HOW CHESAPEAKE BAY PROGRAM IS ADDRESSING CLIMATE CHANGE

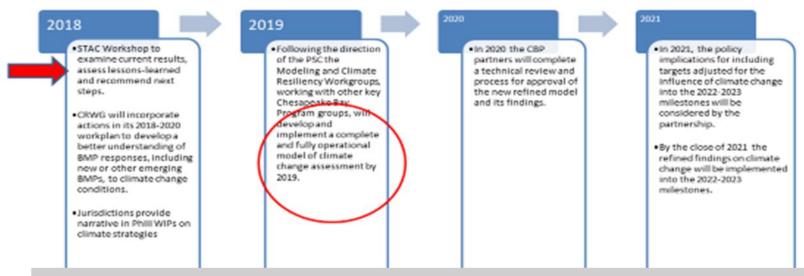
COG staff background information

WRTC Meeting November 9, 2018

Outline

- Schedule
- Model Information
- Preliminary impact on Phase III WIP Targets
- Next Steps
- Note: all graphics in this presentation were derived from materials presented to the Chesapeake Bay Modeling Workgroup

Climate Change Decision Framework


- Bay TMDL must address climate change; however, need to do so on a quantitative basis held off until 2022
 - Allows time for model upgrades to better simulate impacts
 - Allows time for Bay partner jurisdictions to figure out how they can respond
 - Likely will require substantial additional nutrient and sediment reductions
- Bay partners must include qualitative approach in Phase III WIPs; have option of starting quantitative approach early

Schedule for Incorporating Climate Change into Bay TMDL wp

WIP = watershed implementation plan

Translating the PSC Decision into a Workplan Factor Climate Change Impacts into the Phase III WIPs

- Climate change model (by altering existing models) by end of 2019
- Addressing load impacts quantitatively by end of 2021
- Use "management practices" that are more effective (resilient) and that are sited based on climate change impacts

10


Major Factors

Watershed Model:

- Precipitation volume & intensity
- Temperature (snow melt) and evapotranspiration
- Translates (via HSPF)
 into increased flow
 & associated
 nutrients and
 sediment loads

Water Quality Model

- Increased loads (from WSM)
- Temperature effects
- Sea level rise and increased flows

Methods

2019 Assessment

For precipitation:

- For 2025, extrapolate
 87-year data record (PRISM)
- For 2050, use average of GCMs ("ensemble")

For temperature:

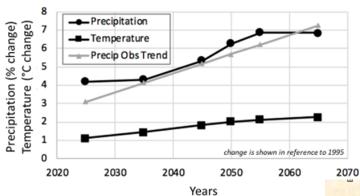
 Use average of GCMs

GCM = global climate change model

Year	Precip	itation	Temperature			
	Trend	Ensemble	Trend	Ensemble		
2025	x	-	-	х		
2035	?	?	?	?		
2045	?	?	?	?		
2050	-	х	-	х		

- Selections highlighted in yellow are the STAC and CBP climate resiliency workgroup recommendations and CBP approved approaches for the 2017 Climate Change assessment.
- For 2035 and 2045 the Modeling Workgroup (September 2018) recommended (a) combining the two sources using weighted means for rainfall, (b) using the ensemble for temperature. Both approaches are consistent with the STAC 2016 Climate Change Workshop recommendations of observed precipitation trends for 2025 and ensemble precipitation estimates for 2050.

17



Methods - More Details

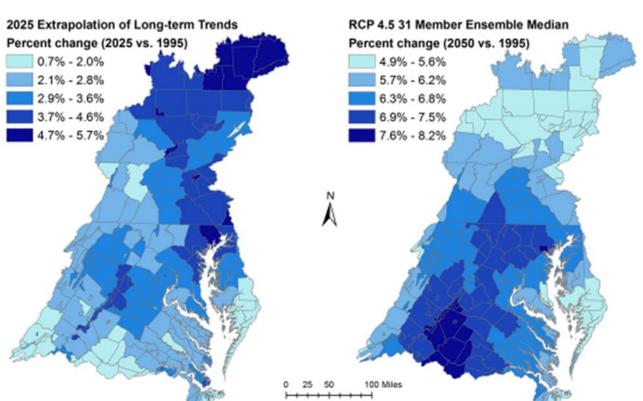
Summary of precipitation and temperature

2017 Assessment

Trend: extrapolation of long-term (<u>88-year</u>) trends **Ensemble**: 31-member ensemble of RCP4.5 GCMs

