Meeting Regional Climate Change Goals through Transportation Planning and TDM Strategies

Presentation to MWAQ TAC February 17, 2009

Monica Bansal

Department of Transportation Planning
National Capital Region Transportation Planning Board (TPB)
Metropolitan Washington Council of Governments (COG)

What is the TPB Currently Doing?

- Developing baseline GHG projections for transportation through 2030
- Analyzing a "What Would It Take?" Scenario for GHG reduction, including fuel efficiency, alternative fuels, travel efficiency
- Seeking GHG reduction strategies that could be included in the region's transportation plans and programs
- Using goals set in COG Climate Change Report of November 2008
 - Return to 2005 levels by 2012
 - 20% below 2005 levels by 2020
 - 80% below 2005 levels by 2050

Setting up the WWIT Scenario for Analysis

Analyze three categories of strategies to reduce mobile CO₂ emissions for effectiveness, cost-effectiveness, and implementation timeframe

Assess combinations of strategies from these three categories:

Fuel Efficiency

Beyond CAFE standards [currently 35 mpg by 2020]

Fuel Carbon Intensity

Alternative fuels (biofuels, hydrogen, electricity)

Vehicle technology (hybrid engine technology)

Travel Efficiency

Reduce VMT through changes in land use, travel behavior, prices

Reduce congestion

Improve operational efficiency

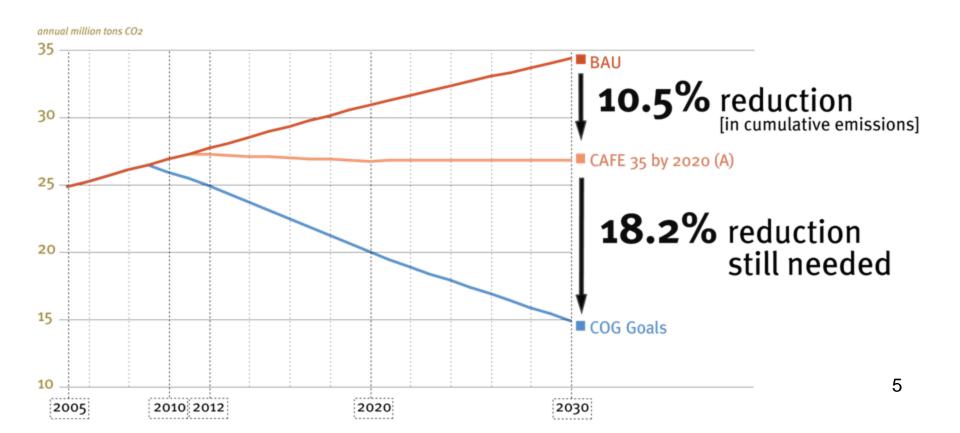
Where are Transportation Emissions Coming From?

2010 Travel and CO₂ Emissions

8-Hour Ozone Non-Attainment Area

	VMT (billions) - Annual	%	CO2 Emissions (Millions of Tons) - Annual	%
Passenger Cars				
	19.06	47%	6.76	24%
Light Duty Trucks				
	18.94	46%	15.38	56%
Heavy Duty				
	2.94	7%	5.46	20%
Total	40.95	100%	27.60	100%

source: 2007 CLRP


To achieve 40% reduction in mobile CO2 emissions below 2005 levels by 2030

Fuel Efficiency

Beyond CAFE standards [currently 35 mpg by 2020 for LDVs]

Fuel Efficiency 35 mpg by 2020

To achieve 40% reduction in mobile CO2 emissions below 2005 levels by 2030

Fuel Efficiency

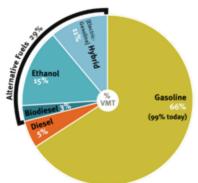
Beyond CAFE standards [currently 35 mpg by 2020 for LDVs]

