Diagnosing Common Tree and Shrub Problems

> Christopher J. Luley, Ph.D. Urban Forestry LLC Naples, NY 14512 chris@urbanforestryllc.com

Plant/Client Health Care PCHC

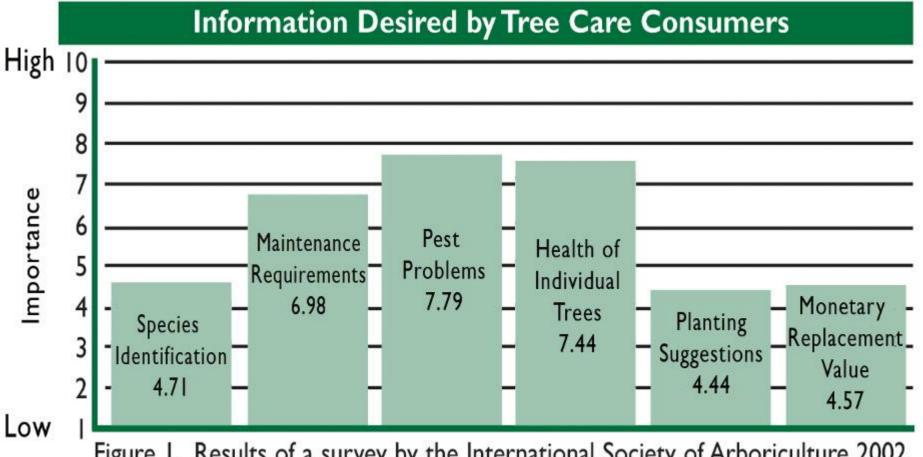


Figure 1. Results of a survey by the International Society of Arboriculture 2002 that identifies the importance to clients of knowing pests and plant health in the landscape. [Source: International Society of Arboriculture.]

Symptoms and Signs

Symptoms

- What you see wrong with the plant
- Deviation from normal
- Effect of the agent on the plant
- Seldom identify the problem

Symptoms and Signs

Signs ■ Evidence of the causal agent Mostly for biotic agents Help to positively identify the cause ■ Use a hand lens

Use a hand lens

Hold Hand lens to Eye

Damage Categories

Nuisance Damage detracts from use of plant Little or <u>no</u> damage

Damage Categories

Cosmetic or aesthetic

 Damage is not seriously harming the health

May detract from its appearance or functionality

Cedar-Apple Rust

Damage Categories

Serious damage
 Long-term health of the plant is in

danger

European Beech

Causes of Tree Problems

- 1. **Biotic** agents-Living
 - Insects
 - Pathogens
 - Causing diseases
 - Animals

- 2. Abiotic agents-Non-Living
- 3. Declines- biotic and abiotic agents
 - Complexes

Disease Causing Agents or Pathogens

Fungi **Bacteria** Phytoplasmas **Viruses** Nematodes

Sycamore anthracnose

Insects Biotic Agents

 Most insects are beneficial or neutral
 Beneficial insects require

> Nectar source all season long

Require landscape diversity

Insect Damage Related to mouth part type

Piercing sucking

Stippling

Azalea Lace Bugs

Likes plants in full sunStarts on older leaves

Oniversity of Florid

Insect Damage Related to mouth part type

Worse on American varieties

Boxwood Psyllid

Insect Damage Symptoms

 Soft Scale
 Insects and aphids
 Honeydew and sooty mold

Insect Damage Related to mouth part type

Chewing
Coleoptera
Lepidoptera
Skeletonized
Only veins remain

Insect Damage Symptoms

- Defoliation-leaf loss
 - Chewing damage
 - Important only at high levels
 - Three consecutive years of defoliation
 - Decline/Mortality

Insect Damage Related to mouth part type Boring

Chewing mouthparts

Beetles

Lepidoptera

Larvae do most damage

Mostly attack stressed plants

Bronze Birch Borer2-LinedBorerChestnut Borer

Introduced Borers

Asian Longhorn Beetle

Attacking Maples, Poplars, Elms and other species

Stop the Borer, Save Ash Trees

Insect Damage Related to mouth part type Mining

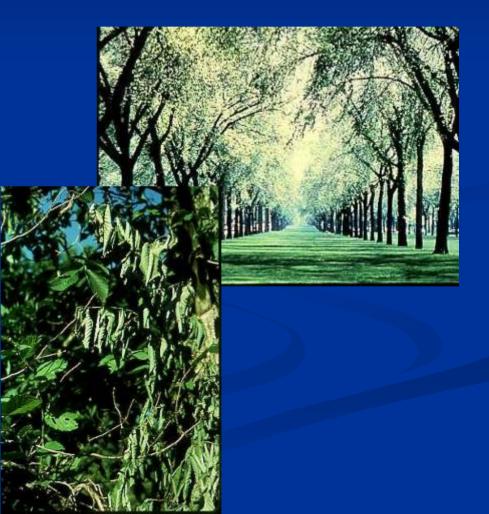
- Holly leaf miner
- Birch leaf miner
- Boxwood leaf miner

