

Mirant Mid-Atlantic

MWAQC Technical Advisory Committee Briefing January 21, 2005

Discussion Topics

- NOx Settlement
- Progress Report on Current Projects
- View on Multipollutant Legislation

NOx Settlement

Key Elements of Mid-Atlantic Global NOx Settlement

- Control Technology to be Installed
 - Potomac River 3,4,5 Low NOx Burners in 2004, SOFA in 2005
 - Morgantown 1,2 SCRs in 2007, 2008
- Declining NOx Tonnage Caps from 2004 through 2010
 - Ozone Season Caps for Potomac River and System
 - Annual Caps for System
- Emissions Rate Limits
 - Ozone Season System limit of 0.150 lb/MBtu starting in 2008
 - Morgantown SCRs limit of 0.100 year-round, once installed
- Penalty and Projects
 - Cash payment of \$500,000
 - Supplemental Projects totaling \$1.0 M to reduce dust and particulate matter emissions at the site

Terms of Settlement NOx Caps & Trading Provisions

Environmental Projects

PROJECT

- Ash Silo Vent Secondary Filters
- Truck Wash Facility
- Coal Pile Fencing
- Coal Pile Binding Agent
- Ash Unloader Replacement
- Truck Loading Dust Suppression
- Railcar Unloading Dust Suppression
- Settled Dust Study
- Contribution to Clean Air Partners TOTAL Cost = \$1,000,000

30 tons 13.7 tons 2.8 tons 800 lbs 200 lbs 200 lbs 200 lbs

Annual System NOx Reductions

Mid-Atlantic System Annual NOx Emissions

Summer NOx Reductions

Potomac River Summer NOx Emissions

Benefits of Settlement

- Resolves Potomac River NOV
- Achieves 0.15 lb/MBtu system NOx average by 2008
- Year-round SCR operation will reduce PM2.5 emissions
- Emission caps ensure environmental benefit while allowing flexibility over methods to reach compliance targets
- When paired with future SO2 controls, significant Hg and additional PM2.5 reductions

Progress on NOx Projects

Current NOx Projects

- Chalk Point Unit #2 SACR
- Morgantown #1 SCR
- Potomac River #3-5 SOFA

Chalk Point #2 SACR

- SACR = Selective Auto-Catalytic Reduction
- Injects ammonia + natural gas in convection pass of boiler
- Gas acts as catalyst for NOx reduction and consumes excess ammonia
- Expecting ~50% reduction in NOx
- In final engineering / procurement phase
- Reagent switch from anhydrous ammonia to urea
- System in service late 2005 / early 2006

Morgantown #1 SCR

- First SCR went out for bids in October 2004
- Bid evaluation process underway
- Currently on schedule for May 2007 in-service date
- Urea selected as reagent

Potomac River #3-5 SOFA

- Dampers, drives, ductwork being procured / fabricated
- All three units to be retrofitted this spring
- Low NOx burners installed on Units 3-5 last spring 15% reduction
- Low NOx burners installed on Unit 1-2 last fall 5-10% reduction

Potomac River SOFA

SOFA Port

DS STYLE TIP

DS STYLE TIP

MIRANT

(2) SOFA WINDBOXES WITH HORIZONTAL DIRECTIONAL CONTROL CORNERS "SW" AND "NE"

Burner Corner

SOFA Ductwork

Multipollutant Legislation

Multipollutant Legislation

- Cap & Trade approach vs. Percent Reduction
- Realistic Timeline to Implement
 - Technical: Time to engineer, procure, and install
 - Financial: Cost of NOx, SO2, & Hg controls simultaneously
 - Alignment with Federal programs
- Mercury
 - Substantial Co-benefits from NOx & SO2 controls
 - No large scale / long term demonstrations yet
 - Continuous Hg monitors not commercially available
- CO2
 - Few options for significant reduction on coal-fired units
 - Fuel switch / repowering to gas costly to customer and generator

Questions

