

Tree Canopy Data Analysis, Software, and Incorporation into Management Planning & Policy

August 2023

How We See Our Role in the Cycle of Urban Greening PlanIT Geo

TREE INVENTORY & CANOPY ANALYSIS

Vision, Strategy, Roadmap

PlanIT Geo's comprehensive and cohesive technology and data solutions will expedite nature-based urban greening for cities, communities, private sector, and property owners to equitably increase resilience to the effects of climate change, reduce extreme heat, and improve health and well-being.

Data Partnerships for Remote Sensing and Imagery Availability



Al and machine learning (ML) for national, off-the-shelf products:

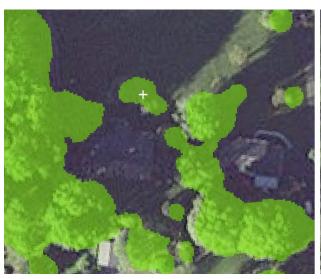
- 3D Building Footprints
- Tree Map
- Impervious Map
- Parking Lots
- Developed at 60cm or higher resolution
- NAIP + LiDAR

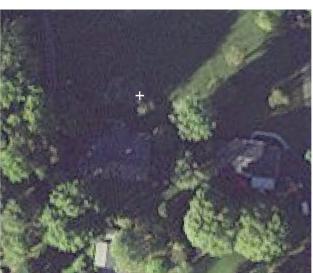
US Impervious Map (60 cm) /3D Building Footprints/Parking Lots

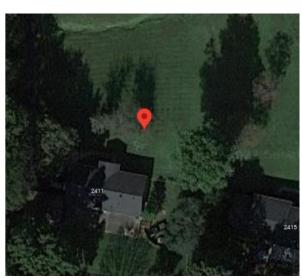
US Tree Map (60 cm)

