

Planning for AVs

Stephen Buckley, P.E. WSP USA MWCOG Transportation Planning Board Systems Performance, Operations and Technology Subcommittee June 14, 2017

Attempts at AVs Are Not New

Source: PATH, 1997

NSD

Source: Google, 2014.

Agenda

- Primer on AVs
- Planning for AVs
- Key Unknowns
- Toronto Experience
- Scenario Planning

Primer on AVs

NHTSA Levels of Automation

NSD

Source: SAE

Self-Contained "Seeing"

wsp

Source: Google

The Promise of AVs

- Improved road safety
- Economic benefits of less lost productivity
- More equitable access for all
- Increased travel options
- Reduced stress of driving
- Reduced fuel consumption and emissions
- Reduced collisions, reducing incidentrelated congestion
- <u>In the future</u>, potentially greater capacity, reducing recurring congestion

Two Paths

Private Ownership Model

- Driven by Auto Industry
- Incremental Moves in Functionalities
- Mostly Privately Owned
- Here Today

Shared Mobility Model (MaaS/TaaS/Robo-taxis)

- Driven by Tech and TNCs
- Jump to Fully Automated
- Transportation-as-a-Service
- A few (or many, many) years away

Complexities of AVs

Communications Systems Data Technology Infrastructure **Standards Ethics Managing the Transition Planning** Liability **Consumer Preference** Impact to Jobs **Privacy Security Enforcement** Regulation Human Factors **Safety Business Models Economics**

Complexities of AVs

Planning

Planning for AVs

Planning for AVs

- It's no longer "if", but "when" and "how"
- It will likely be very, very disruptive
- Over time, it will transform mobility as we know it
- Will impact how we design, build and operate not only roads, but likely all aspects of our transportation system

Implications for Planning

	Changes
Trip-making	
Distance of Trip Making	
Passenger Miles Travelled	
Vehicle Miles Travelled	
Fixed Route Transit Demand	-
Active Transportation	-
Parking Demand	-
Curbside Demands	
Congestion	?
Trend of Intensification	?
Right-of-way allocated for vehicles	?

Key Unknowns

Key Unknowns

Speed of Technological Advancement

'What we've got will blow people's minds, it blows my mind... it'll come sooner than people think'

- Elon Musk on Tesla Fully Autonomous Car, Electrek, August 4, 2016

Uber starts self-driving car pickups in Pittsburgh

-Tech Crunch, September 14, 2016

Google starts deploying its self-driving Chrysler Pacifica minivans: first prototypes spotted

-Electrek, October 9, 2016

Speed of Technological Advancement

Manufacturer	2016	2017	2018	2019	2020-25	2025-30	2030-35	2035-40	2040+
	2		3		3+	4/5			
	2				4/5				
Fired				2	4/5				
HONDA	2				3				3-4
KIA					3		4/5		
Mercedes-Benz	2								
NISSAN	2		3		4/5				
T TESLA	2		4/5						
VOLVO U B E R	2	4/5							

wsp

Source: Mashable, June 2016

Photo Credit: Steve Buckley

wsp

California Autonomous Testing Disengagements

Company	Miles Driven	DE*	Miles per DE	Miles per DE in 2015	Common Causes
Waymo (aka Google)	635,868	124	5,128	1,244	Software discrepancy; unwanted vehicle maneuver
BMW	638	1	638	N/A	Lane marking unclear
Nissan	4,099	28	247	14	AV system failure; AV is about to collide with vehicle or obstacle
Ford	590	3	197	N/A	Aborted lane change due to vehicle overtaking at high speed
Delphi	3,125	178	18	42	Completing lane change in heavy traffic; traffic light detection
Cruise (GM)	9,847	414	9.3	N/A	To avoid unexpected behavior
Tesla Motors	550	182	3	N/A	Planner output invalid; follower output invalid
Mercedes-Benz	673	336	2	1.8	Driver discomfort; technology evaluation management
Bosch	983	1,442	0.7	1.5	Planned test of technology
Honda	N/A	N/A	N/A	N/A	N/A
VW/Audi	N/A	N/A	N/A	75	N/A

DE^{*} = Disengagements

Source: The Numbers Don't Lie: Self-Driving Cars Are Getting Good, Wired, February 1, 2017

Source: ARK Investment Management

Cost per Mile: Shared vs. Owned

wsp

Robo-Taxis Could Replace Traditional Taxis and Cars in Megacities

New York City case study

Sources: BCG analysis; U.S. Department of Transportation; NYC Metropolitan Transportation Authority; NYC Taxi & Limousine Commission; Kelley Blue Book.

*Does not consider the impact of convenience and shorter wait and commute times.

*Non-fare-based operating funds received from New York City transit; local, state, and federal sources; and other sources.

"Annual fare revenues per passenger mile traveled.

Source: Boston Consulting Group (2016)

vsp

Figure 3: Average Unlinked Passenger Trip Length, 2011

115

NSP

Public Acceptance

"The technology may be ready before society is."

