Streamflow/Reservoir-Storage Forecasting and Probability-based Triggers

Steven Nebiker

MWCOG Drought Monitoring Workshop March 19, 2018

Advancing the Management
of Water Resources

The New Normal

Safe Yield for Planning, But Not Operations

Columbia, M D
Rale igh, N C
B oston,
M A

Easy Drought Trigger(Static)

- Days of Supply Remaining

Medium=Drought Trigger (Static)

- Rule curves
(

Advanced-Drought Trigger (Dynamrc)

Need to be system specific!

HYDROLOGICS

DRO: Dynamic Reservoir Operations

Figure 1. DRO Information

A variety of information is used to meet a utility's DRO objectives.

Taking the Doubt Out of Drought ${ }^{\text {TM }}$

Sample Forecasts

Schematic of Hackensack OASISTMOdel

Sample Forecasts

Sample Forecasts

Superiority of Forecasts

- Detect droughts in time
- Minimize false alerts

Of the form:

- X\% chance of reservoir storage (or river flows) reaching y\% in z weeks

Evaluate Triggers Over Inflow Record

System Composite - Total Storage and Demand/Delivery

 2005_RWSA_3triggers

Percent Available Total Storage - Demand (mgd) - Delivery (mgd)

Columbia, M D
R a le i g h, N C
ort|and, 0 R
B oston,
M A

Limits of Static Rules-Reliability and cost

Historic NJ Storage - Zone 3
Zone 3A

C o l u m b i a , M D
Rale igh, N C
Portland, 0 R
Boston, M A

Dynamic-Rules Based=on the Forecasts

Trigger for Wanaque

Probability of Being Above (\%)

Probability of Being Below (\%)
OGICS

Dynamic-Rules Based on the Forecastis

DURHAM

1869
arrot mebicine

City of Durham Reservoir System Status Report

Displaying operations data through 10/26/2017 Displaying projections from OASIS run Forecasts_102317

Reservoir Storage Status			
	Elevation (ft)	Prime Storage (\%)	Prime Storage (MG)
Lake Michie	334.90	67.67	$1,902.87$
Little River	347.40	65.65	$2,344.31$
System		66.54	$4,247.18$

QASIS Run

Run 01 (Forecasts_102317)

Water Shortage Response Plan			
Stage	\% of Traces	Threshold	Action
Trigger 1-R (> 95\% full @ 10 weeks)	51%	95\%	None
Trigger 1-D (<45\% full @ 12 weeks)	5%	30\%	None
Trigger 2-D (<35\% full @ 10 weeks)	0\%	20%	None
Trigger 3-D (<25\% full @ 8 weeks)	0\%	10\%	None
Trigger 4-D (< 15\% full @ 4 weeks)	0\%	5\%	None

Raw and Finished Water Delivery					
	Latest Observation	7-day Avg		30-day Avg	

Net Reservoir Inflow

	30-day Avg	Historical Median	30-day Avg (as \% of Historical Median)
Lake Michie Net Inflow (cfs)	2	14.7	15%
Little River Net Inflow (cfs)	2	5.4	29%

Observed Precipitation		
	YTD	Last 30 Days
Lake Michie	$33.8^{\prime \prime}$	2.7^{*}
Little River	$39.3^{\prime \prime}$	2.8^{*}

Forecasted Precipitation	
Data Source	Forecast total
NWS	2-day total: $0.4^{\prime \prime}(10 / 278 \mathrm{am}$ to $10 / 298 \mathrm{pm})$
WU	10-day total: $0.3^{\prime \prime}(10 / 267 \mathrm{pm}$ to $11 / 57 \mathrm{pm})$

Drought:Exercises to Refine the Rules

YYDROLOGICS

Potomac River Basin CO-OP Operations Model

Sample ICPRB Forecast for Little Falls (sept. 2011)

ICPRB outlook:

There is a 6 to 11 percent conditional probability that natural Potomac flow will drop below 700-million gallons per day (MGD) at Little Falls through December 31 of this year; at this flow level, water supply releases from Jennings Randolph and Little Seneca Reservoirs may occur. Releases occur when predicted flow is less than demand plus a required flow-by. Demand ranges from 400 to 700 MGD during the summer months and the minimum flow-by at Little Falls is 100 MGD. Note that natural flow is defined as observed flow at the Little Falls gage plus total Washington metropolitan Potomac withdrawals, with an adjustment made to remove the effect of North Branch reservoir releases on stream flow.

The conditional probability is estimated by analyzing the historical stream flow records and giving consideration to recent stream flow values, precipitation totals for the prior 12 months, current groundwater levels, and the current Palmer Drought Index. Past years in which watershed conditions most closely resemble current conditions are weighted more heavily in the determination of conditional probability. The historical, or unconditional, probability is based on an analysis of the historical stream flow record without weighting for current conditions. The conditional probability of 6 to 11 percent compares to a historical probability of 8 to 13 percent and is considered the more reliable indicator.

Sample Forecast for Little Falls, siminated

(Sept: 15,2002)

Companion Forecast for JR W S Storage

Rale igh, N C
Portland, 0 R
B oston, M A