High Resolution Online Tree Canopy Change Over Time

High Resolution Online Tree Canopy Change Over Time




Seeing the Forest and the Trees

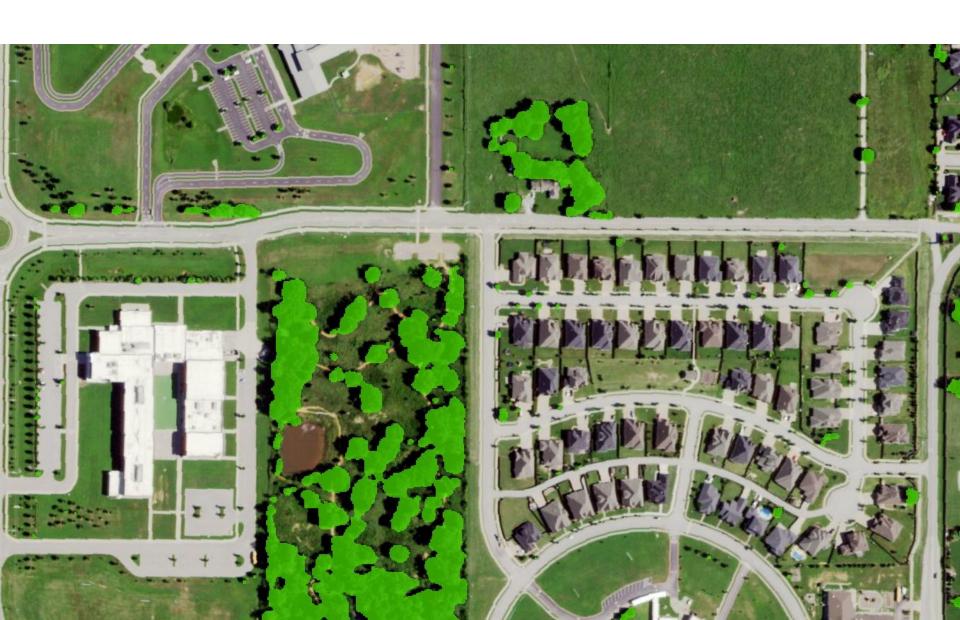

Tree Canopy

NAIP

Google Maps

Increasing Data Availability and Richness

- Tree canopy
- Full land cover
- Tree heights
- Plantable areas

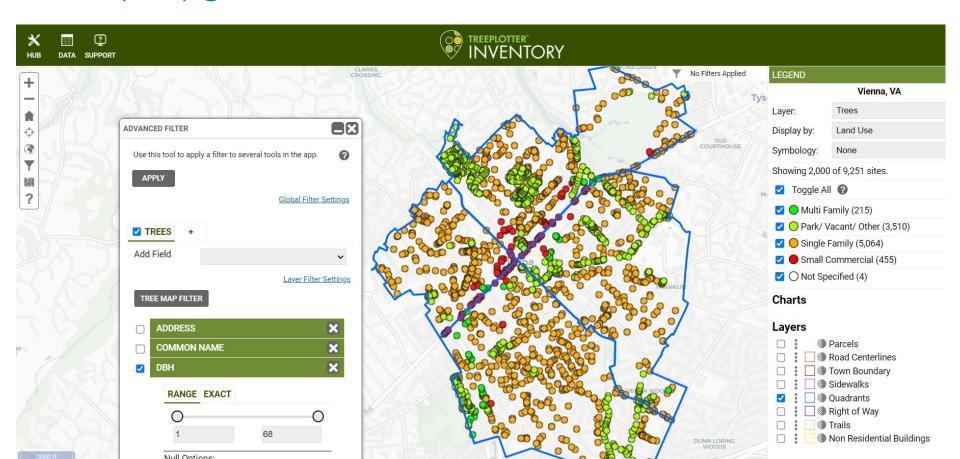

Land cover including tree canopy updated continuously (every two years per NAIP)

Bentonville, AR: 1-meter NAIP and AI


Bentonville, AR: 60cm NAIP and AI

AI LIDAR

AI LIDAR


Example Uses and Applications

- Baseline for future trends analysis and projection of IRA funding impacts
- 2. Incorporate data into other tools and models
- Overlay with socioeconomic/demographic data, schools, and more
- 4. Trends analysis by state, by city, by climate region
- 5. Create story maps
- 6. Prioritize funding, outreach, and messaging based on hard data (existing canopy, gain or loss in canopy, impervious area, etc.)
- 7. Much more...

Local and National Project Examples

City of Vienna, VA Tree Inventory

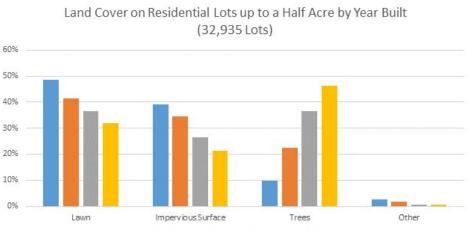
- Explore species, size, land use, and more
- https://pg-cloud.com/ViennaVA/

Fairfax County, VA and Prince George's County, MD (underway)

- Countywide 60cm land cover analysis, tree canopy change analysis
 (2-year repeat cycle), and decision support tools
- Contact the counties for further information

Fairfax County, VA Research by Virginia Tech

 >1,000 parcels being studied for effectiveness of tree preservation ordinance over a 10-year period.

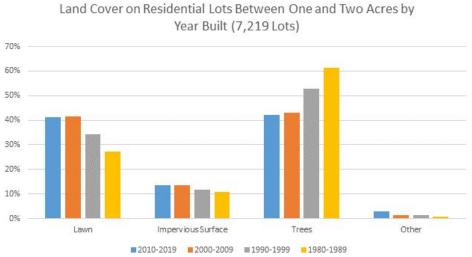

CANOPY & LAND COVER

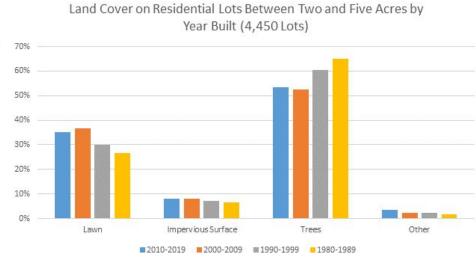
ANALYSIS

County planners
 conducted further
 internal analysis of
 the data using age
 of development
 and lot size.

