

Development of multi-temporal high-resolution land cover and land use data for the Chesapeake Bay watershed

<u>Peter R. Claggett</u>¹, Labeeb Ahmed², Matthew Baker³, Jacob Czawlytco⁴, Sarah McDonald¹, Sean MacFaden⁵, Jarlath O'Neil-Dunne⁵, David Saavedra⁴, and Rachel Soobitsky⁴

Presenting Author, Lower Mississippi-Gulf Water Science Center, U.S. Geological Survey, Annapolis, MD 21403
 Attain LLC, Annapolis, MD 21403
 Department of Geography and Environmental Systems, University of Maryland, Baltimore County, MD 21250
 Chesapeake Conservancy, Annapolis, MD 21403
 University of Vermont Spatial Analysis Laboratory, Burlington, VT 05405

U.S. Department of the Interior U.S. Geological Survey

Chesapeake Bay 1-Meter Resolution Data

- 1. Land cover (12 classes): 2013/14, 2017/18, 2021/22
- 2. Land use (58 classes): 2013/14, 2017/18, 2021/22
- 3. Streams/ditches: best available LiDAR vintage
 - Stream channel and floodplain attributes

Additional LiDAR Derivatives

- Height (normalized DSM to ground elevation, 1m LiDAR)
- Compound Topographic Index (3m, LiDAR)
- Topographic Wetness Index (3m, LiDAR)
- Multiscale Landforms (3m, LiDAR)

Local land use and parcel data

High-resolution land cover data

- Low-density Residential
- Recreation
- Agriculture
- Roads

- Impervious surfaces
- Tree canopy
- Low vegetation
- Water

CBP Land Uses

- Impervious-Roads
- Forests
- Turf Grass
- Open Space

Wetland **Trees over Impervious Trees over Turf** 100 Forest

2013/14 Chesapeake Bay Watershed Land Cover/Use Data

8582732.74/4851421.17/0.0/0,4

≥USGS

Chesapeake Bay Program Land Use Classification

1. Water (8)

1.1 Lentic

1.1.1 Estuary 1.1.2 Lakes & Ponds

1.2 Lotic

1.2.1 Streams 1.2.1.1 Sunlit 1.2.1.2 Shaded 1.2.1.3 Culverted/ Buried 1.2.2.Ditches 1.2.2.1 Sunlit 1.2.2.2 Shaded 1.2.2.3 Culverted/ Buried

2. Developed (12)

2.1 Infrastructure 2.1.1 Roads 2.1.2 Tree Canopy (TC) over Roads 2.1.3 Structures 2.1.3 Structures 2.1.4 TC over Structures 2.1.5 Other Impervious 2.1.6 TC over Other Impervious 2.1.7 Suspended Succession (rights-of-way) 2.1.7.1 Barren 2.1.7.2 Herbaceous 2.1.7.3 Scrub-shrub 2.2 Bare Construction 2.3 Turf Grass 2.4 Tree Canopy over Turf Grass

≈USGS

3. Forest (5)

3.1 Contiguous (> 1 acre) 3.2 Fragmented (< 1 acre) 3.3 Natural Succession (e.g., Fallow) 3.3.1 Barren 3.3.2 Herbaceous 3.3.3 Scrub-shrub

4. Production (14)

4.1 Agriculture* 4.1.1 Cropland 4.1.1.1 Barren 4.1.1.2 Herbaceous 4.1.2 Pasture 4.1.2.1 Barren 4.1.2.2 Herbaceous 4.1.3 Orchard/vineyard 4.1.3.1 Barren 4.1.3.2 Herbaceous 4.1.3.3 Scrub-shrub 4.2 Timber Harvest 4.2.1 Barren 4.2.2 Herbaceous 4.2.3 Scrub-shrub 4.3 Extractive 4.3.1 Barren

