TASK 4: MODEL PERFORMANCE ENHANCEMENTS

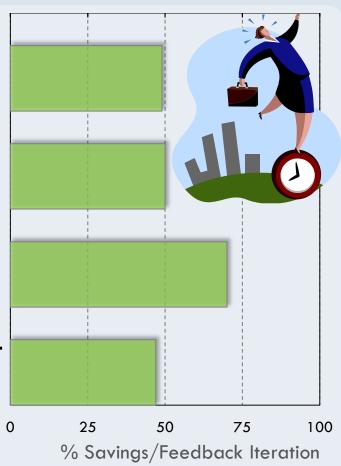
MWCOG TPB Version 2.3.28 Travel Model

November 17, 2011

Objective / Status

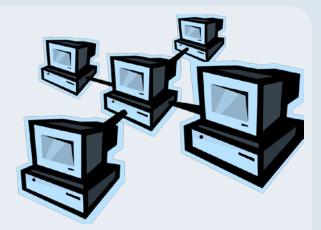
- Objective: evaluate strategies designed to reduce the clock time for the TPB Version 2.3 Travel Model
 - Take full advantage of multi-core computing and the Cube Cluster software
 - Consider changes to the modeling methods that generate the required outcome with fewer processing steps
- Status: these are preliminary findings that have not been fully tested or evaluated by MWCOG
 - Additional strategies have been suggested, but not as yet implemented




- Model processes identified for parallelization
- How to parallelize?
- Implementation
 - Are the results different?
 - □ Is the model (UE) convergence different?
 - Can we capture on-screen output?
- Quantification of time savings
- Further enhancements

Model Processes

Steps Identified for Parallelization


- Highway and Transit Skims
 - Process time periods together
- Trip Distribution
 - Process trip purposes together
- Mode Choice
 - Process trip purposes together
- Highway and Transit Assignment
 - Process time periods together
 - Combine non-HOV and HOV

~40% Savings for all steps

Highway Skims

- Periods (2)
 - AM, MD
- Steps
 - Highway Skim, Matrix manipulation
- Performance enhancements
 - Multi-step (2) distributed processing for time periods
 - Intra-step (4) distributed processing within time periods
- Time savings
 - About 40% = 3 minutes/feedback iteration

Transit Skims

- Periods (2)
 - AM, MD
- Line-haul paths (4)
 - Metrorail, commuter rail, all bus, bus & Metrorail
- Transit access modes (3)
 - Walk, park-&-ride, kiss-&-ride
- Performance enhancements
 - Parallelize processing for each line-haul path
- Time Savings
 - About 50% = 30 minutes / feedback iteration

Trip Distribution

- Trip purpose groups (5)
 - □ HBW, HBO, HBS, NHW/NHO, COM/TRK
- Steps
 - Trip Distribution, matrix manipulation
- Performance enhancements
 - Multi-step (4) distributed processing for purposes
 - COM/TRK distribution not parallelized
 - Intra-step (4) distributed processing within purpose
 - Only the matrix steps can use intra-step processing
- Time savings
 - About 50% = 7 minutes / feedback iteration

Mode Choice

AECOM

- □ Trip purposes (5)
 - HBW, HBO, HBS, NHO, NHW
- Performance enhancements

- Parallel processing (5) for trip purposes
- Issues / solutions
 - Capturing on screen output
 - Output to intermediate file, append to master log file
 - Error trapping through batch file scripting
- Time savings

About 70% = 35 minutes / feedback iteration

Highway Assignment

- Periods (4)
 - AM, MD, PM, NT
- Steps
 - Highway assignment, convergence checking
- Performance enhancements
 - Combine non-HOV and HOV
 - Run AM, PM together using multi-step (2) distributed proc.
 - Run MD, NT together using multi-step (2) distributed proc.
 - Intra-step (4) distributed processing already implemented
- Time savings
 - About 40% = 45 minutes / feedback iteration

Transit Assignment

- Periods (2)
 - AM, Off-peak
- Line-haul modes (4)
 - Metrorail, commuter rail, all bus, bus & Metrorail
- Transit access (3)
 - Walk, park-&-ride, kiss-&-ride
- Performance enhancement
 - Parallelize processing for each line haul path (4)
- Time savings
 - About 50% = 15 minutes (run only once)