RCP = Representative Concentration Pathways

Updated Ensemble Imembers I							
ACCESS1-02	FGOALS-g22	IPSL-CM5A-LR®					
BCC-CSM1-12	FIO-ESM2	IPSL-CM5A-MR2					
BCC-CSM1-1-M2	GFDL-CM32	IPSL-CM5B-LR2					
BNU-ESM [?]	GFDL-ESM2G2	MIROC-ESM ²					
CanESM22	GFDL-ESM2M2	MIROC-ESM-CHEM2					
CCSM42	GISS-E2-H-CC2	MIROC52					
CESM1-BGC2	GISS-E2-R2	MPI-ESM-LR2					
CESM1-CAM5®	GISS-E2-R-CC2	MPI-ESM-MR ²					
CMCC-CM2	HadGEM2-AO2	MRI-CGCM32					
CNRM-CM52	HadGEM2-CC2	NorESM1-M2					
CSIRO-MK3-6-02	HadGEM2-ES2	31 member					
EC-EARTH2 2	INMCM42	ensemble					
		000					


Precipitation: Results

2017 Assessment

Data quantified mostly at county scale

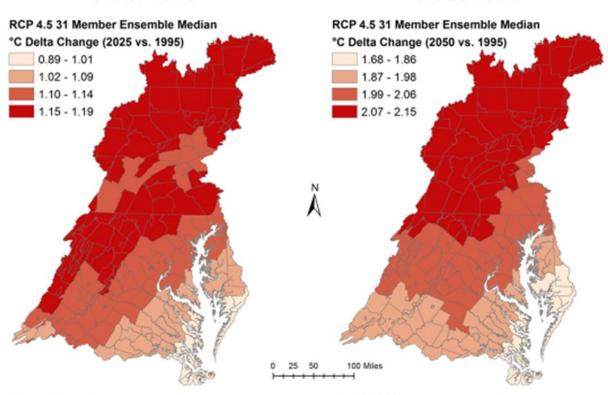
Bay Program looking at various methods of disaggregating annual rainfall into smaller time steps

YEAR 2025

3.11% increase in average annual rainfall volume

6.28% increase in average annual rainfall volume

YEAR 2050



Temperature: Results

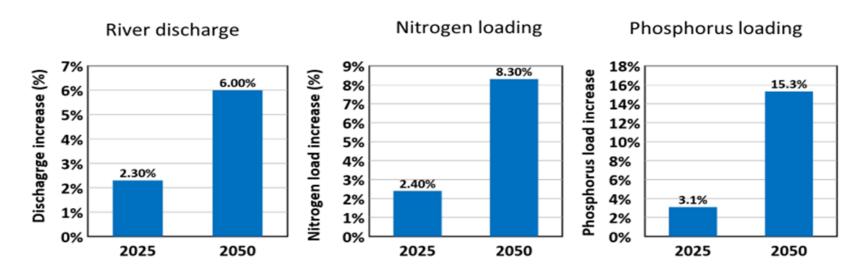
2017 Assessment

Data quantified mostly at county scale

More uniform than precipitation data - ?

1.12°C increase in average annual temperature

YEAR 2025

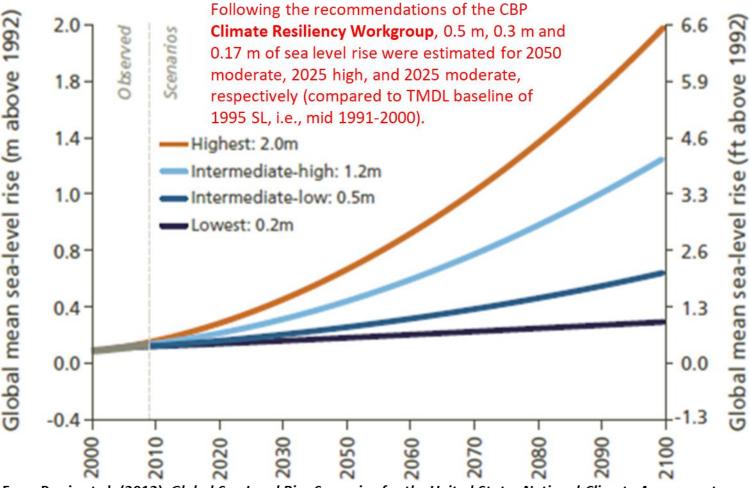

2.03°C increase in average annual temperature

YEAR 2050

November 9, 2018

WSM Loads: Results

Changes in river discharge and nutrient loading in the 2025 and 2050 climate change scenarios



