Documenting Impacts of Climate, Clams, and a Changing Watershed on the Potomac Estuary

Lora Harris, UMCES-CBL

Nitrogen Sources:

- I. Imported food and feed
- 2. Vehicle emissions
- 3. Powerplant emissions
- 4. Fertilizer imports
- 5. Fixation in croplands
- 6. Agricultural emissions

Nitrogen Fluxes:*

- Atmospheric deposition
 Wastewater from septic
- tanks and treatment plants
- 9. Agricultural runoff
- 10. Forest runoff Urban runoff

* A flux is the movement of nitrogen from one component of the ecosystem to another.

POTOMAC ESTUARY

- Largest Tributary of CBay
- Watershed covers four states and Washington, DC
- Lower Population Density in Mesohaline portion of estuary

Created by JW, 2/13/08

Population (2005)

Major Historical Acts in Water Quality Monitoring

- **1870s**: First sewers built
- **1894**: US Public Health Service began sanitary surveys in DC
- **1897**: USGS conducted first water quality survey of entire Potomac
- **1965**: Water Quality Act enacted establishing water quality standards for interstate waters
- **1972**: Clean Water Act establishing National Pollutant Discharge Elimination System (NPDES)
- **1983, 1987**: Chesapeake Bay Agreement enacted; goal to reduce nutrient loads

Surface Stream Water Quality Is Improving due to Declining Atmospheric N Deposition

Our Role: Develop Nitrogen Mass Balance for Potomac Estuary

CE-QUAL-ICM

Three Cruises: Spring High nitrate 16-92 μM Temperature ~17 °C DO low near mouth

Summer

Low nitrate 1.0-7.5 μ M High temperature ~27 °C Anoxic near mouth

Sediments - spring

Estimates of Denitrification

- 1. Rate measurements of N2-N fluxes interpolated across lower Potomac
- 2. Raster dataset exported fromArcGIS, predictions summed to estimate total denitrification rate for Potomac.

~15,900 kg N per day

 Inputs of N from upper Potomac averaged for July and August, 2009

8695 kg N per day

 Inputs of N from Blue Plain averaged for July and August, 2007

N2-N Flux for Potomac Tributary August 2010 Legend N2Flux umol/m2/hour Value ligh : 127.894 Low : 0.00352108 Bathymetry (NOAA, m) High : 1.577 10 Kilometers Law : -52,933

6976 kg N per day

"...our observations are not consistent with direct effects of salinity controlling N_2 -N effluxes...we believe the whole range of controls must be considered."

Burial Rates

Measured by estimating sedimentation rates using Pb-210 activity

Nutrient concentration in sediments concurrently measured in 5 cm increments.

Ranged from 2.1-11.2 mm year⁻¹

Nitrogen Burial 0.2-2.0 mg cm⁻² yr⁻¹

Inputs, Losses, and Mass Balance

Comparison of Pre- and Post Denitrification at Blue Plains (1985 - 1996)

Attribution to Claire Buchanan?

Box Model Boundaries

Source Tracking

Modeled N loads decreased down estuary.

Depending on the season, export of wastewater effluent to the Chesapeake Bay main stem characteristic of the Blue Plains treatment plant ranged from 1-30% of inputs.

Remineralization of N inputs was evident in changed ratio of $\delta N15$ and $\delta O18$ isotopes of nitrate.

Values estimated using this approach similar to direct flux measurements.

	Total Inputs	% of Inputs	Net Export	% of Blue Plains		
	(kg/day)	from Blue	(kg/day)	Inputs Exported		
		Plains*				
Winter	$49,150 \pm 30,323$	10 ± 13	$19,844 \pm 13,728$	$3.7 \pm NA$		
Spring	$13,5317 \pm 14,614$	8 ± 0.8	$68,431 \pm 48,060$	71 ± 20		
Summer	$13,888 \pm 596$	38 ± 3	$4,853 \pm 8,326$	19 ± 11		
Fall	$15,334 \pm 3,700$	47 ± 13	$-1,613 \pm 12,124$	18 ± 10		

The Mid-Point Assessment: Integrated Trends and Analysis Team

Climate Indicators Show Impacts on Chesapeake Region

National Climatic Data Center from http://climatechange.maryland.gov/science/

Analytical Approach: The Watershed

• Examine fall line loads and trends

- Determine sources contributing to fall line loads
- Use source analysis to assess role of inputs

