ANALYSIS OF 2021 OZONE EXCEEDANCE DAYS

Sunil Kumar Principal Environmental Engineer

MWAQC-Technical Advisory Committee November 9, 2021

2021 Ozone Exceedance Days

May 2021					Ju	ne	2021						
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
5	26	27	28	29	30	01	30	31	01	02	03	04	05
						49			50	52	38	54	73
2	03	04	05	06	07	08	06	07	08		10	11	12
57	38	46	44	43	41	44	64	48	53	51	52	30	48
9	10	11	12	13	14	15	13	14	15	16	17	18	19
44	49	51	41	50	49	60	38	58	48	55	60	64	53
6	17	18	19	20	21	22	20	21	22		24	25	26
53	59	66	71	82	74	66	50	46	31	51	59	53	33
3	24	25	26	27	28	29	27	28	29	30			
59	30	47	63	62	45	33	29	39	42	53			
0	31												
27	45												
Jı	uly	2021		I				gust	2021			ı	
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturda
27	28	29	30	44	40	03 37	01 47	⁰²	03 55	61	71	o6 67	07 58
04	05	06	07	08	09	10	08	09	10	11	12	13	14
50	50	64	63	37	45	44	61	62	55	50	60	58	49
11	12	13	14	15	16	17	15	16	17	18	19	20	21
				64	64	54	51	37	31	23	42	42	49
43	46	50	52	04									
43	46	20	21	22	23	24	22	23	24	25	26	27	28
			-				43	53	²⁴ 67	25 80	26 63	27 59	28 61
18	19	20	21	22	23	24							
18 45	19 54	20 61	63	²² 46	²³ 49	²⁴ 56	43	53	67				

^{*} Draft data as of October 31, 2021

2021 Ozone Exceedances Days, Monitors, and Levels

Date	Highest 8-Hour Max Ozone (ppb)	Corresponding Monitor	Other Exceeding Monitors
May 19	71	McMilan, Takoma	-
May 20	82	McMilan	Takoma, Fredrick, Rockville, PG Eq. Center, Beltsville, HU-Beltsville, Arlington, Fairfax, Loudoun, Prince William
May 21	74	Rockville	-
June 5	73	McMilan, PG EQ. Center	Beltsville
July 27	74	Fairfax	Beltsville, McMilan
July 28	74	McMilan, PG EQ. Center	Calvert, Charles, Arlington, Fairfax
August 5	71	Arlington	-
August 25	80	Beltsville	McMilan, Takoma, Rockville, PG EQ. Center

Ozone Monitors

What Causes Exceedances in Washington Region?

- Exceedances in the Washington region are caused by emissions of ozone precursors such as, VOCs and NOx that are produced locally as well that come from outside.
- While local sources of emissions remain important, outside sources play a significant role too.
- Several research studies have shown that ozone and its precursors (VOCs & NOx) coming from outside the region can contribute significantly to ozone levels in the region, more so on high ozone days.

Ozone Transport & Wind Trajectories

- Wind trajectory is an important tool in studying long range ozone transport.
- It is the path followed by wind during a certain time.
- It tells us where the wind is coming from at a particular location.
- Wind brings air pollutants such as, ozone and its precursors from upwind areas. This adds to locally produced air pollution and makes the situation worse in downwind areas.
- A significant portion of ozone is brought to the region from outside such as, Ohio river valley and Western Pennsylvania where a number of coal based power plants operate.
- Wind trajectories were created at 500m and 1500m for eight ozone exceedance days in 2021 at EPA's Airnowtech.org website.

Wind Trajectory – May 19

Local + Transport

High upwind ozone level

2/14 monitors exceeding standard

500 m

1500 m

8-Hour Max Ozone = 71 ppb, McMilan & Takoma

Wind Trajectory – May 20

Local + Transport + Recirculation

High upwind ozone level

11/14 monitors exceeding standard

500 m

1500 m

8-Hour Max Ozone = 82 ppb, McMilan

Wind Trajectory – May 21

Local + Transport

Moderate upwind ozone level

1/14 monitors exceeding standard

500 m

1500 m

8-Hour Max Ozone = 74 ppb, Rockville

Wind Trajectory – June 5

Local + Transport

High upwind ozone level

3/14 monitors exceeding standard

500 m

1500 m

8-Hour Max Ozone = 73 ppb, McMilan & PG Eq. Center

Wind Trajectory – July 27

Local + Transport

Moderate upwind ozone level

3/14 monitors exceeding standard

8-Hour Max Ozone = 74 ppb, Fairfax

Wind Trajectory – July 28

Local + Transport

High upwind ozone level

6/14 monitors exceeding standard

500 m

1500 m

8-Hour Max Ozone = 74 ppb, McMilan & PG Eq Center

Wind Trajectory – August 5

Local + Transport + Recirculation

Low upwind ozone level

1/14 monitors exceeding standard

500 m

1500 m

8-Hour Max Ozone = 71 ppb, Arlington

Wind Trajectory – August 25

Local + Transport + Recirculation

Moderate upwind Ozone level

5/14 monitors exceeding standard

8-Hour Max Ozone = 80 ppb, Beltsville

Smoke Influence (May 18-21, 2021)

Smoke Influence (July 25-28, 2021)

Smoke Influence (August 5, 23-25, 2021)

CONCLUSIONS

- Local and transported ozone (and precursors) caused exceedances in the Washington region on days when upwind ozone levels were high.
- Recirculation caused exceedances even on days when upwind ozone levels were low and raised ozone levels further on high ozone days.
- More smoke in 2021 compared to 2020 helped increase ozone and PM2.5 levels in 2021. July 27-28 exceedances were particularly influenced by heavy smoke.
- Exceedances can occur due to several factors (low wind, high temp, recirculation, high ozone transport, smoke, high emissions, etc.).
- 3 or less monitors exceeded on 6 out of 8 exceedance days. High ozone exceedances have been more localized in recent years.
- Beltsville (MD) and McMilan (DC) monitors are often the lead monitors in the region.