4.3.2 Herbaceous

4.3.3 Scrub-shrub

4.4 Solar fields

5. Wetland (19) 5.1 Tidal

5.1.1 Open water 5.1.2 Barren 5.1.3 Herbaceous 5.1.4 Scrub-shrub 5.1.5 Contiguous Forest 5.1.6 Fragmented Forest 5.2 Non-tidal 5.2.1 Floodplain/ Headwater 5.2.1.1 Open water 5.2.1.2 Barren 5.2.1.3 Herbaceous 5.2.1.4 Scrub-shrub 5.2.1.5 Contiguous Forest 5.2.1.6 Fragmented Forest 5.2.2 Other 5.2.2.1 Open water 5.2.2.2 Barren 5.2.2.3 Herbaceous 5.2.2.4 Scrub-shrub 5.2.2.5 Contiguous Forest 5.2.2.6 Fragmented Forest

5.3 Bare shore

Tree Canopy Change in Two Suburban Counties

Prince George's County: 2014 - 2018

TC Loss (7,673 acres):

- 59% of loss change occurred within forest or wetlands
- 41% of loss occurred in developed areas

TC Gain (518 acres):

- 16% of gain occurred within forest or wetlands
 - shrub/scrub; edge of forest
- 54% of gain occurred in developed areas
- 29% of gain occurred on agricultural lands

Anne Arundel County: 2014 - 2018

TC Loss (2,544 acres):

- 57% of loss change occurred within forest or wetlands
- 42% of loss occurred in developed areas

TC Gain (188 acres):

- 9% of gain occurred within forest or wetlands
 - shrub/scrub; edge of forest
- 55% of gain occurred in developed areas
- 35% of gain occurred on agricultural lands

Hyper-Resolution* Hydrography

- 2. Valley-scale geomorphons
- 3. Channel-scale geomorphons
- 4. Extract valley network
- 5. Extract channels using valley network
- 6. QAQC channel skeleton
- 7. Connect stream network

* 1-meter raster, 1:2000 scale

WUMBC

National Hydrography Dataset- High Resolution (24K)

Hyper-resolution Streams (2K)

Hydric Soils (SSURGO)

National Hydrography Dataset- High Resolution (24K)

Hyper-resolution Streams (2K)

Hydric Soils (SSURGO)

100-yr Floodplain (FEMA)

National Wetlands Inventory

USGS Floodplain and Channel Evaluation Toolkit

Output of Layers from USGS Tool

Channel Reach Measures

- Bank height (m)
- Bank angle, avg (deg)
- Bank angle, max (deg)
- Channel width (m)
- Channel length (m)
- Bankfull area (m²)
- Sinuosisty
- Drainage area (km²)
- Slope (%)
- Floodplain width (m)
- Floodplain elevation, range (m)
- Floodplain elevation, sd (m)

Summary

Under a 6-year Cooperative Agreement with the Chesapeake Bay Program, the Chesapeake Conservancy (CC) and University of Vermont (UVM) are producing 1-meter resolution land cover datasets for the years 2013/14, 2017/18, 2021/22 using the best available LiDAR and NAIP aerial imagery for the Bay watershed (including all of Maryland).

The CC and UVM are translating 12-classes of land cover into 58 of land use using ~15 ancillary datasets for each county.

The CC and UMBC are developing 1-meter resolution stream and ditch data, complementing the 1-meter resolution water bodies identified in the land cover data.

USGS has developed a GIS tool to extract channel width, height, bank angle, and floodplain width and volumes from LiDAR.

Chesapeake Bay 1-Meter Resolution Release Dates

Land cover (12 classes, 1-meter):

- 2013/14 (available now- <u>https://chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/</u>)
- 2017/18 (summer 2021)
- 2021/22 (summer 2024)

Land use (16 classes, 1-meter):

2013/14 (available now- <u>https://chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-use-data-project/</u>)

Land use (13 classes, 10-meter):

• 2013/14 (available now- <u>https://chesapeake.usgs.gov/phase6/map/#map=7/-8582732.74/4851421.17/0.0/0,4</u>)

Land use (58 classes):

- 2013/14 (summer 2021)
- 2017/18 (summer 2021)
- 2021/22 (summer 2024)

Streams/ditches

- Draft (summer 2021)
- Final (summer 2023)

Stream channel and floodplain attributes (FACET)

- Version 1 (available now- <u>https://www.sciencebase.gov/catalog/item/5cae39c3e4b0c3b00654cf57</u>
- Version 2 (2022 2023)