Analytical Approach: The Estuary

- Test explanatory models related to water quality variables of interest (GAMs)
- Tidal fresh vs Mesohaline
- Think outside the box for explanations

The Watershed

Net Anthropogenic Inputs -Phosphorus

Net Anthropogenic Inputs -Phosphorus

Net Anthropogenic Inputs -Nitrogen

Net Anthropogenic Inputs -Nitrogen

	MANN KENDALL	L LINEAR REGRESSION				GAM	
	Tau	Δ(abs) (kg N ha ⁻¹ yr ⁻¹)	95% C.I. of Δ(abs)		Δ(abs) (kg N ha ⁻¹ yr ⁻¹)	95% C.I. of Δ(abs)	
LIVESTOCK N CONSUMPTION	0.73	15.05	11.80	18.31	14.92	13.61	16.47
AGRICULTURAL N FIXATION	-0.24*	-0.23	-0.75	0.29	-0.19	-0.67	0.20
LIVESTOCK N PRODUCTION	0.73	3.76	2.95	4.58	3.75	3.36	4.14
FERTILIZER N APPLICATION	-0.41	-3.64	-4.94	-2.35	-3.63	-4.59	-2.80
CROP N PRODUCTION	0.80	2.56	1.38	3.75	2.41	0.99	3.51
HUMAN N CONSUMPTION	1.00	2.13	2.08	2.18	2.12	1.93	2.28
POINT SOURCE TN LOADS	-0.81	-0.45	-0.55	-0.36	-0.45	-0.50	-0.40
TOTAL N DEPOSITION	-0.48	-3.64	-5.65	-1.64	-3.40	-5.30	-1.73
NANI	0.26*	3.33	-0.76	7.43	3.36	0.74	6.23

Analytical Approach: The Estuary

• Freshwater:

chla ~ seas + s(doy, bs = "cc") +s(flow,by=seas) +
s(PAR,by=seas) + s(wtemp,by=seas)
+s(bivalves,by=seas)+s(WWtn,by=seas) +s(RIM-TP,by=seas)

• Mesohaline:

chla ~ seas + s(doy, bs = "cc") +s(stratification,by=seas) + s(PAR,by=seas) + s(wtemp,by=seas) +s(main-TN,by=seas)+s(main-TP,by=seas) +s(RIM-TN,by=seas)+s(RIM-TP,by=seas)

Trends in Global Cloud Cover in Two Decades of HIRS Observations

DONALD WYLIE

Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin

Clams Tell A Story...

Response Variables

Explanatory Variables

Fitted GAM components - FW

Fitted GAM components - MESO

Fun with GAMs: What would Chl look like in a less variable world?

With time series untouched....

Manipulating Clams and Climate

Corbicula!

—— Filtration capacity --- Time to filter Rosier Bluff - Hatton Pt

Conclusions

- **Quantifying** management effects is possible from empirical data
- **Changing** agricultural practices mask some declines in nutrient sources
- **Climatic** factors & **Ecological** considerations helpful in understanding lack of expected response
- Potomac Estuary water quality responsive to different factors in tidal fresh versus mesohaline

With Gratitude:

Melinda Forsyth, Jeff Cornwell, Walter Boynton, Jeremy Testa, Cindy Palinkas, Casey Hodgkins, Michael Pennino

Versar Environmental Services

DC WATER

Net Anthropogenic Inputs -Phosphorus

	MANN KENDALL	LINEAR REGRESSION			GAM		
	Tau (%)	Δ(abs) (kg P ha ⁻¹ yr ⁻¹)	95% of Δ(6 C.I. (abs)	∆(abs) (kg P ha⁻¹ yr⁻¹)	95% of Δ(al	5 C.I. bs)
HUMAN P CONSUMPTION	0.74	0.43	0.42	0.44	0.43	0.39	0.46
LIVESTOCK P CONSUMPTION	0.74	6.84	5.48	8.19	6.80	6.31	7.43
LIVESTOCK P PRODUCTION	-0.92	2.33	1.87	2.79	2.32	2.13	2.49
FERTILIZER P APPLICATION	0.82	-3.02	-3.51	-2.53	-2.93	-3.74	-2.10
CROP P PRODUCTION	-0.90	0.48	0.29	0.67	0.44	0.19	0.62
POINT SOURCE TP LOADS	0.45	-0.13	-0.15	-0.11	-0.13	-0.14	-0.12
NAPI	0.74	1.45	0.38	2.53	1.51	0.76	2.10