Results

Model result checks

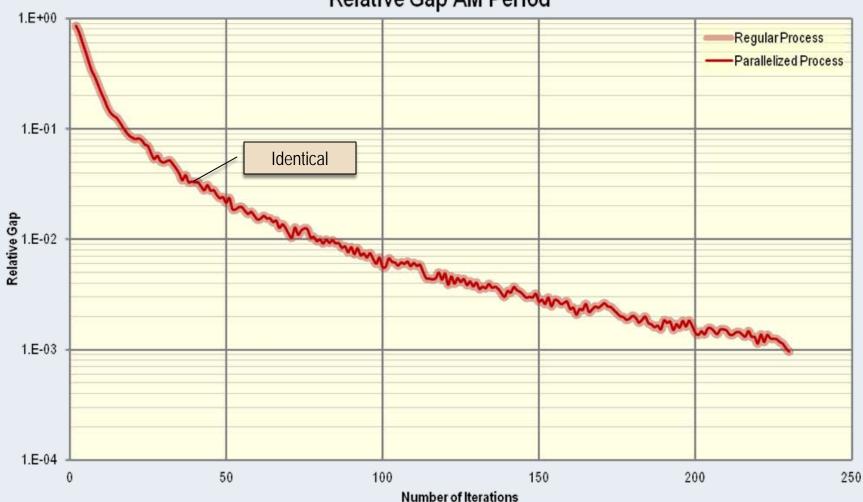
- With and without parallelization
 - Highway and Transit Skim matrices identical
 - Trip Distribution matrices identical
 - Mode Choice matrices identical
 - Highway Assignment produces the same VMT
- Reports and screen logs
 - Screen logs captured for all the processes
 - Reports replicated
- Total time savings

• About $40\% = 10\frac{1}{2}$ hours (four feedback iterations)

Time Savings

Base Year (2007) full model application

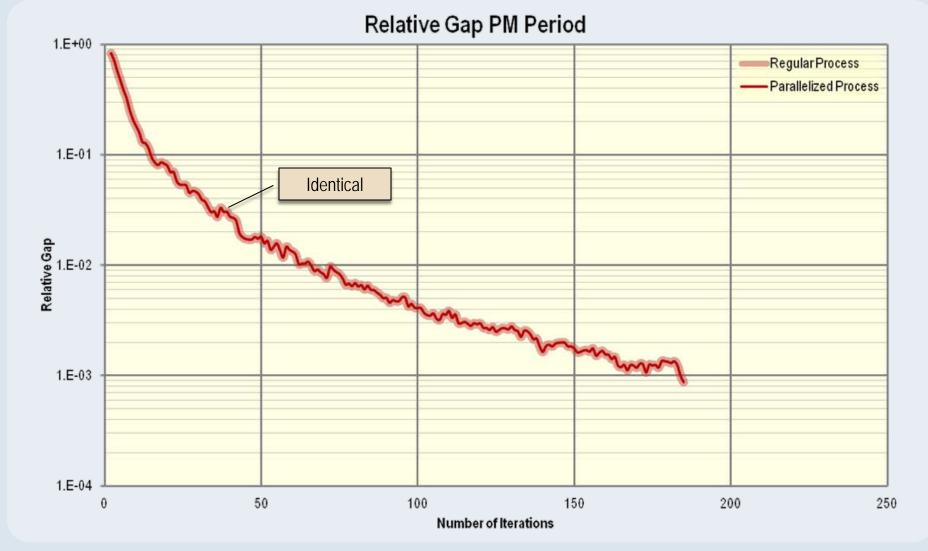
- Two (2) hours of savings / iteration
- **Total savings** = $10\frac{1}{2}$ hours
- **\square** Full run in 17¹/₂ hours \rightarrow results overnight


Iteration	Regular Process	Parallelized Process	Savings	Percent Savings
Pump Prime	5:41	3:48	1:53	33%
Iteration 1	5:06	3:06	2:00	39%
Iteration 2	5:57	3:39	2:18	39%
Iteration 3	5:31	3:27	2:04	37%
Iteration 4	5:35	3:24	2:11	39%
Transit Assignment	0:30	0:15	0:15	50%
Full Run	28:20	17:39	10:41	38%

