

District of Columbia Water and Sewer Authority George S. Hawkins, General Manager

PHASE I POST CONSTRUCTION MONITORING FOR DC CLEAN RIVERS PROJECT

Briefing for: Water Resources Technical Committee Meeting

DCWATER.COM

September 8, 2017

Carlton M. Ray (Director, DC Clean Rivers Project, DC Water) John Cassidy Program Manager, DC Clean Rivers, Greeley and Hansen

Agenda

- DC Clean Rivers Background
- Phase I Post Construction Monitoring
- Summary of *E.coli* Results
- Conclusions
- Questions

DC Clean Rivers Background Magnitude of the Challenge

CSO Discharge to Anacostia River

Trash in Anacostia River

On average, **2.1 billion gallons** of untreated sewage and stormwater runoff (combined sewage) are discharged to the Anacostia River per year.

Chronic Sewer Flooding

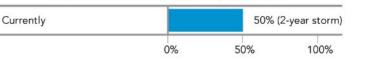
Flooding on Mt. Olivet Rd NE

Flooding on Rhode Island Ave NE

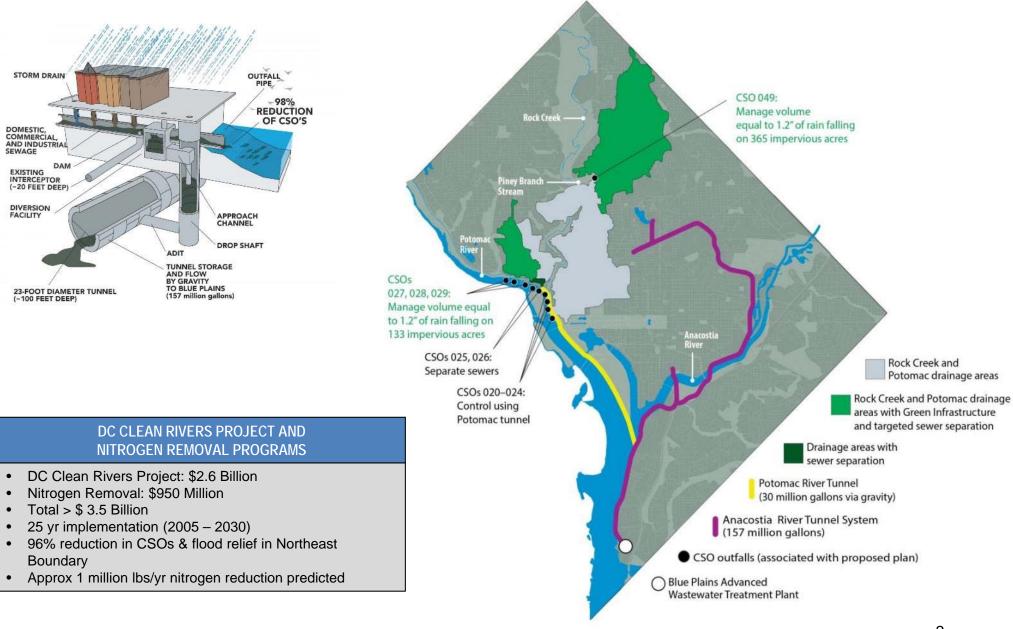
Flooding on Rhode Island Ave NW

Flooding at 1st and V Streets NW

Flooding at 1st and Rhode Island Ave NW



▲ Flooding at Shaw metro


▲ Flooding at 1st and P Streets NW

Chance of flood occuring in any given year

2

DC Clean Rivers Project

Anacostia River Tunnel System Snapshot


Project	Diameter	Length	Start	Finish	
Blue Plains Tunnel (\$318M)	23	24,207	5/2011	8/2015	
First Street Tunnel (\$158M)	20	2,700	10/2013	10/2016	
Anacostia River Tunnel (\$254M)	23	12,484	6/2013	12/2017	
Northeast Boundary Tunnel (\$580M)	23	27,000	9/2017	2023	