■2010-2019 ■2000-2009 ■1990-1999 ■1980-1989

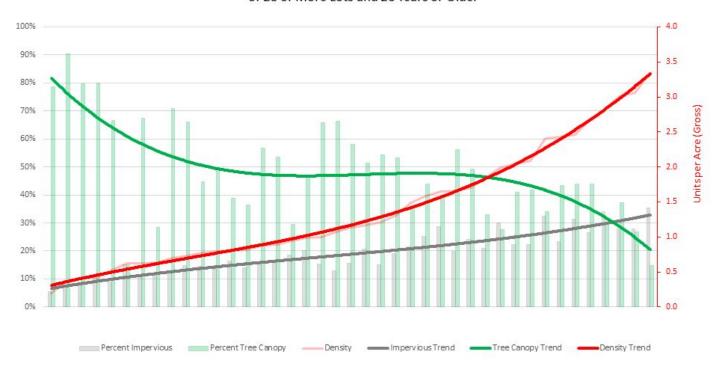
Land Cover on Residential Lots Between a Half and One Acre by
Year Built (12,167 Lots)


60%

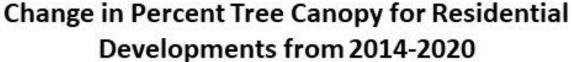

40%

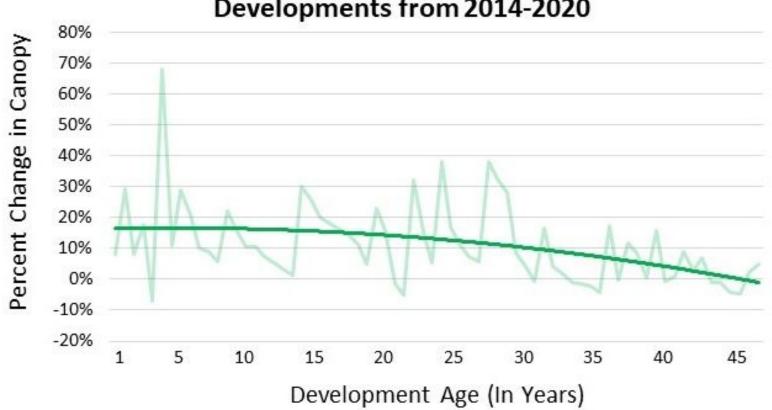
20%

Lawn Impervious Surface Trees Other


2010-2019 2000-2009 1990-1999 1980-1989

Relationship Between Density and Landcover in Union County Residential Subdivisions of 25 or More Lots and 20 Years or Older



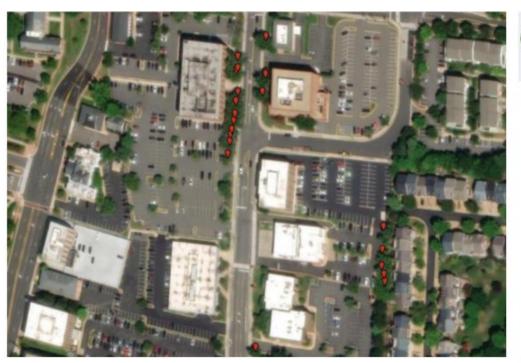

Lots: 4,639 Subdivisions: 41

Largest: Brandon Oaks (1,300+ units)

Oldest: College Grove (1969) Newest: Several (2000) **Density Increases**

City of Fairfax, VA

- Urban tree canopy assessment
- Provided UTC, PPA, and Change
- 5% increase from2012 to 2021
- Highlights concerns for the "quality" of canopy cover