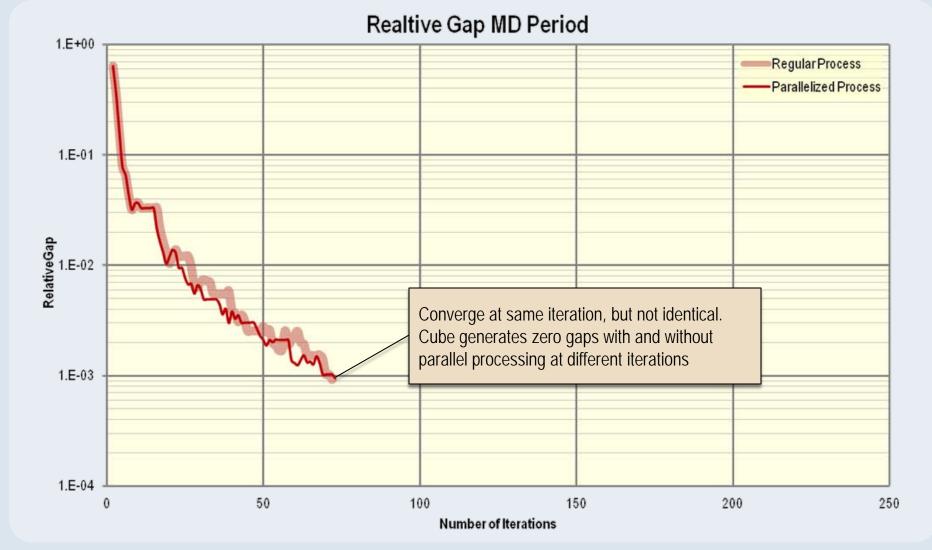
Iteration 1 Step	Regular Process	Parallelized Process	Savings	Percent Savings
Transit Skims	0:59	0:29	0:30	51%
Transit Fare	0:19	0:19	0:00	0%
Trip Generation	0:01	0:01	0:00	0%
Trip Distribution	0:14	0:07	0:07	50%
Mode Choice	0:51	0:16	0:35	69%
Auto Driver	0:08	0:08	0:00	0%
Time of day	0:26	0:26	0:00	0%
Hwy Assignment	2:00	1:15	0:45	38%
Hwy Skims	0:08	0:05	0:03	38%
Total	5:06	3:06	2:00	39%

UE Convergence Comparison (AM)

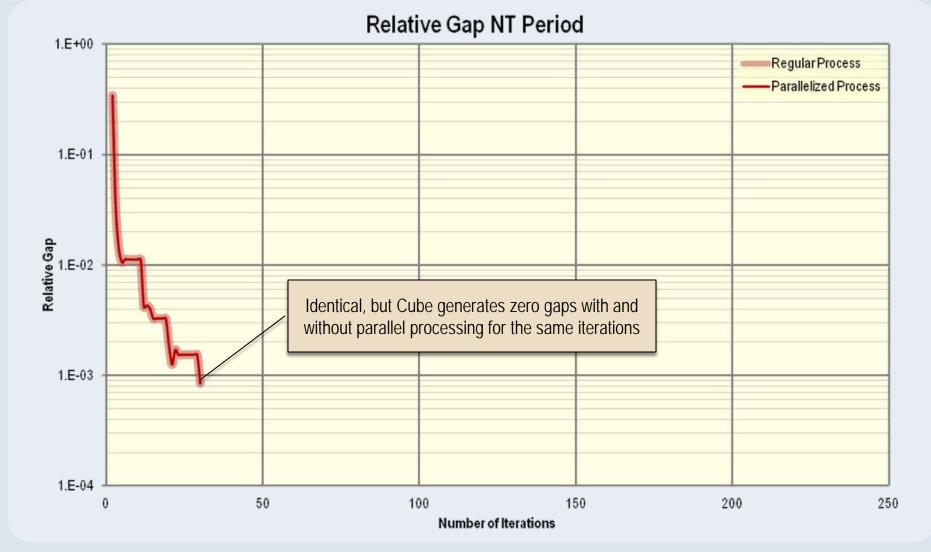
14


AECOM

Relative Gap AM Period


UE Convergence Comparison (PM)

15


UE Convergence Comparison (MD)

16

UE Convergence Comparison (NT)

17

Conclusions

- Parallel processing reduces processing time by about 40 percent
- Implementation required some changes to scripts
 - Loops typically were replaced by replicated code
 - Increased level of complexity for code management
 - Capturing log files and errors is more involved
 - Additional debugging of scripts is required
- Cube Cluster assignments using multiple threads have software problems that Citilabs needs to fix

Further Enhancements

- Use more processors?
 - Results are not identical
 - Test on CUBE 6
- Forecast Year runs with HOT lanes
 - Single run with HOT lanes
 - Combine BASE and CONF runs
 - Yet to be implemented and tested