
Embodied Carbon: WB-LCA Methodology

Jennifer Wolf – Sustainable Program Manager 11/18/20

Overview

Life Cycle Assessment (LCA) is used as a tool to assess the environmental impacts of a product, process or activity throughout its life cycle; from the extraction of raw materials through to manufacturing, transport, use, and disposal.

Types of LCAs

EPDs

Life cycle assessment of a product (cradle to gate).

Whole Building LCA

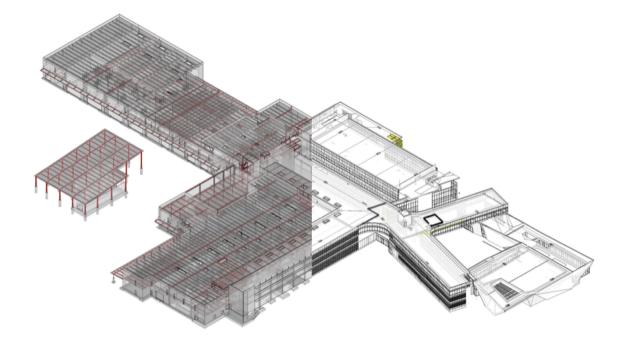
Assessment that uses EPDs for all products included in a building (focus on structure and enclosure) to quantify impact (cradle to grave).

Product EPDs are the building blocks of a whole building LCA.

Goals

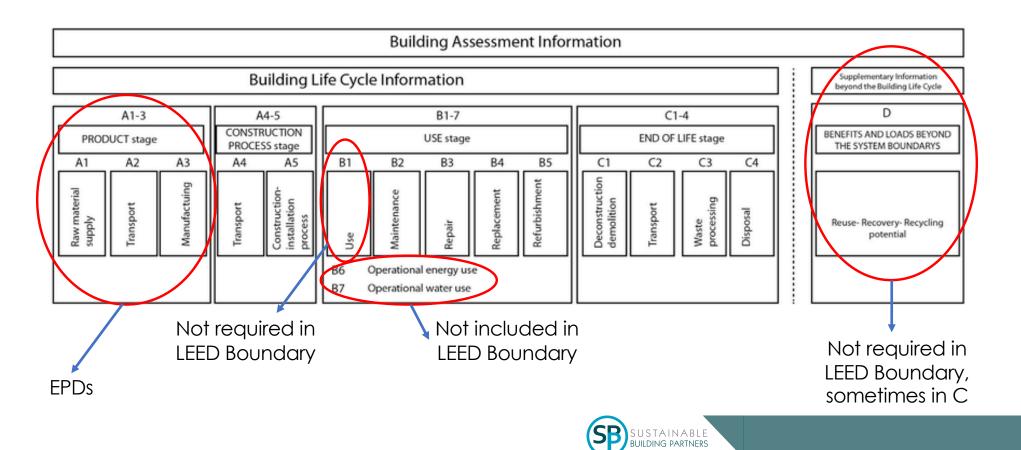
LEED v4.1 Whole-Building LCA Requirements

Path	Point(s)	Criteria		
Path 1	1	Conduct an LCA of the project's structure and enclosure.		
Path 2	2	Path 1		
		+ at least 5% reduction in three (3) impact categories		
Path 3	3	Path 1		
		+ at least 10% reduction in three (3) impact categories		
Path 4	4	Path 3		
		+ 20% reduction for global warming potential		
		+ incorporate building reuse and/or salvage materials		
All projects achieving Paths 2, 3, or 4		GHG must be one of the three impact categories met		
		No impact category assessed as part of the life-cycle assessment may increase by more than 5% compared with the baseline building.		


