Version 2.3 Travel Model: Status report and use in project planning studies

Presentation to the TPB Travel Forecasting Subcommittee

March 23, 2012

Ron Milone

National Capital Region Transportation Planning Board (TPB) Metropolitan Washington Council of Governments (MWCOG)

Item2_ProjectPlanningRpt.pptx

Today's discussion

- Review of the upcoming AQ Conformity Schedule
- Results and findings from TPB staff's application of the Version 2.3.38 travel model for two recent project planning "studies" in northern Virginia:
 - 1. Metrorail parking demand at two planned Silver Line stations in Loudoun County
 - 2. Impacts of a Metrorail Orange Line extension on I-66 traffic inside of the Capital Beltway

Schedule for the 2012 CLRP FY 2013-18 TIP Air Quality Conformity Assessment

Date			Event
September	21		TPB briefed on Call for Projects
October	19	2011	Local agencies begin submitting project information
December	16		Local agencies stop submitting project information
January	6	2012	TPB Tech. Committee reviews draft CLRP/TIP & work scope
			Draft CLRP/TIP project submissions and draft work scope
January	12		released for public comment
January	18		TPB is briefed on draft CLRP and TIP and work scope
February	11		Public comment period ends
			TPB reviews public comment and and is asked to approve
February	15		draft CLRP and TIP and work scope
March			Prepare modeling inputs & execute
April			travel demand & mobile emissions models
May			Analysis years: 2007, 2017, 2020, 2030, 2040
			Draft CLRP/TIP and Conformity Assessment released for
June	14		public comment at CAC
June	20		TPB briefed on draft CLRP/TIP & Conformity Assessment
July	14		Public comment period ends
			TPB reviews puiblic comments and responses to public
			comments, and is presented the draft CLRP/TIP and
July	18		Conformity Assessment for adoption

Study #1 Metrorail parking demand in Loudoun County

Metrorail parking demand in Loudoun County

- Client: Loudoun County, VDOT
- Consultant: Desman Associates
- Technical request: TPB staff was asked to retrieve "off-the-shelf" 2025 PNR demand estimates for the two end-of-line Silver Line stations:
 - Rte. 606/ Western Regional; and
 - Rte. 772/Dulles Gateway
 - (Phase 2 terminus, Silver Line)

Study area: NW of Dulles Airport

Version 2.3 Status and Project Planning Report

Procedure

- Staff retrieved the most recent outputs of the Version 2.3 model
 - AQC Determination/2011 CLRP, adopted 11/18/2011
 - 2025 outputs based 2020 & 2030 interpolations
- Land activity in the vicinity of both stations was reviewed
- Daily estimated 2025 boardings at all Silver Line stations were summarized and compared to FEIS boardings generated previously
- Metrorail trips summarized by access mode

Comparison of FEIS and V2.3 2025 Metrorail Boardings for Silver Line

Station	FEIS 2025	V2.3 2025	Diff.	% Diff.
Tysons East	4,092	5,407	1,315	32.1%
Tysons Central RT123	6,067	10,870	4,803	79.2%
Tysons West	3,838	3,631	-207	-5.4%
Tyson Central Rt 7	4,627	4,544	-84	-1.8%
Wiehle Ave	6,498	5,997	-502	-7.7%
Reston Parkway	4,708	6,739	2,031	43.1%
Herndon/Monroe	8,775	5,056	-3,720	-42.4%
Route 28	1,226	2,630	1,404	114.5%
Dulles Airport	6,200	NA	NA	NA
Route 606	4,485	1,362	-3,123	-69.6%
Route 772/DGWay	6,961	5,821	-1,140	-16.4%
Total	57,477	52,054	-5,423	-9.4%
Total excl. Dulles Airport	51,277	52,054	777	1.5%

- Source for FEIS 2025 boardings: "Dulles Corridor Rapid Transit Project Final Environmental Impact Statement and Section 4(f) Evaluation", December 2004

Observations:

• V2.3 Model does not currently address nonresident transit travel, hence no boardings are shown at Dulles

• Considerable differences exist at station level

• Overall line boardings agree well when Dulles A.P. station is excluded

- Source for TPB: Version 2.3.38 forecasts, interpolated between 2020 and 2030

Estimated 2025 PNR demand

Rte. 606: ~ 500 (coded lot size: 2,750)<u>Rte. 772: ~ 4,000 (coded lot size: 3,300)</u>Total:4,5005,050

Caveats to consider:

- Above demand was developed with the Metrorail core transit constraint
- The drive access shed assumed to be 15 miles; Is this assumption appropriate?
- PNR demand & supply was not evaluated at other Silver Line stations

Study #2 Metrorail Orange Line extension to Centreville

Orange Line extension to Centreville: <u>The impact on I-66 inside the Beltway</u>

- Client: VDOT
- Consultant: Cambridge Systematics
- Technical request: NVDOT asked TPB staff to model a nine-mile Metrorail extension on the Orange Line to assess the highway impacts on the I-66 corridor; the added stations were:
 - Fair Oaks
 - Stringfellow Road
 - Centreville

Metrorail Orange Line extension study area

from Vienna to Centreville

Network coding

- Network coding was done in short order to accommodate the tight schedule
 - The alternative was coded over the existing 2011 CLRP network
 - "Interline connections" (or track sharing between Metrorail lines) were discussed but not considered
 - PNR lots were coded at the three new stations; parking rates were similar to those assumed for Silver line PNR lots
 - Bus connections at the new stations were coded with professional judgment; cutbacks in bus service were not considered

Three modeled scenarios executed

- 1. Base Scenario: Standard execution of V2.3 model
 - speed feedback and;
 - no transit constraint;
 - Year 2040 (2011 CLRP) assumed
- 2. Alt. Scenario 1: Standard execution of V2.3 model
 - speed feedback and;
 - no transit constraint;
 - Year 2040, Orange Line ext. coded over 2011 CLRP
- 3. Alt. Scenario 2: Non-standard, fixed person trip table used
 - Mode Choice, TOD, and traffic assignment executed only using:
 - Final (I4) person *Base* scenario trip table
 - Base scenario highway skims
 - Alternative transit skims
 - No transit constraint

Comparison of Base & Alt. trips by mode, VMT

With speed feedback

	(1)	(2)	(2) - (1)	(2) / (1)
	Base Scenario	Alt 1. Scenario	Difference	Ratio
Travel Measure	2040 CLRP	O.L. Ext W/ Feedback		
Internal Auto Person Trips	22,851,366	22,833,982	-17,384	1.00
Internal Transit Trips	1,603,823	1,616,079	12,256	1.01
Internal Motorized Person Trips	24,455,189	24,450,061	-5,128	1.00
Internal Auto Drivers	15,882,036	15,869,922	-12,114	1.00
Transit Percentage	6.56%	6.61%	0.05%	1.01
Total Vehicle Trips	21,184,950	21,172,779	-12,171	1.00
Total VMT	217,082,216	217,058,538	-23,678	1.00

Slight drop in total person trips
Transit trips increase with the Metrorail improvement
Auto drivers decrease accordingly

• Minor VMT impact

Without speed feedback/ Fixed Person Trip Table

	(1)	(2)	(2) - (1)	(2) / (1)
	Base Scenario	Alt 2. Scenario	Difference	Ratio
Travel Measure	2040 CLRP	O.L. Ext W/O Feedback		
Internal Auto Person Trips	22,851,366	22,843,178	-8,188	1.00
Internal Transit Trips	1,603,823	1,611,986	8,163	1.01
Internal Motorized Person Trips	24,455,189	24,455,164	-25	1.00
Internal Auto Drivers	15,882,036	15,876,378	-5,658	1.00
Transit Percentage	6.56%	6.59%	0.03%	1.01
Total Vehicle Trips	21,184,950	21,179,292	-5,658	1.00
Total VMT	217,082,216	216,931,232	-150,984	1.00

- No change in person trips
- Transit trips increase, but increase is smaller
- Auto drivers decrease but decrease is smaller
- VMT impact much larger than above

Version 2.3 Status and Project Planning

Comparison of Base and Alt. trips by submode

With speed feedback

	(1)	(2)		
	2040_Base	2040_Alt	(2 - 1)	(2/1)
Submode	W/Feedback	W/Feedback	Difference	Ratio
Commuter_Rail	37,448	35,654	-1,794	0.95
All_Bus	527,715	525,570	-2,145	1.00
Bus&Metrorail	276,347	270,505	-5,842	0.98
Metrorail_Only	762,314	784,350	22,036	1.03
	1,603,824	1,616,079	12,255	1.01

