

DC Water Carbon Footprint:

Current Modeling and Future Projections

NUTRIENTS and **CARBON RECYCLING**

BLUE PLAINS ADVANCED WASTEWATER TREATMENT PLANT: water is life **A RESOURCE RECOVERY FACILITY**

GREEN ENERGY BIORENEWABLES

FARMING

SILVICULTURE

RECLAMATION

iral state and providing wildlife hal

URBAN RESTORATION

row trees and reduce runof

dcwater.com/biosolids

THERMAL HYDROLYSIS PROCESS (THP) AND DIGESTION FACILITY

DC Water will be the first in North America to use thermal hydrolysis for wastewater treatment. When completed, this facility will be the largest plant of its kind in the world.

GREEN BENEFITS:

- Produce combined heat and power, generating 13 MW of electricity
- Save DC Water \$10 million annually cutting grid demand by a third (DC Water is the largest consumer of electricity in the District)
- Reduce carbon emissions by approximately 50,000 metric tons of CO2e per year.
- Reduce trucking by 1.7 million miles per year.
- Save \$10 million in biosolids trucking
- Produce Class A biosolids to grow trees, sequester carbon and reduce runof

Based on invoices 2009 electricity based on PEPCO metering data

Table 1. Summary of Annual Emission Estimates, Calendar Year: 2008		
	Annual Emissions Estimate	Scope 1 and 2
Emission Source	Metric Tons CO2e	Percent Contribution
Scope 2		
Electricity	146,920	88%
DSS	11,053	7%
DWS	9,163	5%
DWT	126,704	76%
Scope 1		
Natural Gas	2,967	2%
CS	197	0.1%
DSS	371	0.2%
DWS	441	0.3%
DWT	1,924	1%
FLEET	34	0.02%
Vehicle (fuel usage)	2,586	2%
Compressed Natural Gas (CNG)	0.064	0.00004%
Diesel Fuel No. 1 and 2	1041	0.6%
Motor Gasoline	1545	0.9%
Refrigerants	142	0.08%
Nitrification/Denitrification (process emissions)		
CO2 from Addition of Methanol	12,007	7%
N2O from Dentrification	443	0.3%
Effluent Discharge (process emissions)	2,009	1%
Total with Scope 1 and 2	167,074	
Scope 3		
Biosolids Hauling (fuel usage/distance travelled)	4,107	
Chemical Hauling (distance travelled)	1,450	
Lime Production	14,883	
Methanol Production	6,747	
N2O Emissions from Land Application of Biosolids	52,548	
Methane Emissions from Landfilling Biosolids	7	
Total with Scope 3	246,815	
Carbon Credits		
Carbon Sequestration Land Application	26,844	
Carbon Sequestration Land Application with Composting	13,576	
Carbon Sequestration Landfill	2	
Avoided N2O Emissions from Replacement of Inorganic Fertilizers	52,548	
Fertilizer Credits Direct Applied Biosolids (N and P)	9,006	
Fertilizer Credits Composted Biosolids (N and P)	1,692	
Total	103,668	
GRAND TOTAL	143,147	

Breakdown of Electricity Consumption Blue Plains

Enhanced Nutrient Removal

Digestion and CHP

Digestion and Thermal Hydrolysis Water is life Project

Biosolids Management Plan

Thermal Hydrolysis Vessels

Digester Vessels

Clean Rivers Phase I – TDPS & ECF

- Main stream anammox nutrient removal
- Co-digestion of foodwaste, fats/oils/grease, and other high strength wastes
- Solar power at Blue Plains

Biological Nitrogen Removal Technologies

- •Traditional Requires use of blowers (to aerate) and use of additional chemicals (methanol) Both are energy intensive, have large carbon footprints, and are expensive
- •Innovative (Anammox) Reduces aeration and methanol addition Results in
 - significant reductions in energy use and carbon footprint
 - •63% reduction in Oxygen demand
 - •Almost 100% reduction in Carbon demand
 - •Reduced biomass production
 - •Reduced CO_2 emissions

Benefits of Innovative Nitrogen Removal Technology

Co-Digestion and energy production has led utilities toward energy neutrality

East Bay MUD (Calif) announced April 3rd that with its new 4.6 MW ga turbine on-line, it is the 1st water/ww utility in the US to produce more power than it uses (EBMUD now sells power to the grid).

Having excess digester capacity available, EBMUD has operated like a business to allow fats, greases, and various food and beverage wastes to be trucked in and co-digested at the plant.

Other WWTPs use a similar approach:

- 1. Reduce plant power use (conservation)
- 2. Greatly expand renewable power production, normally via co-digestion.

Camden County (NJ) Solar Center

Summary and Recommendations

- The decision process for all new projects should consider carbon footprint implications.
- Future discharge permit reductions should consider carbon intensity may spawn discussion of less intensive options.
- Consider permit leniency when implementing innovative technologies.
- Consider discretionary projects that can reduce budget and carbon footprint.

THERE IS NO SUCH THING AS WASTE, ONLY WASTED RESOURCES