Health Risks and Air Quality: *Fine Particulate Matter and Ozone*

Tee L. Guidotti, MD, MPH, DABT, QEP Medical Advisory Services tguidotti@nmas.com

Atmospheric Change and Health: Research Agenda

Ecosystem

Airshed

Climate change
Strato ozone depletion
Acid deposition
POPs transport

Ambient air quality
Air toxics
Allergens

 Indoor air quality
 Occupational exposure

Built

Atmospheric Change

Industrialization Technological choices Population

Greenhouse gases — Climate change

 O_3 depleting chemicals \uparrow incident UV released

Acidifying pollutants ----- Acid deposition

pollutants

Air toxics

Air quality in the built \longrightarrow Indoor air quality environment

Airborne emissions in ----- Occupational

- radiation
- Persistent organic _____ Long-range transport of POPS
 - Air toxics
- Ambient air pollutants Ambient air pollution
 - issues
- the workplace respiratory hazards

Human Health Implications

Mediated by toxic effects

- ambient air pollution
- air toxics
- IAQ
 - sick building
 - moulds, bioaerosols
 - occupational exposures
- noxious odour effects

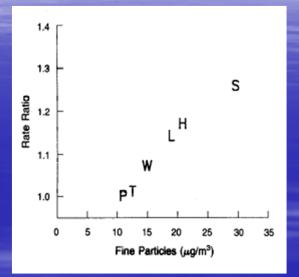
<u>Mediated by ecosystem</u> <u>effects</u>

- climate change
- strato ozone depletion
- effects on food production
- Socially mediated effects
- risk perception
- odour/nuisance

Progress has Social Drivers

Lead in gasoline	1986 →	Children's health
	1995	
Acid deposition	1990's	Northeastern lakes
Fine particulate air	1999	Relative risk \rightarrow
pollution, ozone		Attributable risk
Climate change	2006	Al Gore
Air toxics (e.g.	2007	Community "outrage"
WISSA)		and conflict
NAAQS for ozone	2008	Asthma concern

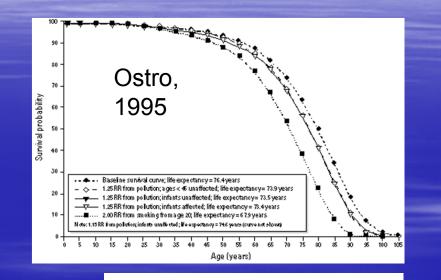
Air Quality and Health

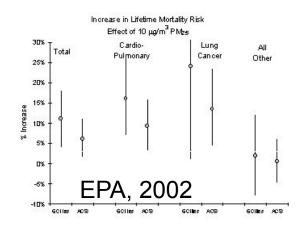

- There is no "air pollution disease"
 - Health effects take place against a background of same outcomes
 - Statistical excess is the marker
- Air pollutants covary
 - Track each other so closely that separation is difficult
 - Averaging and regression: covariance
 Synoptic weather pattern effects
 (heat, humidity)

John R. Goldsmith, founder of environmental epidemiology

An Unsuspected Effect

- CHESS studies and earlier efforts to document health effects of particulate air pollution.
- Some false alarms (e.g. LA lung cancer study)
- General consensus until 1990 that effects were minor.
- Total suspended particulates (TSP) most common measure.
 - Particle distribution observed (Junke)
 - PM10 introduced: effect observed!
 - PM2.5 followed: more effect!
 - PM1.0 followed: ultrafines!


Three Paradigm Shifts:


- 1. Less mass can be *more* toxic.
- 2. Size as a marker for species
- 3. How to measure mortality

Compelling Calculations

Risk estimates

- Conventional relative risk
 (RR) was not persuasive
- Survival was more dramatic
- Attributable risk fraction (%)
- Attributable risk (pure number)
- Natural Resources Defense Council took it to its logical conclusion: 64,000/year

'I can see clearly now....

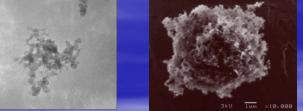
The fact that we can see these effects now

because:

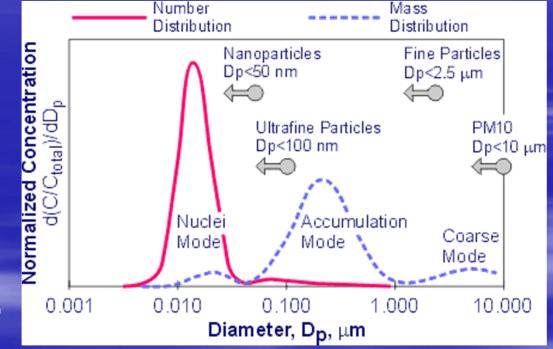
Improved methods in epidemiology

- Epidemiology as "Big Science"
- Large data sets, time series
- Attributable risk v. relative risk

- Improved technology for exposure assessment
 Improving ambient air pollution levels in response to the earlier response to NAAQS has stripped away other health effects
- Work has undergone unmatched validation, confirmatory replication, stringent review, and critical analysis.



