industrial facilities for program prioritization such as inspections**. Two visual methods for establishing rankings that have been field tested are provided in the chapter. Some of these high-risk industrial facilities and construction sites may be better covered by individual NPDES stormwater permits rather than the MSGP or the CGP, and if so would fall directly under the permitting authority and not be part of MS4 integration.

6-5. EPA should support the compilation and collection of quality industrial stormwater effluent data and SCM effluent quality data in a national database. This

database can then serve as a source for the agency to develop technology-based effluent guidelines for stormwater discharges from industrial sectors and high-risk facilities.

6-6. **EPA should develop numerical expressions to represent the MS4 standard of Maximum Extent Practicable**. This could involve establishing municipal action levels based on expected outfall pollutant concentrations from the National Stormwater Quality Database, developing site-based runoff and pollutant load limits, and setting turbidity limits for construction sites. Such numerical expressions would create improved accountability, bring about consistency, and result in implementation actions that will lead to measurable reductions in stormwater pollutants in MS4 discharges.

6-7. Communities should use an urban stream classification system, such as a regionally adapted version of the Impervious Cover Model, to establish realistic water quality and biodiversity goals for individual classes of subwatersheds. The goals for water and habitat quality should become less stringent as impervious cover increases within the subwatershed. This should not become an excuse to work less diligently to improve the most degraded waterways—only to recognize that equivalent, or even greater, efforts to improve water quality conditions will achieve progressively less ambitious results in more highly urbanized watersheds. This approach would provide stormwater managers with more specific, measurable, and attainable implementation strategies than the one-size-fits-all approach that is promoted in current wet weather management regulations.

6-8. **Better monitoring of MS4s to determine outcomes is needed**. Only a small fraction of MS4 communities have provided measurable outcomes with regard to aggregate flow and pollutant reduction achieved by their municipal stormwater programs. A framework and methods to evaluate program effectiveness for each of the six minimum management measures have been outlined by CASQA (2007) and should be adopted. In addition, the lack of monitoring requirements in the Phase II stormwater program makes it virtually impossible to measure or track actual pollutant load or runoff volume reductions achieved. It is recommended that both Phase I and II MS4s shift to a more collaborative monitoring paradigm to link management efforts to receiving water quality.

6-9. Watershed-based permitting will require additional resources and regulatory program support. Such an approach shifts more attention to ambient outcomes as well as expanded permitting coverage. Additional resources for program implementation could come from shifting existing programmatic resources. For example, some state permitting resources may be shifted away from existing point source programs toward stormwater permitting. Strategic planning and prioritization could shift the distribution of federal and state grant and loan programs to encourage and support more watershedbased stormwater permitting programs. However, securing new levels of public funds will likely be required. All levels of government must recognize that additional resources may be required from citizens and businesses (in the form of taxes, fees, etc.) in order to operate a more comprehensive and effective stormwater permitting program.