- Bill Ford, Jr., Chairman, Ford Motor Company December, 2015

Public Acceptance - Trust of AVs

58% say they would take a ride in a fully self-driving car

... but only 35% of parents would let their children ride alone in one

In % of respondents per country

Source: World Economic Forum/Boston Consulting Group, 2015.

In % of respondents per country

Public Acceptance – Shared Use

In % of respondents per country

Source: World Economic Forum/Boston Consulting Group, 2015.

vsp

Political Support

NSD

Political Support

"Helsinki announces plans to transform its existing public transport network into a comprehensive, point-to-point 'mobility on demand' system by 2025"

– July 10, 2014 · theguardian.com

Uber stops San Francisco self-driving pilot as DMV revoked registrations

– December 21, 2016 Techcrunch.com

Gov. Doug Ducey welcomes Uber self-driving cars with open arms

– December 23, 2016 · The Arizona Republic

Influencing a Shared Model

- Economics will strongly influence viability
- Unless we see quick, definitive actions by cities or transit agencies, this WILL be driven by consumer preference and pricing
- Shared use will likely not work in all areas or for all needs, so there will likely still be a strong market for privately-owned AVs
- Public acceptance will likely not only vary regionally, but even within regions
- AV-only facilities or zones will be needed to permit smaller, lighter vehicles

Factors Driving Where Shared Mobility Will Land First

- Weather
- Economics
- Market
 - Density
 - Accustomed to Sharing
 - Tech-savvy
 - ・Wealth
- Political Support
 - Infrastructure
 - Proactive Deployment

Influencing a Shared Model

Uber Expansion

vsp

Source: Uber website (5/22/17).

vsp

Without a clear understanding of the future, how do we plan?

Key Short-term Challenges in Shaping Policy

- This is currently being driven by the market
- Most regions, cities and transit agencies aren't at the table
- Complex issue with lots of moving parts and unknowns, making it difficult to educate or advise leadership and elected officials
- Currently lacking the methods and tools to help us better inform the discussion

Roles and Responsibilities

Торіс	Federal	State	Regions	Industry	Academic
Safety		\bigcirc		\bigcirc	
Testing		\bigcirc		\bigcirc	
Communications and Security					
Vehicle Licensing					
Liability and Insurance					
Supporting Infrastructure				\bigcirc	
Business Models		\bigcirc	\bigcirc		
Business Regulations					
Alignment with Planning		\bigcirc			
Public Transit Applications		\bigcirc			
Enforcement					
Ethics					
Privacy	\bigcirc	\bigcirc			

Approaches Regions Could Take

Approaches Transit Agencies Could Take

Toronto Experience

Toronto Experience

Driving Changes: Automated Vehicles in Toronto

Discussion paper

David Ticoll Distinguished Research Fellow Innovation Policy Lab Munk School of Global Affairs University of Toronto

October 15, 2015

Three Scenarios

Ownership Leads

\\SD

Mixed

Shared Leads

Impacts of Private vs. Mixed vs. Shared

	Private	Mixed	Shared
Collisions	+	-	+
Congestion			
Vehicular Mobility		-	-
Equitable Mobility	?	-	
Cost of Private/Semi-private Vehicular Travel	?	•	÷
Carpooling	7	T	
Passenger Kilometers Travelled		1	1
Vehicle Kilometers Travelled		?	-
Fixed Route Transit Demand	-	-	
Active Transportation	-	?	?
Trend of Intensification	-	?	?
Parking Demand	?	-	
Right-of-way allocated for vehicles	-	+	-
Residential Building/Lot Size	?	-	
Impervious Areas	?		-

۸sp

Goals of Cities and Regions

- Safety
- Accessibility
- Mobility
- Economic Opportunity
- Quality of Life
- High-Quality Natural and Built Form
- Environmental Sustainability
- Social Inclusion
- Financial Sustainability

Toronto Working Group

- Transportation
- Economic Development
- City Planning
- Toronto Transit Commission

- Licensing & Standards
- Police Services
- Parking Authority
- Parking Enforcement
- Revenue

- Employment Services
- Fleet
- Budget
- City IT
- Privacy Commission

Most Common Job (2014)

Source: IPUMS-CPS/ University Of Minnesota

\\SD

Credit: Quoctrung Bui/NPR

Approaches Cities Could Take

Toronto's Draft Vision Statement

Toronto needs to harness the potential of AVs to help us create the City that we want.

Toronto Transportation Services Work Plan

Toronto Transportation Services Work Plan

GOAL 2

PREPARATION

To prepare for the arrival of AVs no matter when and how they are introduced and adopted.