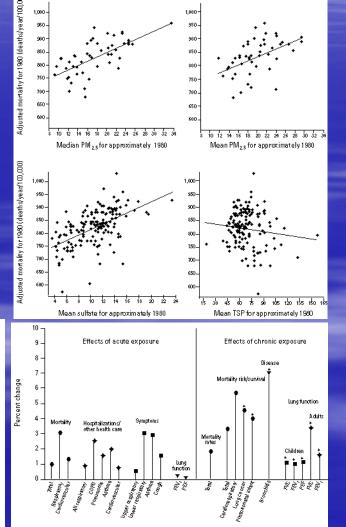
The Discovery of Fine Particulate Matter - Particulate matter \leq 2.5 μ m) um average dia Small mass, huge surface area Produced by - Diesel, primarily - Sulfate, nitrate aggregation Composition: C, S, N, M - Variable seasonally - Metals content small but highly significant


C PMc2.5 um in diamete PM. 10 um in diamete mana courtery of EBA, Office of Research and Da

Three Populations of Particles

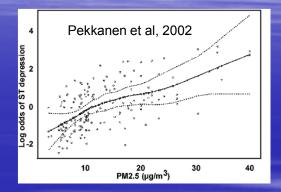
- Define cut size of particles
- Coarse mode = PM10, includes all particles <10 µg
 - Direct emissions
 - Crustal origin
- Fine mode = PM_{2.5}, includes ultrafines (nuclei mode)

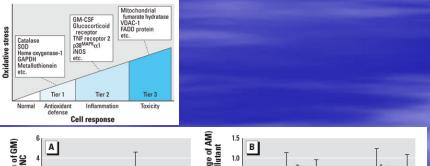
Health and


Fine Particulate Matter

Epidemiological patterns

- Relative risk on order of 1.03 to 1.15
- Attributable risk profound: thousands of deaths in major cities
- **Characteristics**
- Effect confined to fine particulate matter (<2.5 μm)
- Implies great potency for tiny mass
- No threshold
- Susceptible populations mostly elderly
- Primarily cardiovascular mortality
- Secondarily pulmonary
- Harvesting




(PM25+03); all females.

Theories of Pathophysiology

- Conduction instability (Peters)
- Vagal interruption (Godleski)
- Decompensated lung function (Hoek)
- Interaction with other air pollutants (Moolgavkar)
- Macrophage overload (Mauderly)
- "Irritation signal" (Oberdorster)
- Acid effect acid-forming particles
 Transition metals, Fenton-like catalysis (various)
- Oxidative stress reactive O₂ species (Donaldson)
 - Inflammation, blood viscosity, and coagulation balance (Seaton, Peters)

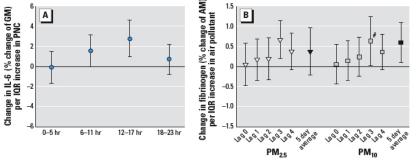
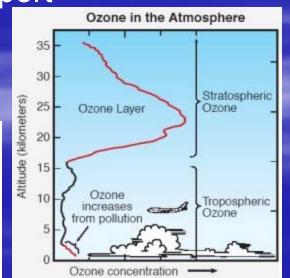


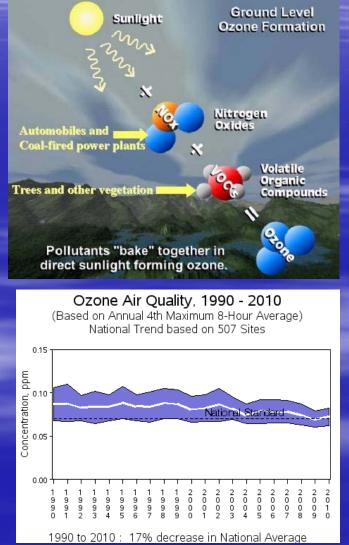
Figure 3. Pooled effects of PNC on IL-6 (A) and of PM_{2.5} and PM₁₀ (B) on fibrinogen, different lags. Abbreviations: AM, arithmetic mean; GM, geometric mean. Error bars indicate 95% Cls. #Heterogeneity between the cities present. Rückert et al., 2007

Ozone

- Secondary pollutant in photochemical air pollution
 - Highly oxidizing gas, not water soluble
- Major fraction of Tox
- Mobile sources

