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World Climate Research Programme

Mission & Objectives

World Climate Research Programme supports climate-
related decision malking and planning adaptation to
climate change by coordinating research required to
improve

(1) climate predictions and

(2) our understanding of human influence on climate

W

“for use in an increasing range of practical applications of direct
relevance, benefit and value to society”
(WCRP Strategic Framework 2005-2015).
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World Climate Research Programme

WCRP OPEN SCIENCE CONFERENCE

CLIMATE RESEARCH IN SERVICE
TO SOCIETY

Monday: The Climate System Components and
their Interactions

. Tuesday: Observation and Analysis of the Climate
System

Assessing and Improving Model an

ientific Understanding into

24-28 October 2011, Denver, Colorado, USA

conference2011.wcrp-climate.org
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The World in Global Climate Models
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with human effects
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Future Directions: Actionable Science

Defined as: data, analysis, and forecasts that are sufficiently predictive, accepted and
understandable to support decision-making, including capital investment decision-making.

&2 World Climate Conference-3, OceanObs ‘09, ICSU
Review and Visioning, acknowledge WCRP past
contributions and identify future challenges and
opportunities.

W

Need for more flexibility/agility to respond to expanding
users needs, that includes information:

e Atregional scale

« For key sectors of global economy

o [or adaitation, mitiiation and risk manaiement



Grand Challenges: Prediction of the Earth System

Vulnerabilities & Consequences
of Climate Change

unas'lal EBDS‘H‘SIEI‘HS Hea".n

GOALS:

e Deliver knowledge to respond to global change
* Engage a new generation of researchers

e Transition to the full range of sciences and
humanities
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Downscaling Skill: Daily Fluctuations
Role of Orography in the Cascades

Cascade Range daily-mean precipitation variation during 1983 JFMA ——QOBS =——RCM

P // \ 4"\}', ) / v N

S RB

\] i

A . -A

80 90 100 1o 120

S T B A T
Cascade Range daily-mean precipitation variation during 1983 MJJA




Much More Than That...
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Optimized Physics-Ensemble Prediction
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CWRF Improves Seasonal Climate Prediction
Precipitation Errors CWRF vs NOAA Global CFS

Seasonal a) Frequency of RMSE b) Difference (CWRF minus CFS) of Equitable Threat Score (ETS)Interannual
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a) Spatial frequency distributions of root mean square errors (RMSE, mm/day) predicted by the CFS and
downscaled by the CWRF and b) CWRF minus CFS differences in the equitable threat score (ETS) for seasonal
mean precipitation interannual variations. The statistics are based on all land grids over the entire inner domain
for DJF, JFM, FMA, and DJFMA from the 5 realizations during 1982-2008. From Yuan and Liang 2011 (GRL).
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Optimized Physics Ensemble
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Prediction of Precipitation
In summer 1993

The physics ensemble mean
substantially increases the
skill score over individual

configurations, and there

20 25

exists a large room to
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» ——RA-AER —— CU=CSU further enhance that skill
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Y ——RA=F-L ——CU=ZML
- ’ ——RA=GFDL ——— CU=NKF
’ ——CL=AVG  —— MP=Lin
’ SF=UOM  —— MP=Morrison|  Spatial frequency distributions of correlations
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—— BL=Boulac MP=WSME | " and observed daily mean rainfall variations in
—BLGFs -/ mﬁfg]sms summer 1993. Each line depicts a specific
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= = = ENS=OPT physical processes (color). The ensemble
result (ENS) is the average of all runs with
equal (Ave) or optimal (OPT) weights, shown

as black solid or dashed line.
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CWRF Downscaling Seasonal Climate Prediction: Extreme Events

Observed (OBS), CFS-predicted, and CWRF-downscaled: a) number of rainy days, b) maximum dry spell
length (day), c) daily rainfall 95 percentile (mm/day), and d) difference in number of rainy days averaged
between the El Nifio (warm) and La Nifia (cold) events for JFM during 1983-2008.
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Major findings:

e Without the upstream influences, the UHI effects over
Baltimore would be 1.25°C colder or reduced by
25%, with a 200-m shallower boundary layer and
much less robust “hot plumes”.

e The enhanced UHI effects are argued to result from
the (nonlocal) thermal advection of warm air
upstream, local upward surface heat fluxes and
entrainment of the potentially warmer air aloft.



Land Use and Sources of Nitrogen Export
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Lesson #2: Hydrologic residence time is important to remove N.