Various other contracts to connect to tunnel system

More than \$1.8 B in Contracts have been let for the Anacostia River Projects

PHASE I POST CONSTRUCTION MONITORING -SUMMARY

Overview

	NPDES	Permit	Requirements:
--	-------	--------	---------------

Phase	Post-construction Condition
1	Following placement in operation of the inflatable dams and pumping stations rehabilitation
2	Following placement in operation of the Anacostia, Rock Creek and Potomac Storage tunnels, respectively as each tunnel is placed in operation
3	Following placement in operation of the complete CSO Tunnels storage system

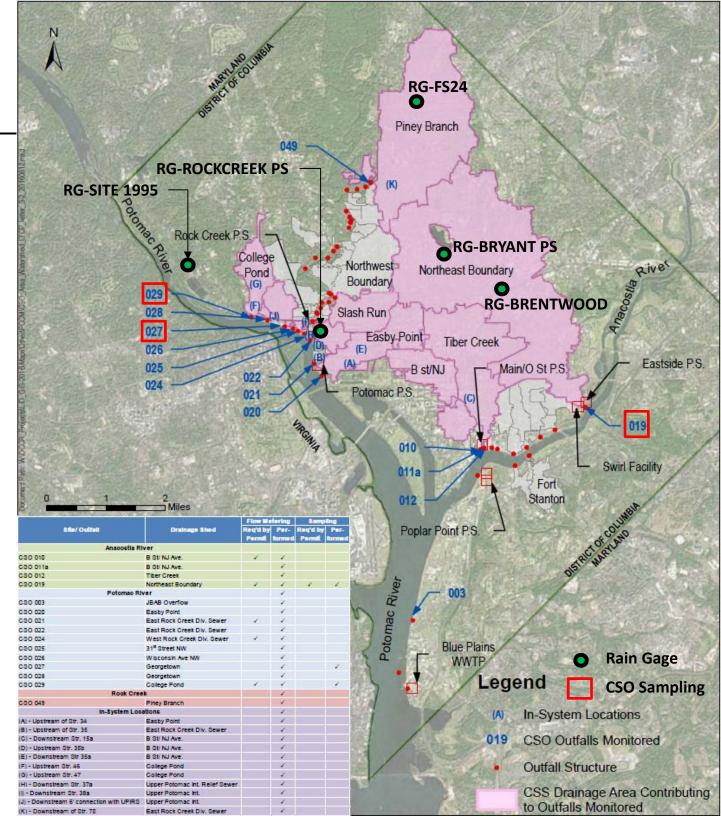
Phase I Monitoring - Duration

- Data Collection Period: 12/1/2014 2/16/2016
- Report sent to EPA on August 12, 2016

Phase I Monitoring – Scope

Component	Who Performed
Rainfall Monitoring	CSL & OneRain
CSO Overflow & In-system Monitoring	CSL
CSO Overflow Sampling	DC Clean Rivers
Receiving Water monitoring	
Continuous Dissolved Oxygen	MWCOG /Versar
Regular sampling	MWCOG /Versar
Wet Weather Surveys	MWCOG /Versar

Rainfall, Flow & CSO Sampling – Locations


• Additional Rainfall Data Used:

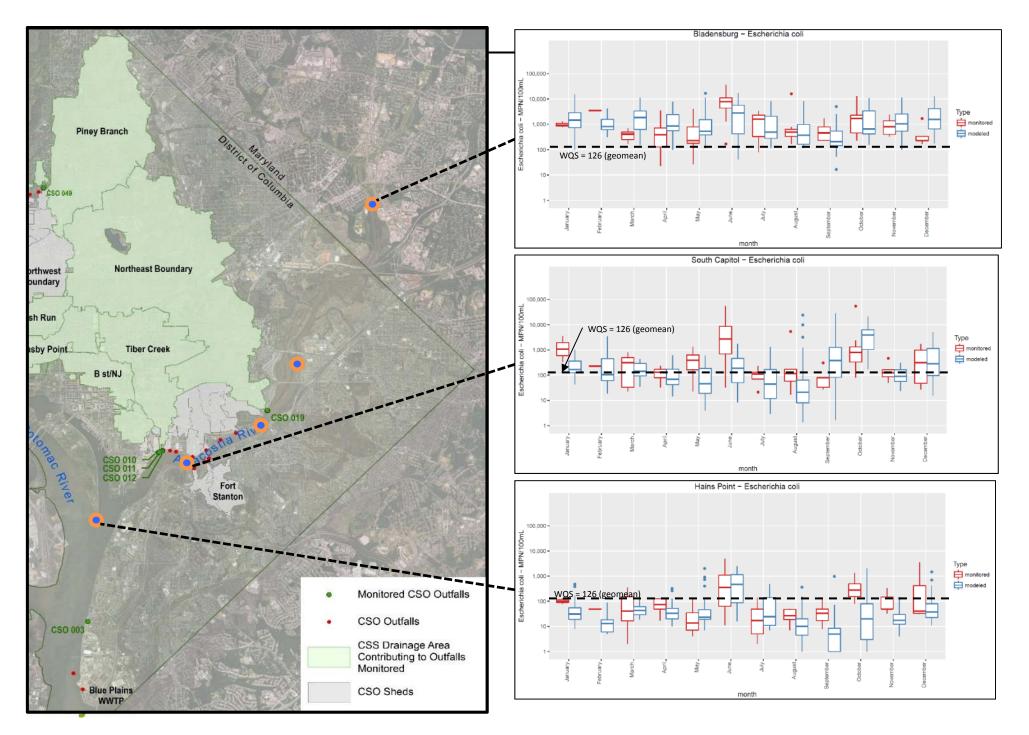
dc clean

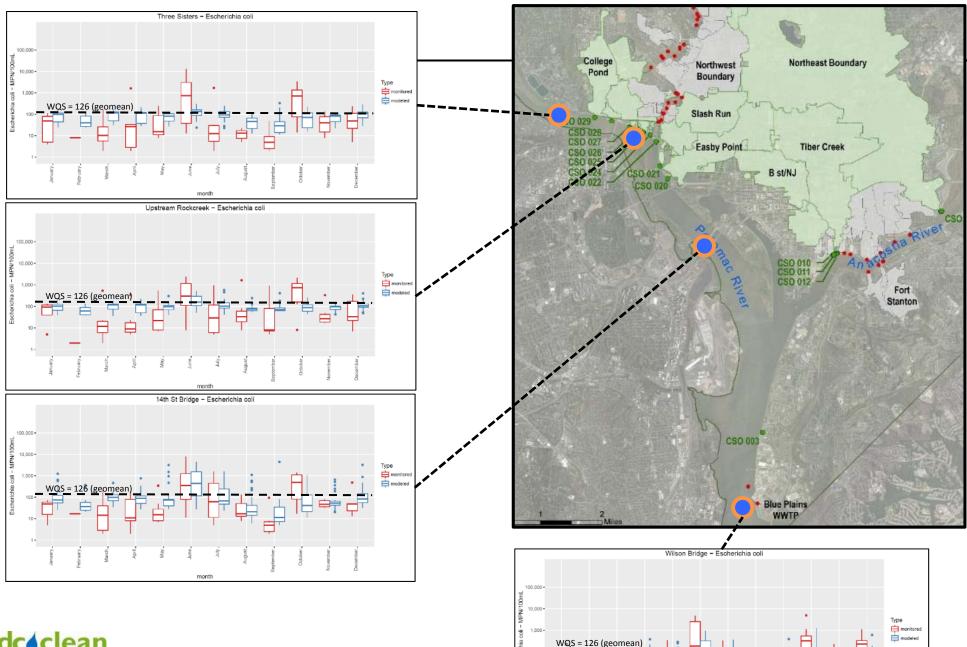
RIVERS

PROJECT

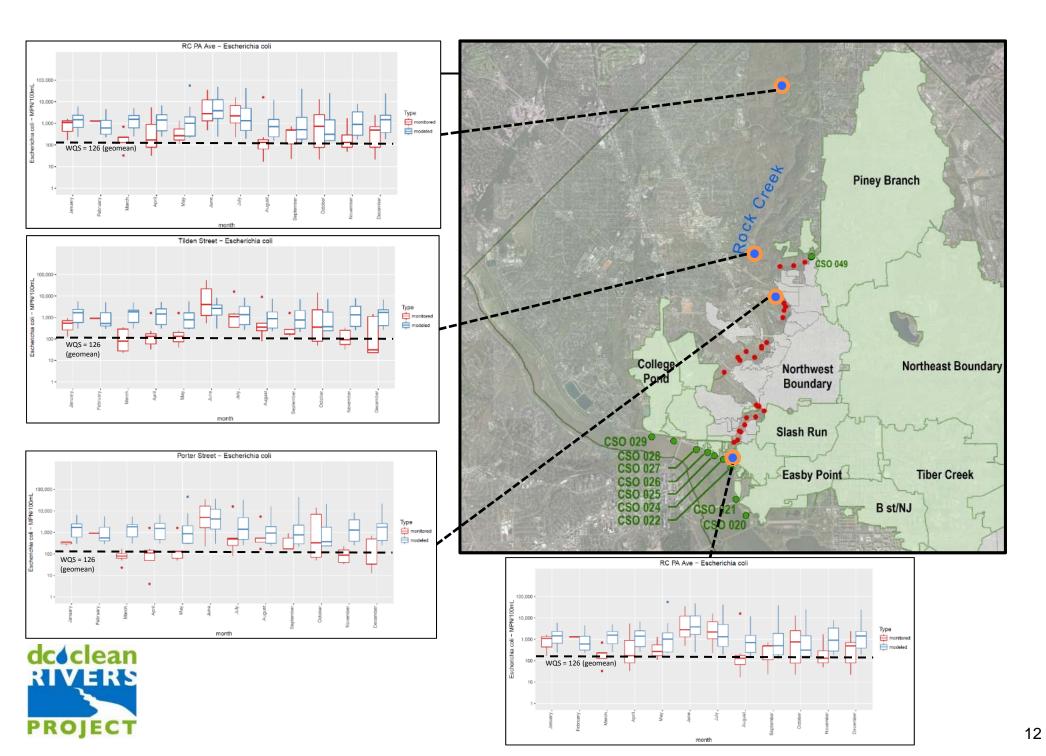
- National Weather Service Gage at Ronal Reagan Nat'l Airport
- Radar data (1km x 1km grid)

Receiving Water Monitoring Summary


Receiving Water	# of Stations	No. of Sampling Events	Parameters Collected	Å	Barrow Columb	RC-BB	X		Legend CSO Outfall
Anacostia	5	71- Regular	Fecal Coliform, E. Coli, CBOD5, TSS, Chlorophyll-a	PR-CB		RC-TS RC-PS		2	AR-BL
Potomac	4		Field Parameters- Ph, D.O., Temperature, Conductivity		-65		Ø	7	
Rock Creek	4	Sampling 4- Wet Weather Surveys	Field Parameters (All Stations)- Ph, D.O.,	Potomac PR-CB PR-TS	River Locations Chain Bridge (Boundary Condition) Three Sisters Island (Upstream of CSO Area)	RC-PA PR-URC PR-14			AR-BR AR-PA
	•	quency: <u>Sampling:</u> twie	ce on one week and ek. Since the sampling	PR-URC PR-14ST PR-WB Anacostia	Upstream of Rock Creek (After Georgetown CSOs) 14th Street Bridge (Downstream of CSO Area) Wilson Bridge (Boundary Condition) a River Locations		AR-HP	AR-SC	AS INGLAS COMMAN
	represe	nts wet and dry	s, the data collected y weather conditions.	AR-BL AR-BR	Bladensburg, MD (Boundary Condition) Benning Road Bridge (Upstream of CSO Area - DOE	E)		Rock C	reek Locations Boundary Bridge (DC/MD Boundary)
	<u>Wet We</u> events	ather Sampling	<u>g:</u> 4 – 40 Hr sampling	AR-PA AR-SC	Pennsylvania Avenue Bridge (After NEB CSO Discharge) South Capitol Street Bridge (Downstream CSO Area)			RC-TS RC-PS	Tilden Street (Upstream of CSO Area) Porter Street (Downstream of Piney Branch CSOs)
dcocle	ean			AR-HP	Hains Point (Confluence with Potomac Ri		R-WB	RC-PA	Pennsylvania Ave (Upstream of Confluence with Potomac River)