Objectives		2016	2017	2018
2.1 Improve Understanding and Clarity				
2.1.1 Create and maintain a common lexicon of terms an	d concepts for consistent understanding.			
2.1.2 Identify and understand the broad range of potentia	al implications of AVs.			
2.1.3 Define the interests of Transportation Services in vi	ehicle automation across all sections and districts.			
2.1.4 Undertake public opinion research to assess and e government, and how AVs may influence travel behaviou Hamilton Area.	stablish baseline attitudes toward AVs, expectations of ir and modal choice in the Greater Toronto and			
2.1.5 Develop detailed scenarios – ranging from no chan consistent forecasting and planning pathways; use these	ge, to a completely new transportation paradigm - for scenarios on a scale of possible to probable.			
 2.1.5.1 In partnership with the Organization for I International Transportation Forum, undertake a potential scenarios. 	Economic Cooperation and Development's modelling exercise to further develop and refine			
2.2 Prepare a Foundation				
2.2.1 Improve the management and current function of transitions.	affic control devices, particularly signage and pavement			
 2.2.1.1 Increase asset management and lifecycl signage and pavement markings. 	e analysis of traffic control devices, particularly			
2.2.1.2 Review and consider the need for paver	nent markings on local streets.			
2.2.1.3 Improve the visibility of traffic control de	vices under all weather conditions.			
2.2.2 Work with mapping providers to investigate the poly Toronto, and determine the appropriate role for Transport	ential for AV-supportive mapping to be conducted in tation Services and the City.			
2.2.3 Begin to engage with technology providers, automo companies to discuss municipal preparations and potenti	bile manufacturers, and transportation network al pathways.			

4 | Preparing for Autonomous Vehicles

Are GTHA Residents Ready for Autonomous Vehicles?

Survey Overview November 24, 2016

Sweet, Matthias; Laidlaw, Kailey; Olsen, Tyler

Scenario Planning

Scenario Planning

vsp

Scenarios - Shared Leads

\\S])

Scenarios - Private Leads

Catastrophic Event

Public Backlash Regarding Data and Privacy

Realities

- Many planners believe that this will unfold in a thoughtful and controlled way
- Unless we see quick, definitive actions by states, transit agencies, and cities this WILL be market-driven by consumer preference and pricing
- Conversation is currently being driven by politicallyactive industries that have HUNDREDS of BILLIONS at stake
- Some companies in this space appear to be driven entirely by profit motivations

What This May Mean for Transit

- Agencies need to begin to prepare
- Expect that major investments will be questioned
- Some will advocate that AVs will make transit obsolete

What this May Mean for MPOs

- Investment plans may be challenged
- Review your goals and tie discussions back to those goals
- Begin to develop scenarios that are likely for your region
- Investigate the use of modelling tools
- Plan, act, assess, tack.....Plan, act, assess, tack.....
- Develop a work plan and follow it

Signs of Promise

- Regions, transit agencies and cities are becoming engaged
- Tools are being developed
- Discussion of new funding (and pricing models)

Takeaways

- This is coming fast guide it or respond to it
- Cities, regions and transit agencies have a chance to shape this, but need to move
- While still many unknowns, we need to start factoring AVs into long-range planning
- Don't let the unknowns and complexities paralyze us

"The best way to predict the future is to create it."

wsp

DRIVING TOWARDS DRIVERLESS:

A GUIDE FOR GOVERNMENT AGENCIES

LAUREN ISAAC

vsp

http://smartdrivingcar.com/GreenLight-092316 Friday, September 23, 2016

CNHTSA Federal Automated Vehicles Policy: Accelerating the Next

Revolution In Roadway Safety

September 2016, "Executive Summary...For DOT, the excitement around highly automated vehicles (HAVs) starts with safety. (p5)

...The development of advanced automated vehicle safety technologies, including fully selfdriving cars, may prove to be the greatest personal transportation revolution since the popularization of the personal automobile nearly a century ago. (p5)

... The benefits don't stop with safety. Innovations have the potential to transform personal

AV Update

nuTonomy is testing its vehicles in Michigan and UK January 2017

From the Editors

Wishing all our readers and AV Subscribers a very happy and prosperous New Year.

Earlier this month, the Ottawa AV Summit 2017 was held in Kanata, Ontario, hosted by the Kanata North Business Association, CAVCOE and the Conference Board of Canada. The objective was to help the local technology industry better understand the business opportunities and technologies in the AV space and to network with each other. The event was very successful and we had twice as many attendees as we expected.

The Canadian Parliamentary research report "<u>Automated and Connected Vehicles: Status of the</u> <u>Technology and Key Policy Issues for Canadian Governments</u>" reads very well for the advancements in Canada on the AV front. The report uses a significant amount of source material from the report CAVCOE and the Conference Board of Canada published a year earlier.

Here in Canada, we remain concerned that our very occasional adverse weather (our tongue firmly in cheek) will slow the deployment of AVs on our roads. However, it seems that <u>Tesla's</u> <u>Autopilot is already accomplished at steering in the snow</u>, even without visible lane lines or a

Adam Jonas, Morgan Stanley

http://linkback.morganstanley.com/web/sendlink/webapp/BM Servlet?file=e72626n0-3pka-g002-b8c7-005056013600&store=0&d=1&user=ded82hm7bu07c-2&__gda__=1601757194_55d7b23ee93236041c022c4c70eacd f9#0001&ded82hm7bu07c-0&1601757194_c1c3530231514a8ac2e1c78bdf76871f&0011& ded82hm7bu07c-

 $1\&1601757194_45a5104d280513428eb57e473a5220c0$

Stephen Buckley, P.E.

vsp

stephen.buckley@wsp.com www.advancingtransport.com