Without speed feedback/ Fixed Person Trip Table

	(1)	(2)		
	2040_Base	2040_Alt	(2 - 1)	(2/1)
Submode	W/Feedback	W/O Feedback	Difference	Ratio
Commuter_Rail	37,448	35,626	-1,822	0.95
All_Bus	527,715	527,326	-389	1.00
Bus&Metrorail	276,347	271,068	-5,279	0.98
Metrorail_Only	762,314	777,966	15,652	1.02
	1,603,824	1,611,986	8,162	1.01

In both cases, transit trips are diverted <u>to</u> "Metro Only" submode, particularly <u>from</u> "Commuter Rail" and "Bus Metrorail" submodes

Comparison of Base and Alt. I-66 segment volumes (inside Beltway)

		(1)	(2)	(3)		
		Base	Alternative	Alternative		
			2040 CLRP with	2040 CLRP with		
Section	Location	2040 CLRP	Orange Line Ext.	Orange Line Ext.	Difference	Difference
			W/Spd Feedback	W/O Spd Feedback	(2) - (1)	(3) - (1)
1	East of Lee Highway to Theodore Roosevelt Bridge	100,777	100,111	100,238	-666	-539
2	Glebe Road to Lee Highway	112,243	111,658	111,698	-585	-545
3	North Sycamore Street to Glebe Road	135,803	135,117	135,016	-686	-787
4	Dulles Airport Road Connector to North Sycamore Street	152,960	152,007	151,908	-953	-1,052
5	Lessburg Pike (Rt. 7) to Dulles Airport Road Connector	99,953	98,681	98,449	-1,272	-1,504
6	I-495 to Lessburg Pike (Rt. 7)	100,303	99,225	98,630	-1,078	-1,673

- The I-66 link volumes resulting from both alternative runs were quite similar
- Our conclusion was that the Orange line extension would not substantially affect volumes on I-66 inside the beltway (volume reductions were moderate)

Observations regarding screenline analysis (next page)

- Screenline crossings in the study impact area were examined
 - A priori expectation: a radial transit improvement should result in reduced screenline crossings, particularly on North/South screenlines
- Generally, screenline crossings were not dramatically affected by the alternative
- But, screenline crossing differences were noted between "speed feedback" and "fixed trip table" simulation of the alternative:
 - Speed feedback alt: some N/S screenline crossings found to *increase* slightly (questionable)
 - Fixed trip table alt: All screenline crossings were found to decrease (reasonable)

Staff investigated the trip tables to gain more insight

Daily Base and Alt. screenline crossings in the expected highway impact area

With speed feedback

	(1)	(2)		
	2040_Base	2040_Alt	(2 - 1)	
Screenline No.	W/Feedback	W/Feedback	Difference	% Diff
	(a)	(b)	(d)	(e)
1	907,800	908,200	400	0.04%
3	1,032,400	1,032,500	100	0.01%
5	1,331,000	1,330,800	-200	-0.02%
7	1,439,900	1,439,300	-600	-0.04%
9	1,292,400	1,295,200	2,800	0.22%
17	678,100	675,800	-2,300	-0.34%
18	970,800	969,600	-1,200	-0.12%
20	1,373,700	1,375,500	1,800	0.13%

Without speed feedback

	(1)	(2)		
	2040_Base	2040_Alt	(2 - 1)	
Screenline No.	W/Feedback	W/O Feedback	Difference	% Diff
	(a)	(b)	(d)	(e)
1	907,800	906,100	-1,700	-0.19%
3	1,032,400	1,029,200	-3,200	-0.31%
5	1,331,000	1,327,800	-3,200	-0.24%
7	1,439,900	1,435,000	-4,900	-0.34%
9	1,292,400	1,289,400	-3,000	-0.23%
17	678,100	676,600	-1,500	-0.22%
18	970,800	968,900	-1,900	-0.20%
20	1,373,700	1,371,500	-2,200	-0.16%

Auto driver trip table differences (Alt. – Base)