City of Fairfax, VA

QUALITY OF TREE CANOPY IN FAIRFAX

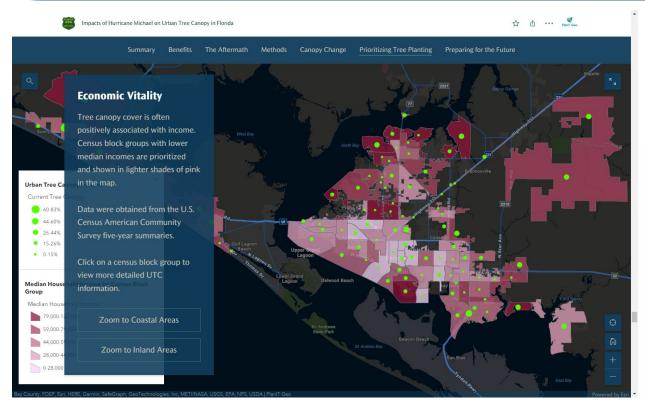
Inventory data can help to identify "canopy quality"

Garland, TX

CANOPY GROWTH SCENARIOS AND GOAL SETTING

 Results can be used to paint a picture of the future and forecast potential planting needs.

Charlottesville, VA



CANOPY GROWTH SCENARIOS AND GOAL SETTING

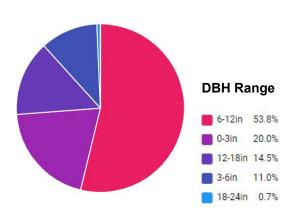
Scenario	Goal	Estimated Citywide UTC % in 2023	Planting Required		Net Tree Canopy Change		Citywide UTC % in 2050	
			Total	Annual	Acres	%	Acres	%
Business as Usual Planting Trends	Calculate the citywide canopy % in 2050 if the City continues to plant approx. 500 trees a year for the next 27 years.	38%	13,492	500	-889	-13%	1,761	25%
Maintain Existing UTC %	Calculate the number of tree plantings required to maintain 38% canopy cover over the next 27 years.	78%	69,431	2,572	5	0%	2,655	38%
Attainable Growth	Calculate the number of tree plantings needed to grow the citywide canopy to 45% by 2050.	38%	99,806	3,697	491	7%	3,141	45%
Aggressive Growth	Calculate the number of tree plantings needed to grow the citywide canopy to 50% by 2050.	38%	121,504	4,500	837	12%	3,487	50%

Related Example -Story Map: Hurricane Michael Canopy Loss

Mexico Beach, FL

Mexico Beach had 42% tree canopy cover in 2017 and 15% in 2019. This represents a 27% decrease due to Hurricane Michael and other natural or development impacts. \$2,313,645 of ecosystem service benefits provided by trees were lost. Mexico Beach has 35% possible planting area.

On-the-Ground Examples


Process Driven Canopy Management Plans

Identify Issues, Create Management Plans

145 Trees / Low Species & Age Diversity

	Common Name	Count	Percent
Honeylocust		106	73.10%
Tree of Heaven		14	9.66%
Mulberry		9	6.21%
Siberian elm		5	3.45%
Eastern redbud		3	2.07%
Desert willow		3	2.07%
Callery pear, Bradford Pear		2	1.38%
Russian olive		2	1.38%
New Mexico olive		1	0.69%

Species

Callery pear, Bradford Pear (2)

O Desert willow (3)

Eastern redbud (3)

O Honeylocust (106)

OMulberry (9)

New Mexico olive

Russian olive (2)

Siberian elm (5)
Tree of Heaven (14)

Process Driven Canopy Management Plans

Data Drive Planting Plans: Richland Hills Park

Assess Canopy Run Growth Model **Assess Inventory** Assess Planting Location **Determine Species**

Parks: Richland Hills	
Urban Tree Canopy (2011)	0%
Urban Tree Canopy (2016)	0%
Urban Tree Canopy (2018)	9%
Urban Tree Canopy (2020)	17%
Tree Canopy Change (2011-2016)	0%
Tree Canopy Change (2011-2018)	9%
Tree Canopy Change (2011-2020)	17%
Tree Canopy Change (2016-2020)	17%
Tree Canopy Change (2018-2020)	8%
Tree Canopy Change (2016-2018)	9%
Total Possible Planting Area	58%

