IMPROVING REGIONAL RESILIENCE TO WATER SUPPLY EMERGENCIES Briefing to Chesapeake Bay & Water Resource Policy Committee

Pam Kenel, Director of Water Resource Programs, Loudoun Water Steve Bieber, COG

Metropolitan Washington Council of Governments

Acknowledgments

- Many thanks to our partners in this regional project
 - Arlington County
 - Washington Suburban Sanitary Commission
 - Fairfax Water
 - Washington Aqueduct
 - DC Water
 - Loudoun Water
 - ICPRB
 - Black & Veatch

Regional Resiliency Study Funding

- Federal Urban Area Security Initiative (UASI) grant
- Metropolitan Washington Area serves 4.6M, 490 MGD
- Limited connections between water systems in metropolitan Washington to transfer raw or treated water
- Consequences of extended water outages include direct costs and related economic impacts from outage

Potomac River Drinking Water Intakes

Contamination Events are in the News

Cancer-causing chemical seeps in to Quinnipiac River after spill in Southington

Posted: Aug 24, 2016 11:04 PM EDT Updated: Aug 25, 2016 3:04 PM EDT

Local water system tracking latex spill down Potomac River

f У 🖂

15 Percent of Corpus Christi Cleared to Use Tap Water After Chemical Spill

By GILLIAN MOHNEY · Dec 16, 2016, 1:35 PM ET

Share with Facebook

Toxic Algae in Your Drinking Water: Coming Soon to a Town Near You?

BY REBECCA LEBER | August 4, 2014

Thousands Without Water After Spill in West Virginia

By TRIP GABRIEL JAN. 10, 2014

Regional Resiliency Study - Overview

Objectives

- Evaluate ability of region's water systems to withstand regional emergencies; identify vulnerabilities.
- Identify improvements to enhance the overall resilience and reliability of water system under emergency conditions.

System Resilience Approach to Identify and Prioritize Improvements

Data Collection

1

2

3

4

5

- Establish System Capabilities
- Establish Risk Framework
- Define Level of Service
 - Identify Failure Events & Likelihood
- Define Consequence of Occurrence
 - Identify Potential System Improvements
- Develop Cost & Schedule
 - Modeling & Analysis of Regional Benefit-Cost
- Prioritization of Improvements

Understanding Existing Capabilities

Defining Risk Framework

- Target level of service
 - Ability to supply winter average demand
- Consider failure events of regional concern
- Specify likelihood of occurrence
 - 1/10, 1/30, 1/100, 1/250 years
- Consequence of Occurrence
 - People Impacted x Days
 - Direct Costs
 - Economic Value of loss of water service (source, FEMA) = \$114/person per day

Inputs to Model – Failure Scenarios

Scenario	Duration, days	LOO	COO (PODs) x1000
Risk 1 – Main Break	14	1/30	435
Risk 2 – River Contamination, all intakes	28	1/100	83,000
Risk 3 – River Contamination, some intakes	3	1/30	5,400
Risk 4 – Fire at WTP	3	1/30	680
Risk 5 - Airplane Crash	0	1/250	0
Risk 6 – Reservoir Contamination	14	1/30	760

LOO: Likelihood of Occurrence COO: Consequence of Occurrence

POD: Population Outage Days

Example: Significant Contamination Event

- Contamination of Potomac affecting both sides of river.
- WSSC, Fairfax Water Washington Aqueduct close their Potomac intakes for 28 days.
- Winter average demand is 510 mgd
- Available water supply is 232 mgd from WSSC-Patuxent, FW-Griffith and LW-Trap Rock.
- 3 million people are estimated to be out of service.

Impacts:

- DC and Arlington are impacted 100%, 125 mgd combined.
- WSSC has over 100 mgd shortfall.
- Fairfax Water has 40 mgd shortfall.
- Loudoun Water can satisfy winteraverage customer demand.

~3 Million people x 28 days out of service = 83 M people-outage days

Baseline Risk to the Region

80% risk carried by the region.

Regional Resiliency Study Conclusions

- River contamination events are responsible for a substantial amount of total regional risk.
- Raw water storage and water transfer improvements are effective for risk-reduction.
- Establish the long term vision – long-lead time needed.
- Seek balance of risk reduction and cost.

Regional Resiliency Study Investment Recommendations

- No regrets type improvements (short term implementation)
 - Upgrade inter-system interconnections
 - Terminal reservoir bypass
- Off-river raw water storage (long term implementation)
 - Quarry Reservoir in Maryland
 - Quarry Reservoirs in Northern Virginia
- Treated water interconnections (coordinate with long term storage)
 - Additional connections between WSSC and DC Water

How Can We Advance the Projects?

- Coordinated regionallevel planning
- Relationship building with different partners
- Conveying the purpose and need for the projects
- Significant

 investments
 required to reduce
 risks; identify funding
 opportunities
- Advocacy for action

Steve Bieber

Metropolitan Washington Council of Governments sbieber@mwcog.org

777 N. Capitol St., NE Suite 300 Washington, DC 20002

Metropolitan Washington Area: 4.6M served population, 490 MGD annual average demand