Table A: 2040Base vs. 2040 Alt w/ Speed Feedback

	DESTINA	ATION													
ORIGIN	1	2	3	4	5	6	7	8	9	10		12	13	14	• • TOTAL
1 DC CR	-83	-6	45	-14	1	9	10	-14	5	10	1	0	2	6	-33
2 DC NC	-43	-136	25	11	-9	8	11	161	51	6	0	-1	11	33	108
3 MTG	-132	-114	-1067	70	5	25	63	601	85	87	-15	-3	113	71	-223
4 PG	-148	-16	-135	43	-41	-74	46	535	41	33	-1	-1	14	253	493
5 ARLCR	4	0	2	2	-18	-10	3	-21	-1	6	0	0	0	1	-34
6 ARNCR	39	5	38	1	-20	-161	1	-11	36	66	0	0	0	2	-25
7 ALX	52	16	28	-22	5	259	-18	130	27	20	0	0	0	0	478
8 FFX	-1686	-581	219	-195	-297	-883	-365	-7551	110	1922	-1	0	2	-9	-9702
9 LDN	-126	29	139	25	-30	-49	-3	-395	120	549	-24	-1	-7	-6	250
10 PW	188	316	463	-10	76	284	77	2804	-1347	-6193	-10	0	-7	-20	-4191
11 FRD	-27	2	199	33	-1	15	16	148	253	66	-24	54	-522	-319	-101
12 CAR	-15	-10	31	-12	-2	-3	2	29	42	8	-37	-46	34	0	23
13 HOW	-33	-61	-201	-107	0	1	5	45	11	10	4	-50	176	164	-35
14 AAR	-66	14	-9	89	-12	-30	7	88	14	13	-3	-4	115	-291	-83
• • •															
TOTAL	-2205	-612	-245	-33	-374	-698	-146	-5156	-380	-915	-128	-52	-79	-117	-12114

Table B: 2040Base vs. 2040 Alt w/o Speed Feedback

	DESTIN	ATION														
ORIGIN	1	2	3	4	5	6	7	8	9	10	11	12	13	14		TOTAL
1 DC CR	1	1	0	1	0	1	0	27	0	0	0	0	0	0		29
2 DC NC	6	0	1	1	1	2	0	9	0	-1	0	0	0	0		18
3 MTG	14	6	3	2	2	6	0	-15	0	0	0	0	0	0		17
4 PG	44	17	6	14	8	14	2	-10	0	0	0	0	0	0		95
5 ARLCR	0	0	0	0	0	0	0	4	0	0	0	0	0	0		5
6 ARNCR	6	2	0	0	7	95	2	-4	0	0	0	0	0	0		108
7 ALX	5	3	0	0	7	275	79	21	0	0	0	0	0	0		390
8 FFX	-1544	-488	-289	-46	-289	-722	-120	-1186	-9	-16	0	0	0	0		-4710
9 LDN	-192	-83	-42	-5	-50	-126	-19	-32	0	0	0	0	0	0		-550
10 PW	-346	-77	-48	-6	-71	-187	-9	-304	-2	0	0	0	0	0		-1050
11 FRD	1	0	0	0	0	0	0	-6	0	0	0	0	0	0		-5
12 CAR	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
13 HOW	3	2	-1	1	0	1	0	-3	0	0	0	0	0	0		3
14 AAR	11	1	0	0	1	3	0	-2	0	0	0	0	0	0		13
•															=	
TOTAL	-1995	-617	-370	-37	-384	-637	-64	-1526	-12	-17	0	0	0	0		-5658

Shaded area indicates cells where auto drivers should decrease (i.e., where transit service increases)

Table A also shows the expected decrease in auto driver trips in the shaded area, but also shows the increase in auto drivers from DC & MD to VA that are induced by the added capacity afforded by the transit improvement (the purpose of speed feedback).

Table B shows a distinct pattern-Auto driver trips change, for the most part, in cells impacted by transit improvement

Conclusions

- The Orange Line extension will not impact I-66 traffic substantially
- The Orange Line extension analysis proved useful in demonstrating *differences* in findings between approaches
 - The fixed person trip table approach ensured that the transit improvement reduced auto travel strictly within the area affected by the alternative. The approach resulted in expected reductions in N/S screenline crossings, and resulted in substantially decreased VMT, relative to the SF approach
 - The speed feedback approach reflected the impact of the alternative (more transit trips, less auto trips) as well as trip distribution changes resulting from added highway capacity (i.e., more river crossings). The subsequent redistribution of person/auto driver travel <u>offset</u> some of the benefits indicated by the fixed trip table approach (i.e., reduced screenline crossings and reduced VMT)

Final Comments

- The Version 2.3 travel model has been applied by TPB staff, and will continue to be tested
- The Loudoun County study has indicated that initial Metrorail boardings compare reasonably with prior forecasts at the line level, and the need for refinement when the regional model is used for station level analysis
- Orange line extension study has indicated that the model responds reasonably to coded transit improvements
- When interpreting "standard/speed feedback" model results (screenline crossings in particular), the analyst must be mindful of:
 - The transit improvement, as a first-order effect
 - The consequent change in accessibility and trip distribution (accounted for by the speed feedback loop), as a second-order effect