Sample Calculation

Benefits of Plug-In Hydrid

General Methodology

- Compute the emissions associated with the electrical generation to charge batteries for a plug-in vehicle for a set number of miles.
- Compare to the emissions associated with driving a conventional vehicle the same number of miles.

Assumptions/Inputs

- A vehicle drives 12,500 miles annually.
- kWh demand for charging an electric vehicle to drive 12,500 miles is 3125 kWh, or 3.125 MWh. (Austin Energy)
- Average NOx emission rate for electricity generation in the region is 3.06 to 5.72 lbs/MWh. Assume 3.06. (1-hour SIP)
- Factor to account for line losses: 0.93. (Austin Energy)
- Average emission rate for conventional vehicle: 41 pounds NOx per 12,500 miles at 25 mpg. (EPA AP-42)

Emissions from Power Generation

• (3.125 MWh * 3.06 NOx/MWh)/0.93 line loss = 10.3 lbs NOx per year

Emissions from Conventional Vehicle Operation

• 41 pounds NOx/year assuming 12,500 miles and 25 mpg.

Difference

• 41 - 10.3 = 30.7 lbs NOx/vehicle/year reduced

Table 1. Sample Annual and Daily NOx Emission Reduction

Number of Vehicles	Total Ibs NOx Reduced	Total tpy NOx reduced	Total tpd NOx reduced
1,000	30,718	15	0.04
10,000	307,177	154	0.42
100,000	3,071,774	1,536	4
1,000,000	30,717,742	15,359	42