LCA Scope

Structure

Foundations Columns Beams Slabs


Enclosure

Façade Finish Sheathing Insulation Framing Drywall Windows Roof

Modules

Software

EC3

Athena Sustainable Materials Institute

Assessment

- TRACI, version 2.1 or newer
- CML, version 2001–November 2012 or newer
- ReCiPe, version 1.07 (midpoints) or newer

Methodology

Reduce Material Quantity

Options

- 1. Archetype (industry standard)
- 2. Early Design
- 3. Existing Building

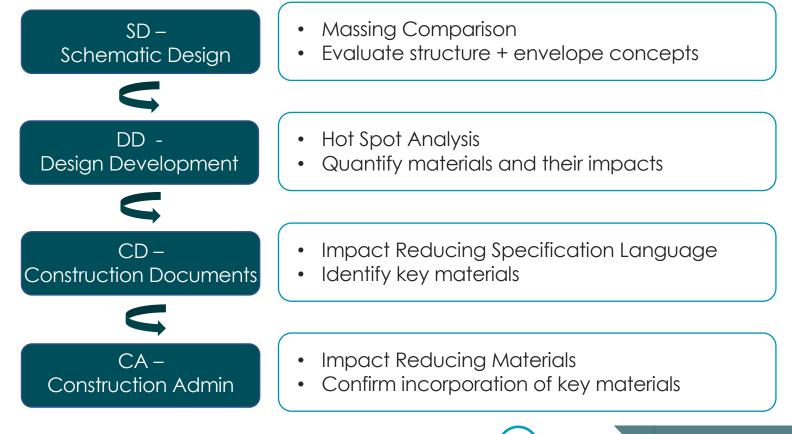
Criteria

- Thermally similar
- Functionally equivalent

Baseline

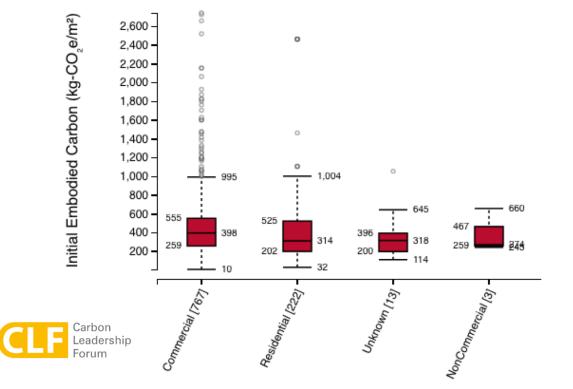
• Same Gross Area

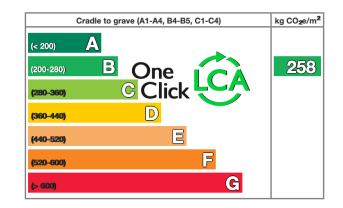
Use Product Specific EPDs


Reduce Distance to Manufacturer

Decrease Replacement Frequency Design

- Final documents
 - REVIT Model
 - Energy Model
 - Specifications
- Installed materials
 - Submittals




Timing

SUSTAINABLE BUILDING PARTNERS

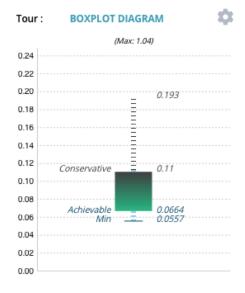
Benchmark - Buildings

Limitations: Better data that is needed to enable benchmarking

https://carbonleadershipforum.org/embodied-carbon-benchmark-study-1/

Benchmark - Materials

Methodology


EMBODIED CARBON (EC) COMPARISON SCALE One product to 20-80th percentiles of all related products

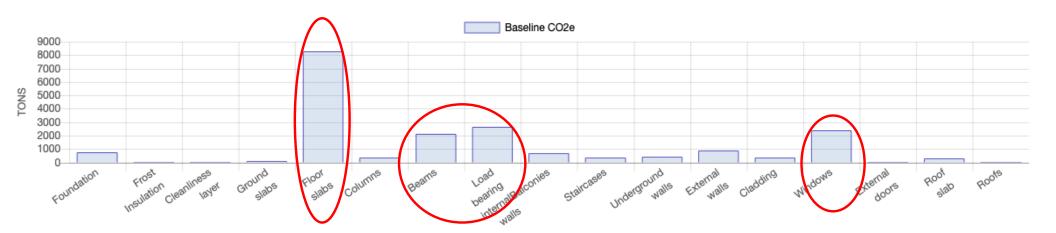
2019 BETA conservative estimate of current high embodied carbon in the CLF Baseline product category 20 - 80th percentile of EPDs 80th Conservative in EC3. May not represent all products in market if not all MFRs have created EPDs. 60th 40^t Results used for comparison, top of uncertainty range EC reported in EPD with +/- uncertainty range 20^t Achievable CATEGORY THIS EPD