From Gopal Bhatt

Sea Level Rise Estimates

Separate group within CBP responsible for sea level rise estimates

From Parris et al. (2012). Global Sea Level Rise Scenarios for the United States National Climate Assessment. NOAA Technical Report OAR CPO-1. (1992 used as the starting year)

WQSTM Results: water quality attainment

Estimate on water quality attainment in the Deep Channel Designated Use

Potential effect of climate change on attainment scenarios

Scenari	name	Base	2025SL	2025Flo	2025He	2025All	2050SL	2050Flo	2050He	2050All	WIP2	WIP2_2	WIP2_2
o			R_17cm	w	at		R_50cm	w	at			025	050
Nitroge													
n	loading	325TN	325TN	333TN	325TN	333TN	325TN	352TN	325TN	352TN	195TN	200TN	211TN
Phosph	loading	21.9TP	21.9TP	22.6TP	21.9TP	22.6TP	21.9TP	25.3TP	21.9TP	25.3TP	13.7TP	14.1TP	15.8TP
СВЗМН	MD	7.02%	6.50%	7.56%	9.00%	8.41%	4.41%	8.58%	10.91%	9.20%	0.00%	0.00%	0.00%
СВ4МН	MD	44.76%	42.07%	45.51%	47.66%	46.44%	36.45%	48.27%	51.11%	47.71%	5.02%	6.80%	9.61%
СВ5МН_	MD	20.68%	18.39%	20.58%	22.04%	21.74%	15.67%	23.05%	24.54%	23.00%	0.00%	0.00%	0.00%
СВ5МН_	VA	4.03%	2.65%	4.63%	6.16%	5.39%	0.48%	7.66%	8.74%	6.97%	0.00%	0.00%	0.00%
POTMH_	MD	15.47%	13.56%	15.68%	17.21%	17.06%	10.32%	17.16%	19.39%	18.77%	0.00%	0.00%	0.00%
RPPMH	VA	13.33%	16.00%	16.34%	20.42%	18.15%	14.40%	20.82%	24.57%	27.14%	0.00%	0.00%	0.00%
ELIPH	VA	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CHSMH	MD	11.24%	17.08%	11.83%	12.84%	11.81%	14.53%	13.67%	16.18%	14.26%	0.00%	0.01%	1.19%
EASMH	MD	17.95%	17.20%	18.93%	20.54%	18.91%	14.72%	20.56%	22.64%	18.55%	5.62%	6.38%	6.45%

Impact on TMDL Loads

Jurisdiction	1985 Baseline	2013 Progress	Climate Change	Phase III Planning Target
NY	18.71	15.44	0.400 (3.8%)	11.59
PA	122.41	99.28	4.135 (5.7%)	73.18
MD	83.56	55.89	2.194 (4.8%)	45.30
WV	8.73	8.06	0.236 (3.7%)	8.35
DC	6.48	1.75	0.006 (0.3%)	2.43
DE	6.97	6.59	0.397 (8.5%)	4.59
VA	84.29	61.53	1.722 (3.1%)	55.82
Basinwide	331.15	248.54	9.09 (4.6%)	201.25

Potential effect of climate change on 2025 target loads for WIP IIIs

Recent STAC Climate Change Workshop Recommendations

- Stick with current modeling framework
- Add in uncertainty
- Check current watershed model simulation for how nutrient species (nitrate) and (phosphate) respond to climate change
- Lack information on BMP siting and effectiveness

STAC = Scientific and Technical Advisory Committee

Preliminary Conclusions

- By 2025, effect of climate change on attaining water quality in the Bay is a net negative
 - 2017 model results suggest that by 2025 climate change would add the equivalent of 9 million additional pounds of nitrogen to the Bay
 - about 9 % above the current total nitrogen target for the Bay TMDL
- Models will be rerun with updated assumptions and new data in 2020

COG Next Steps

- WRTC Nov. 9 work session on climate change modeling
- Continue to track Bay modeling developments
- Weigh in on future policy decision (2021) to quantitatively incorporate climate change impacts into TMDL

For More Information

- CBP Climate Resiliency Workgroup
 - https://www.chesapeakebay.net/who/group/climate_change_workgroup
 up
- CBP Modeling
 - https://www.chesapeakebay.net/who/group/modeling_team