Insect Damage Symptoms

- Galls swelling on leaves or stems
 - Diptera
 - Hymenoptera
 - Eriophyid mites

Oak Stem Galls

Insect Damage Symptoms


WebbingLepidoptera

Vectoring Elm Bark Beetle Vectors (transmits during feeding) DED

Mites 2 Body Parts 8 Legs

StipplingBronzing

Spider Mites Webbing

Eriophyid Mites

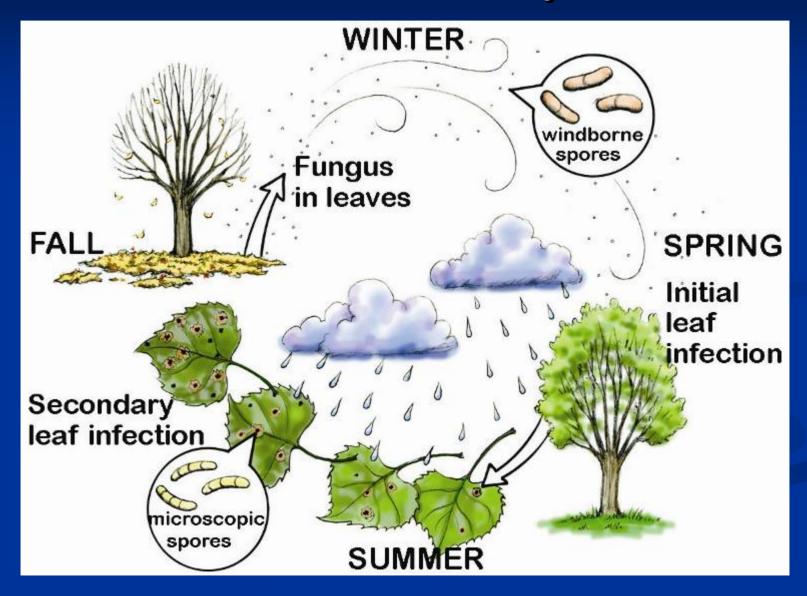
Disease Causing Agents or Pathogens

Fungi **Bacteria** Phytoplasmas **Viruses** Nematodes

Sycamore anthracnose

Disease Agents and Symptoms

Fungi
 Cause
 most
 tree
 diseases



Spread from one host to another

Disease Life Cycle

Disease Agents and Symptoms-Fungi

Anthracnose

 Fungal disease of leaf and or stem tissues

Anthracnose Some Attack Woody Tissues

American sycamore and London planetree

Dogwood Anthracnose

Disease Symptoms-Defoliation or Leaf Loss Cosmetic Damage

Disease Symptoms Fungi

Apple scab

 Fungal or bacterial caused circular or irregular spots

Disease Symptoms-Fungi

 Powdery Mildew
 Fungal disease resulting in white powdery growth on leaves

Leaf and shoot distortion

Disease Symptoms and Agents

Rust

Disease caused by fungi Usually with rusty colored spores

Disease Agents and Symptoms

Leaf Blotch

Irregular

 necrosis of
 shoot tissue

 Necrosis =

 death

Disease Agents and Symptoms-Fungi

Blight **■**General killing of shoot or leaf tissues

Diplodia Tip Blight

Latent infections-appear during stress

Disease Agents and Symptoms

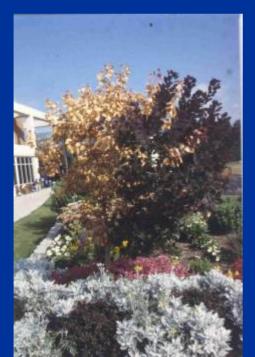
Canker Infection of woody tissues Mostly fungal infections

Cytospora Canker

Disease Agents and Symptoms

Galls

- Some are caused by fungi or bacteria
- Most galls are insect related



Disease Agents and Symptoms-Fungi

- Wilts –foliage wilts
- Verticillium, Dutch Elm Disease
 - Vascular discoloration
 - Darkening of xylem tissues