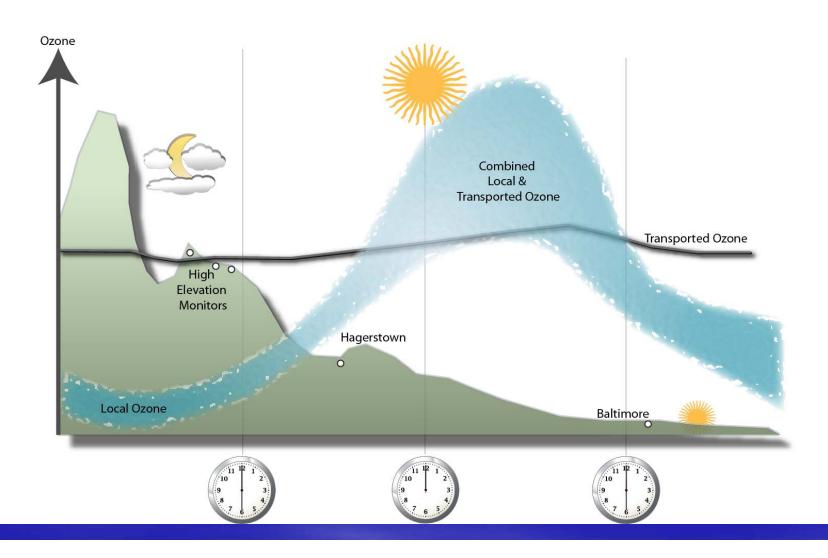

1. $0 \approx 0^{-1}$ + photon ($\lambda > 240$) $\longrightarrow 2^{-1}$

4.^{-0,0}⁺,0⁺ 0 → 20^{≤0}

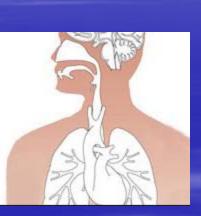

2. $0^{\neq 0} + 0 + M \longrightarrow -0^{\neq 0^{+}} + M$

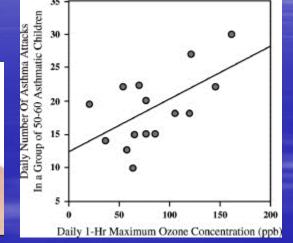
3. 0^{-0} + photon (λ 200-310) $\longrightarrow 0^{>0}$ + 0

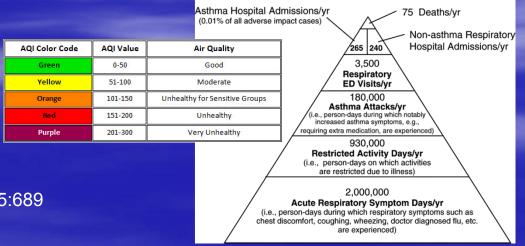
Long-range transport



Ozone

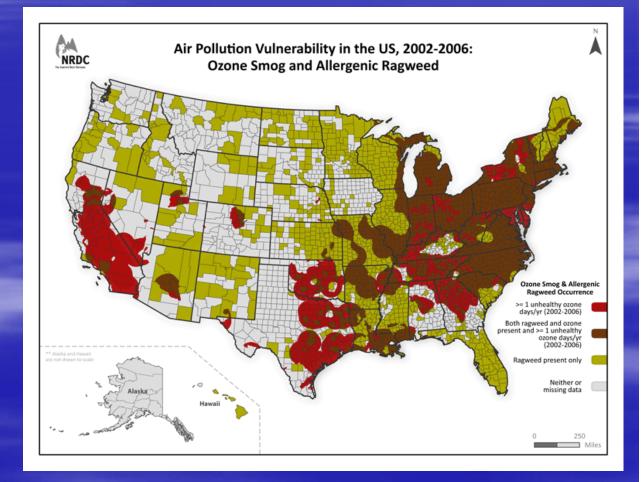

Fransported Ozone


tp://www.mde.state.md.us/programs/Marylander/Pages/AirQualityAwarenessWeek.aspx


Ozone Health Effects

- Primary effect on peripheral airways
- Secondary effect on cardiovascular system, morbidity
- Short-acting, lag-time
- Provocation of asthma +
- Causation of asthma ?
- Major issue in children's environmental health

Pyramid of New York City, NY Annual Adverse Ozone Impacts Avoided By The Implementation of The Proposed New Standard (vs. "As Is")*



Trasande et al. J Allergy Clin Immunol 2005;115:689

Ozone Aggravates Allergies

- Irritant effect on airways
- Antigen processing?

 "Double whammy" for Metro Washington

Comparing the Issues

	Fine Particulate Matter	Ozone
Origin	 Primary from combustion, esp. diesel Aggregation from sulfate, nitrate 	 Secondary from photochemical reactions in presence of VOCs and NO_x Long-distance transport
Minor sources	Crustal, local	Mountains, "tongues" from upper atmosphere
Population effects	Morality by cause	Morbidity: emergency room visits, asthma attacks
Predominant effects	Cardiovascular, pulmonary, systemic	Pulmonary (esp. asthma), cardiovascular
Most susceptible groups	Elderly, preexisting cardiovascular or lung dz	Children, preexisting lung dz, esp. asthma

Rationale for Reducing Standards for PM_{2.5} and Ozone

Reducing the standard for fine particulate air pollution and ozone will:

- allow more Americans to live,
- improve the health of the American people overall and particularly those who live in cities,
- allow Americans with asthma, heart disease, diabetes, and a high risk for stroke to manage their health risks more easily,
- push improvements in pollution, but especially source control, that will reduce many forms of pollutions together,
- improve health and quality of life and productivity,
- lead to more efficient and therefore advanced and therefore competitive technologies.