EPDs, even using the same PCR, are not directly comparable for a variety of reasons. Comparing at the highest level of uncertainty provides for the differences in the EPDs.

Specification

kgCO2e embodied per 1 ft2 RSI

EcoTouch® PINK® FIBERGLAS® Batt & Roll Insulation - Kraft	EPD UL	C2Grave, N. America
Faced	CO2e EC3 🔞	20th percentile


https://buildingtransparency.org

Challenges

- Increase the use of LCA in early-design decision making
- Guidelines to improve quality, consistency, comparability of results
- Standardized definition or process of "defining a baseline"
- Standardized process for characterizing bill of material information
- Data is limited
- Pace of data evolution

Element Impact Opportunities

Reference Project – 750,000 sf Multifamily Project – OneClick Results

Strategies - Elements

Build Less

- Re-use existing buildings and components.
- Share spaces; make them multi-functional.
- Simplify the design.
- Consider structure as a finish.

Build Wise

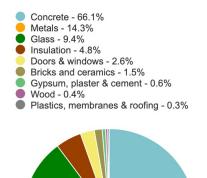
- Ensure longevity and durability.
- Identify material efficiencies, like a repeating module.
- Design for 100% utilization rate where possible.
- Reduce transport distance.

Build Low Carbon

- Identify 'big ticket items', focus on 'big wins' first
- Consider natural and renewable materials.

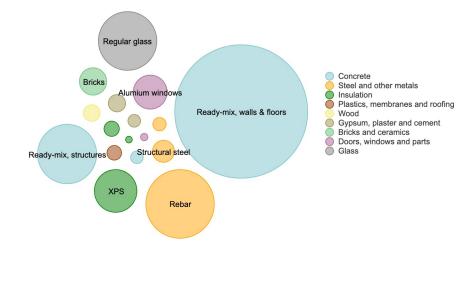
Build Light

- Re-visit structural strength requirements.
- Reduce dead load.
- Limit oversized structural members.



Build less

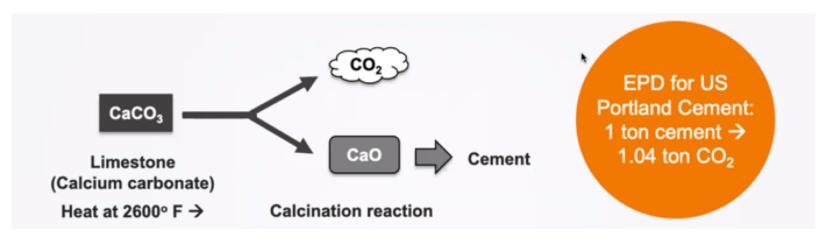
Material Impact Opportunities


Global warming kg CO2e - Resource types

This is a drilldown chart. Click on the chart to view details

Bubble chart, total life-cycle impact by resource type and subtype, Global warming

Hover your mouse over legends or the chart to highlight impacts. Bubble minimum and maximum sizes constrained for readability



Reference Project – 750,000 sf Multifamily Project – OneClick Results

Concrete Overview

Cement \rightarrow 12% of weight / 95% of CO2

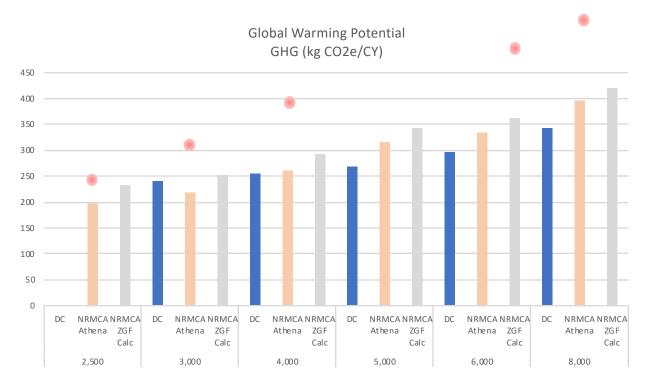
Not-So-Fun Fact: Cement is responsible for 8% of global CO2 emissions.