SUMMARY OF E.COLI RESULTS

Data Collected in Anacostia River: E.coli



Data Collected in Potomac River: E.coli

Data Collected in Rock Creek: E.coli

Conclusions

- Phase I CSO controls reduced CSO volume by 38% within the range of accuracy of modeling used to make LTCP predictions.
- DC Water operated Blue Plains conservatively and treated 266 million gallons of combined sewage beyond that required by its NPDES permit in 2015.
- Anacostia River E.coli
 - Upstream flow entering the District has high concentrations of E.coli and does not typically meet water quality standards. However, the Phase I controls have reduced exceedance frequency of the E.coli water quality standard (geomean of 126 MPN/ 100 ml) by 1-3 months at most of the locations within the District.
 - Noticeable reductions are observed in the bacteria concentrations for the months of May through September.
- Potomac River– E.coli
 - Concentration by which the Potomac River is exceeding the E.coli quality standard (geometric mean of 126 MPN/ 100 ml) is small.
 - CSOs mostly cause transient elevations of bacteria levels in river reaches immediately downstream of outfalls in the Potomac River.
 - Monthly E.coli geomeans is most affected by the boundary conditions and least affected by transient wet weather sources like CSOs and storm water.
- Rock Creek– E.coli
 - Phase I controls did not have any effect in the monthly geometric mean concentrations due to low frequency
 of CSO discharges to Rock Creek
 - High background concentration of bacteria from upstream sources are evident in the data

Summary of Lessons Learnt – Receiving Water Quality Monitoring

Planning Phase:

- Sampling during winter months may not be feasible due to ice/snow. Plan the sampling
 program to accommodate some time extension for adequate data collection.
- Uncertainty in weather predictions could result in cancellations. Include adequate contingency in the budget.

Execution Phase:

- Careful planning of timely delivery of samples at the lab is critical. Bacteria has 8 hour maximum holding time.
- Ensure availability of lab, several days in advance before wet weather sampling due to:
 - Very few certified labs are available for bacteria testing in DC Metro. (Used Martel Labs in Baltimore, Maryland for Phase I PCM)
 - Several agencies in the area may be planning to sample for the same rain event. Lab can only accommodate certain number of bacteria samples for analysis at a time.
- Delay in the weather predictions could result in sampling during overnight, weekends and holidays. Notify changes in sampling schedule to the team and the lab as early as practical.
- Ensure availability of logistics sampling personnel, boats, sampling bottles, labels, adequate bacteria media at lab etc
- Look out for any construction/ dredging work in the project area. Results for certain parameters may be impacted for such an activity.

Future Monitoring

• NPDES Permit Requirements:

	Phase	Post-construction Condition			
	1	Following placement in operation of the inflatable dams and pumping stations rehabilitation			
•	2	Following placement in operation of the Anacostia, Rock Creek and Potomac Storage tunnels, respectively as each tunnel is placed in operation			
	3	Following placement in operation of the complete CSO Tunnels storage system			

Questions Carlton M. Ray

email: CARLTON.RAY@DCWATER.COM phone: 202-787-4469

16