Root Rot-Fungal

Root Rot
 Structural root decay

Disease Agents-Bacteria

Slime Flux

Disease Symptoms Blight

Fire Blight
 Bacterial disease
 Rose family hosts

Lilac Shoot Blight

Disease Agents-FXIB

Bacteria

Bacterial leaf scorch

Abtioic Disorders AKA Physiologic Disorders

Physiologic disorders-disrupting the normal physiologic process in the plant



Abiotic Disorders Agents are Non-Living

Winter Injury

Abiotic Agents-Weather Events

Lightning Strikes

Frost

Abiotic Agents-Weather

Drought

Abiotic Agents-Cultural Practices

Construction Damage

Deep Planting

Abiotic Agents-Air Pollution

Ozone is the most common air pollutant causing damage

Abiotic Agents-Nutrient Deficiencies

Declines = Abtioic + Biotic Diseases of Complex Origin

Plant Response

Mortality Spiral
 Long-lived
 Experience many insults

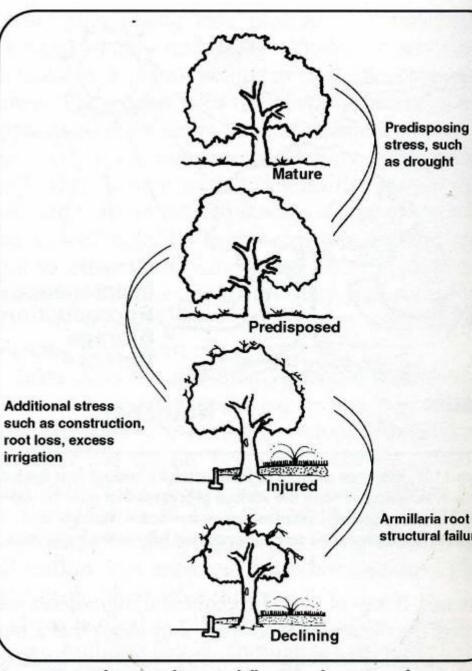


Figure 11.5 The mortality spiral illustrates how stress factors co

Mortality Spiral

 Mature trees are less able to adapt to stress



Predisposing

Injured-Secondary Attack

Declines

- Long-lived nature of progression
 Decline "spirals"
- Secondary pests _____
- Identification of a pest does not implicate cause

Other "Problems" on Trees Lichens

Other-Sapsucker Migratory Bird

Other-Squirrels

The Process of Conducting Plant Health Care

- Monitoring or scouting
 - Observing plant health
 - Identifying pests and stress agents

Diagnostic Procedure

Identify plant and what is normal for that plant

Diagnostic Procedure

 Look at other plants in area
 Same and different species

Look at Patterns of Symptoms
In population
On individual plant/organs

Examine the Site and Gather Information

10,000 questionsForensics

Note and Document Symptoms

Start at leaves

Branches and Trunk Note and Document Symptoms

Cut windows if needed

Examine Root Collar

Examine Root Collar and Roots

Root Collar Excavation

Luley's Law 1

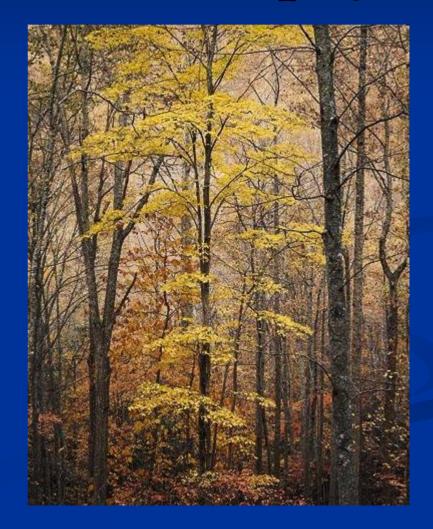
Run the other

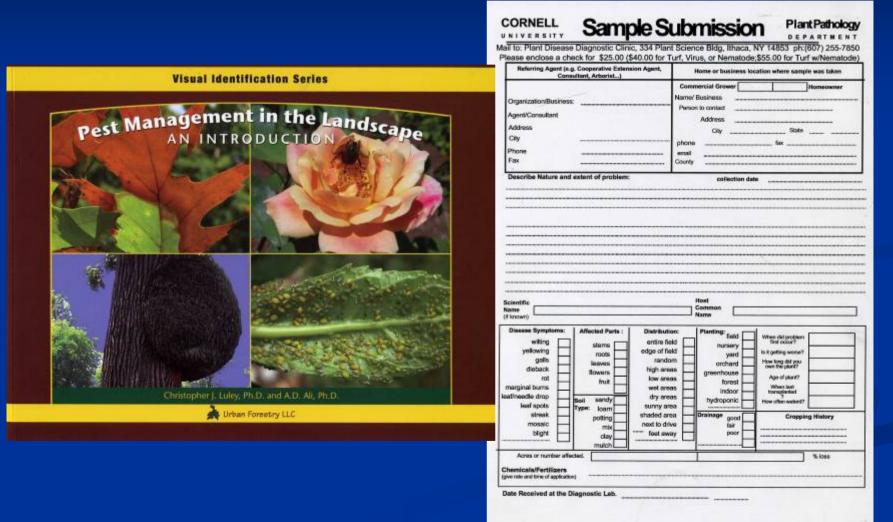
 way


 Look at what

 people are doing
 and don't do
 that

Cover Sprays and Blanket Treatments to 1980's


Are we still doing this today Are we still using broad spectrum insecticides? ■ Sevin ■ Talstar **Turf** ■ Dylox Herbicides?


Plant Health Care Definition and Philosophy

Better

Look at trees in their natural environment!

Record Information Make Consult References

Make Diagnosis

Final Step
Takes time
May take years

Be Conservative