+ Unrestored (Coinciding Measurements)
8000 = . Restored (Scenario)
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Mass Removal of Nitrate-N (ug/L)

-2000 -
Groundwater Residence Time (Days)

Kaushal et al. (2008), Ecological Applications




Bedrock, Lakebed or Seafloor Depth (DBED)
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Many key local characteristics are not available and difficult/expensive
to measure. Their accurate specification, however, is the base to
realize any gain from resolution increase and physics improvement.

Liang, X.-Z., H. Choi, K.E. Kunkel, Y. Dai, E. Joseph, J.X.L. Wang, and P. Kumar, 2005: Surface boundagﬁ
conditions for mesoscale regional climate models. Earth Interactions, 9, 1-28.
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18 USA Water Resources Regions
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Reservoir Management Critical to Streamflow Prediction
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Chesapeake Bay Forecast System

]
[ Obieciive: Develop a fully integrated

model of the Chesapeake Bay and its air
and watershed

OPurpose:

O Near-Real Time Applications:
Nowcasting and forecasting of the Bay
circulation, ecosystem, pathogens,
harmful algal blooms, waves and
inundation.

O Climate Projections: Estimating effect of

climate change, between now and
2050, on the health of the Bay and its

watershed.

O Provide a decision making tool . et L 2 i R
SeaWiFsS true-color image of Mid-Atlantic
for users Region from April 12, 1998.

Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center and

Armanaa



WRF 14 Days Forecasts from 2012/03/09

2-m Air Temperature (°C) with 10-m 3-hr Precipitation
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20-member ensemble mean forecast of temperatures, winds, and precipitation
for OOUTC 18 February — 06 UTC 4 March 2012.



WRF Seasonal Forecasting from 2012/03/01-05/31

Daily Mean 2-m Air Temperature (°C) Daily Mean Rain (mm)
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Temperatures and precipitation for March — May 2012. This is based on
downscaling 15 members of the ECHAM4.5 GCM forecast with WRF.



A Coupled Regional Earth System Model (RESM) for Predictions and Projections of
Natural-Human System Interactions overthe Chesapeake Bay Watershed

Global
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Multiple Stressors

Exogenous Land Use Transportation
Parameters Policies Palicies B

Econometric Land Use 'Transr."(?rtati(m
Model Model Model

Impact Model Suite
Consumption
Water

40N
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Climate Impact 38N

Measures of Impacts
36N

A state-of-the-art model to represent the human e LA
system components of land use, transportation, and /
infrastructure that are being coupled to the natural
system model CWRF. Together with the Vulnerability-
Resilience Indicator Model, the RESM is a
comprehensive prediction-projection model with
natural-human system interactions.




Summary

e Stakeholders require actionable climate information on regional scales from seasons to
decades in the future to support sound investment and policy decisions

Actionable Information ESSIC could provide as established in the peer reviewed literature :

Hydrology

* For any given area 20 miles square in the US we can for the next 30 years predict/project
the following, with quantified uncertainty:

Number of rainy days, dry spell lengths

Number of heavy rainfall events above given thresholds

Frequency and magnitude of floods and droughts

Streamflows along major rivers

Water levels in major reservoirs under the current management or future scenario

Storm Surges
* We can estimate with reasonable error bounds the potential maximum storm surge at any
location on the Chesapeake Bay watershed over the next 30 years.

We can also estimate the likelihood of storm surges at lower levels.

We can also provide the probable locations for inundation of streets in cities and
towns for a given level of surge, and the means to display this visually using digital
elevation maps of cities where these exist.

A GIS-based navigation tool to track street-by-street water Iev;l could also be
developed above and beyond simple scenarios @;}!



Crops

Summary

* For any given area 20 miles square in the US we can for the next 30 years predict/project
the following, with quantified uncertainty:

Energy

Prediction (a season in advance) of yields for 30 major crops (corn, soybean, wheat,
cotton...)

Projection of future yields for these crops under climate change
Prediction/projection of water need for irrigation

Prediction/projection of probability of early spring arrival/warming and cold surges
Prediction/projection of change in water availability and quality
Prediction/projection of probability of floods and droughts

* For any given area 20 miles square in the US we can for the next 30 years predict/project
the following, with quantified uncertainty:

Number of days/yr when winds are below and above given thresholds
Number of days/yr when solar energy are below and above given thresholds
Number of days/yr when extreme events would endanger power lines
Number of days for cooling and heating needs

Frequency and magnitude of heat waves

Availability of water

)