Concrete Strategies

Goal: Cement Management for Low Carbon Concrete

Strategy	Impact	
Increase recycled content (slag, other SCMs) *beyond 20%, which is considered baseline	Increases strength Increases durability Decreases early strength gain, may impact schedule Limited quantity for long-term/global strategy	
Use alternative cementitious matls and aggregates (portland-limestone cements, etc)	Regional variability in availability Performance considerations	
Use carbon sequestration (CarbonCure)	Increases strength by ~10% (hydrates better) Decreases cement quantity, GWP (2.5%) Increases cure time, may impact schedule Decreases durability and service life	
Limit early strength requirements (>28 days when possible)	Increases slag and carbon sequestration content Increases project schedule	
Decrease transportation distance *30 mi used in baseline		

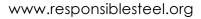
Specifications


- Prescriptive (current)
 - Min cementitious rqmt
 - Max SCM content
 - Max water/cement ratio

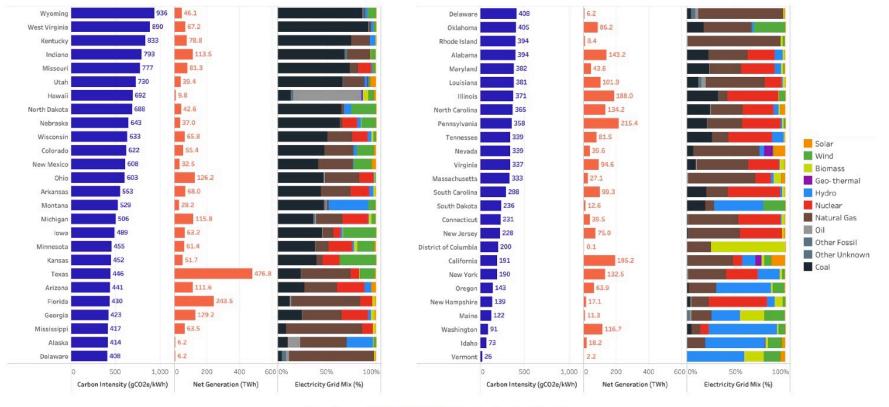
- Performance (consider)
 - Design strength (>28 days)
 - Early-age strength
 - Thermal limits
 - Shrinkage (if applicable)
 - Permeability
 - Exposure class
 - Test Data
 - GWP

Concrete -Carbon Benchmark

- Level of uncertainty in data (wide variation in benchmarks)
- Full GWP reductions not realized in mixes without EPDs
 - (SCMs & CarbonCure absent)



Steel Strategies



- Steel Production
 - Basic Oxygen Furnace (coal/natural gas)
 - Electric Arc Furnace (local-electric grid)
- EAF
 - 68% of US Steel
 - Uses recycled scrap
 - Hot-rolled shapes and rebar
- Industry-average recycled content (baseline)
 - 75% (rebar) 98% (HSS) recycled content
- Consider EAF and transport distance

United States - Electricity Grid Carbon Intensity

(gCO2e / kWh)

(Data Source: EPA eGrid 2018, Visualization by Priopta)

Aluminum Strategies

• Manufacturing – 10x electricity of steel

- Local electric grid matters
- Recycled aluminum uses 95% less energy
- Recycled aluminum can meet 30% demand

Reduce quantity (but balance energy performance impacts)

Insulation Strategies

- XPS and spray foam high embodied carbon
- .. due to HFC blowing agents (1000x of CO2)

Consider natural sequestration materials (but balance thermal performance & moisture requirements)