Hypothetical Canopy Trees needed	27% III
Total Possible Planting Area	58%
ree Canopy Change 2016-2018)	9%
Tree Canopy Change (2018-2020)	8%
Tree Canopy Change (2016-2020)	17%
Tree Canopy Change (2011-2020)	17%
Tree Canopy Change (2011-2018)	9%
Tree Canopy Change (2011-2016)	0%
Urban Tree Canopy (2020)	17%
Urban Tree Canopy (2018)	9%
Urban Tree Canopy (2016)	0%
Urban Tree Canopy (2011)	0%
Parks: Richland Hills	

Assumptions:

- Increase Canopy 10%
- Average Crown Diameter 30 ft
- Mortality Rate 3% 3)

Callery pear,... 1.9% Common c... 1.9%

Desert willow 62.3%

Honeylocust 15.1%

Arizona ash... 7.5%

Purple Leaf ... 1.9%

5.7%

1.9%

1.9%

Eastern red...

Black locust

Bur oak

Process Driven Canopy Management Plans

Where does the community want trees?

Community Engagement

Downtown Albuquerque Volunteer Tree Inventory Efforts

October 2022 - Present **2,917** Trees / Possible Planting Sites Identified

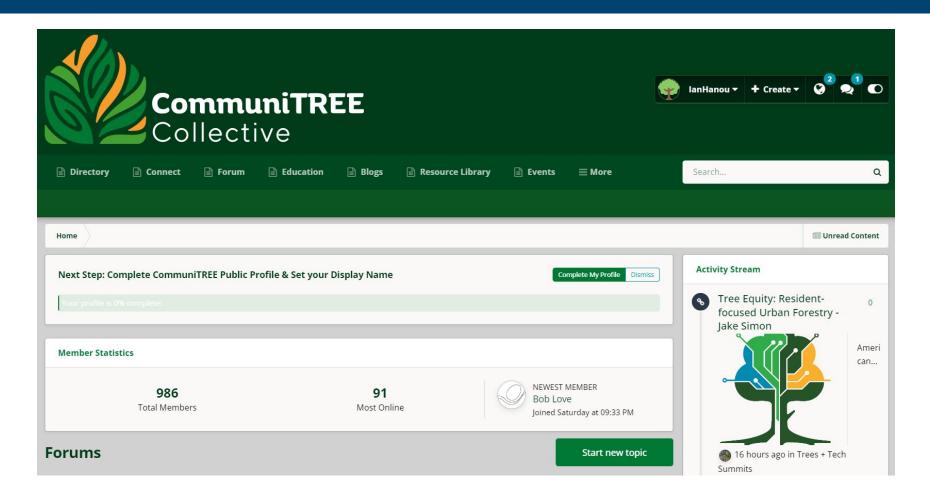
Add Tree Type

Choose a Type	
No Template	
Volunteer Use: Tree	
Volunteer Use: Stump	Status
Volunteer Use: Planting Site - Large	2.0001611000
Volunteer Use: Planting Site - Medium	Alive (1,794)
Volunteer Use: Planting Site - Small	O Dead (25)
Volunteer Use: Dead	O Possible Planting with Concrete Remove
City Use: Tree	(483)
City Use: Stump	Proposed Site - Large (37)
City Use: Planting Site - Large	Proposed Site - Medium (117)
City Use: Planting Site - Medium	Proposed Site - Small (420)
City Use: Planting Site - Small	Stump (41)
Volunteer Use: Planting Site with Concrete Removed	

Contact

Questions? Thank you!

Ian Hanou CEO & Founder


<u>IanHanou@planitgeo.com</u>

Warning: Shameless Plug! (1 of 2)

planitgeo.com/treesandtech/

Warning: Shameless Plug! (2 of 2)

communitree.planitgeo.com/