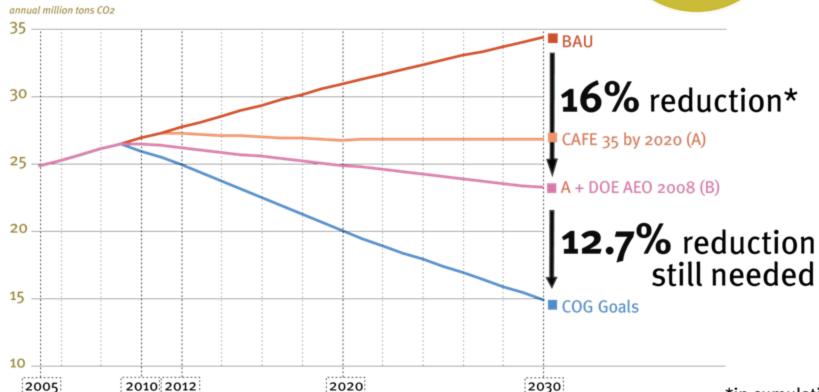
Fuel Carbon Intensity

Alternative fuels (biofuels, hydrogen, electricity)

Travel Efficiency

Reduce VMT through changes in land use, travel behavior, prices


Reduce congestion


Improve operational efficiency

Alternative Fuels

2030

Source: US DOE, EIA, Annual Energy Outlook (AEO) 2008

6

To achieve 40% reduction in mobile CO2 emissions below 2005 levels by 2030

Fuel Efficiency

Beyond CAFE standards [currently 35 mpg by 2020 for LDVs]

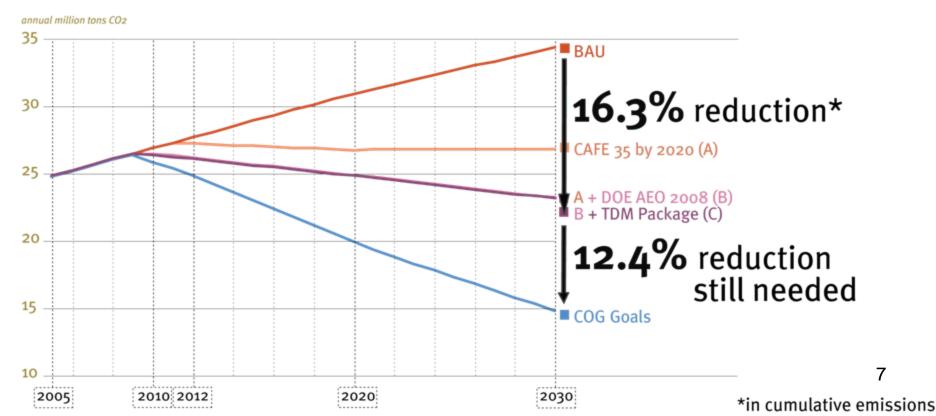
Fuel Carbon Intensity

Alternative fuels (biofuels, hydrogen, electricity)

Travel Efficiency

Reduce VMT through changes in land use, travel behavior, prices

Reduce congestion


Improve operational efficiency

Travel Efficiency

TDM Package

- 1. Maryland and Virginia Telework
- 2. Guaranteed Ride Home
- 3. Employer Outreach
- 4. Employer Outreach Bike
- 5. Ridesharing

Applies to Light Duty Vehicles only

To achieve 40% reduction in mobile CO2 emissions below 2005 levels by 2030

Fuel Efficiency

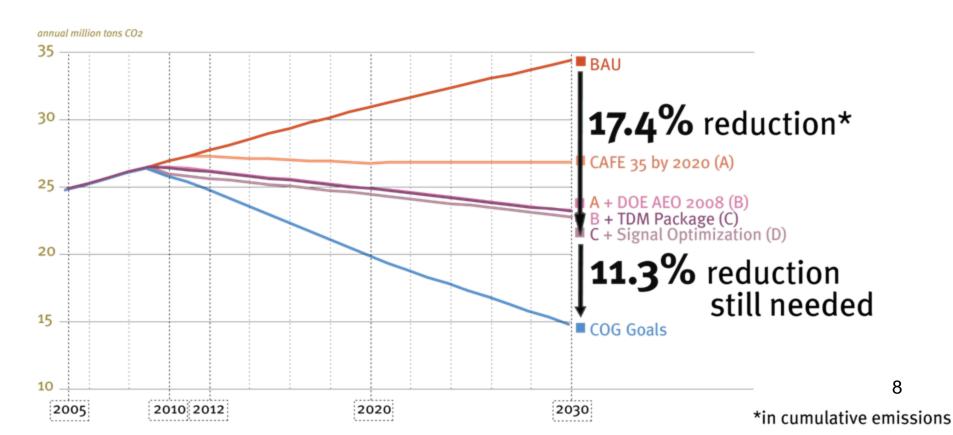
Beyond CAFE standards [currently 35 mpg by 2020 for LDVs]

Fuel Carbon Intensity

Alternative fuels (biofuels, hydrogen, electricity)

Travel Efficiency

Reduce VMT through changes in land use, travel behavior, prices


Reduce congestion

Improve operational efficiency

Travel Efficiency

Signal Optimization 3400 Signals regionwide

Applies to Full Fleet

Combination #2: Assumes a Higher Federal Role

To achieve 40% reduction in mobile CO2 emissions below 2005 levels by 2030

Fuel Efficiency

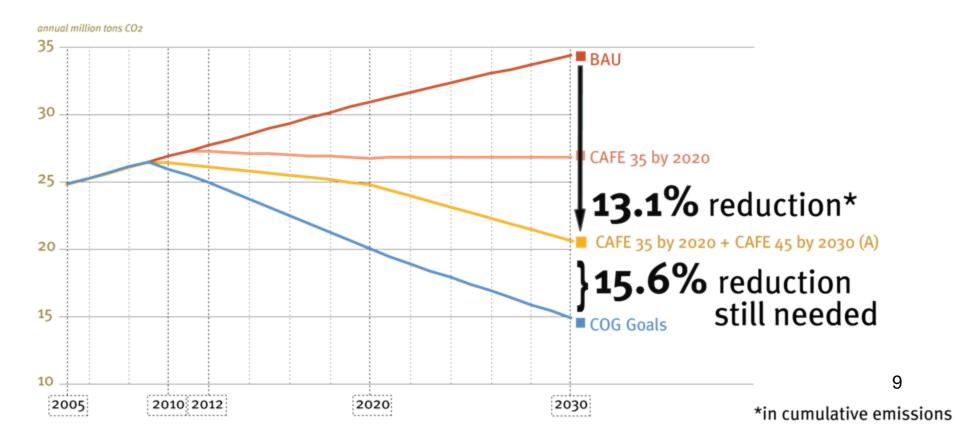
Beyond CAFE standards [currently 35 mpg by 2020 for LDVs]

Fuel Carbon Intensity Travel Efficiency

Alternative fuels

electricity)

(biofuels, hydrogen,


Reduce VMT through changes in land use, travel behavior, prices

Reduce congestion

Improve operational efficiency

Fuel Efficiency

35 mpg + 45 mpg by 2020 by 2030

Combination #2: Assumes a Higher Federal Role

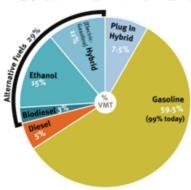
To achieve 40% reduction in mobile CO2 emissions below 2005 levels by 2030

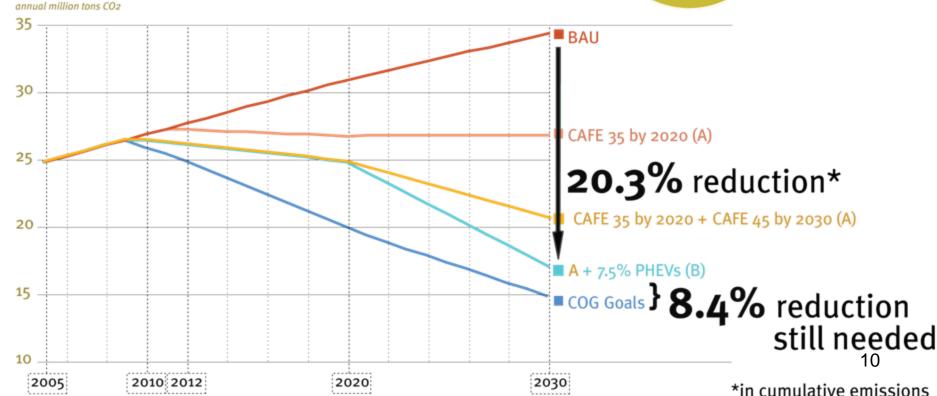
Fuel Efficiency Beyond CAFE standards [currently 35 mpg by 2020 for LDVs]

Fuel Carbon Intensity

Alternative fuels (biofuels, hydrogen, electricity)

Travel Efficiency


Reduce VMT through changes in land use, travel behavior, prices


Reduce congestion

Improve operational efficiency

Alternative Fuels

2030

Combination #2: Assumes a Higher Federal Role

To achieve 40% reduction in mobile CO2 emissions below 2005 levels by 2030

Fuel Efficiency

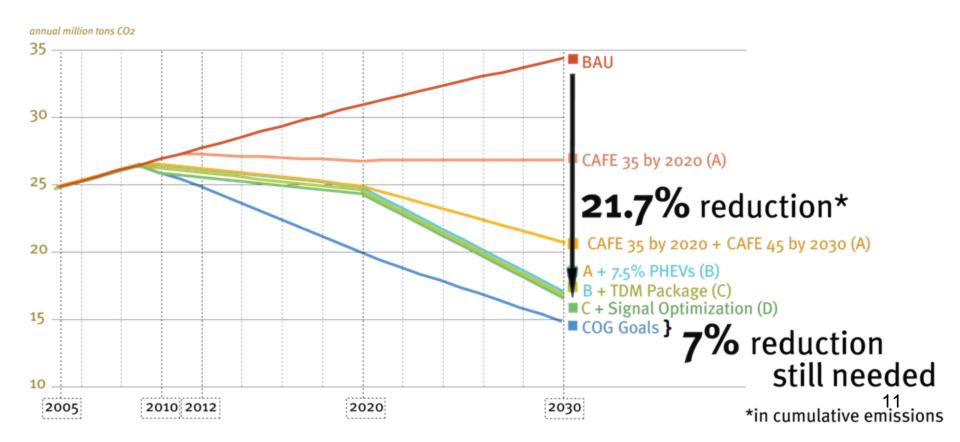
Beyond CAFE standards [currently 35 mpg by 2020 for LDVs]

Fuel Carbon Intensity

Alternative fuels (biofuels, hydrogen, electricity)

Travel Efficiency

Reduce VMT through changes in land use, travel behavior, prices


Reduce congestion

Improve operational efficiency

Travel Efficiency

Signal Optimization 3400 Signals regionwide

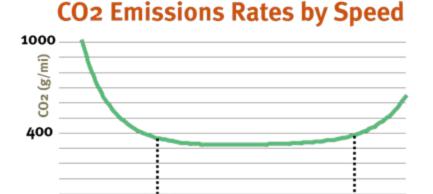
Applies to Full Fleet

How can we change travel efficiency?

Land Use

Analyze possible aggressive land use shifts CLRP Aspirations Land Use Component

VMT Reductions


Increase Transit Capacity

CLRP Aspirations Transportation Component

VMT Reductions/Mode Shift

Reducing Congestion

Traffic and Roadway Improvements

25

Pricing Policies

Parking Study effect of increased parking costs

Congestion TPB Value Pricing Study

Gas/VMT tax Study effect of increased fuel prices

VMT Reductions Increase very low speeds₁₂ VMT Reductions

Cost-effectiveness

How can we prioritize strategies; effectiveness, scale, and cost-effectiveness?

Cost-effectiveness of Example Transportation Emissions Reduction Measures (\$ per ton of CO₂ reduced)

Numb er	Category Description	CO ₂ Cost Effectiveness Range *
1	Telecommute Programs	\$10 to \$40
2	Signal Optimization	\$30 to \$50
3	Park & Ride Lots (Transit and HOV)	\$100 to \$500
4	Transit Service improvements	\$100 to \$800

^{*}TPB staff estimates based on existing program commitments