
Resource Recovery

at DC Water

MWCOG Recycling Committee October 1st, 2015

Chris Peot, P.E., BCEE Director, Resource Recovery

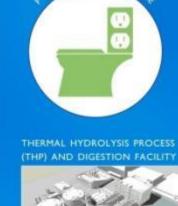
NUTRIENTS and CARBON RECYCLING

CC BLUE PLAINS ADVANCED WASTEWATER TREATMENT PLANT: A RESOURCE RECOVERY FACILITY water is life

GREEN ENERGY BIORENEWABLES

FROM THE

taral ktata and providing withink hab

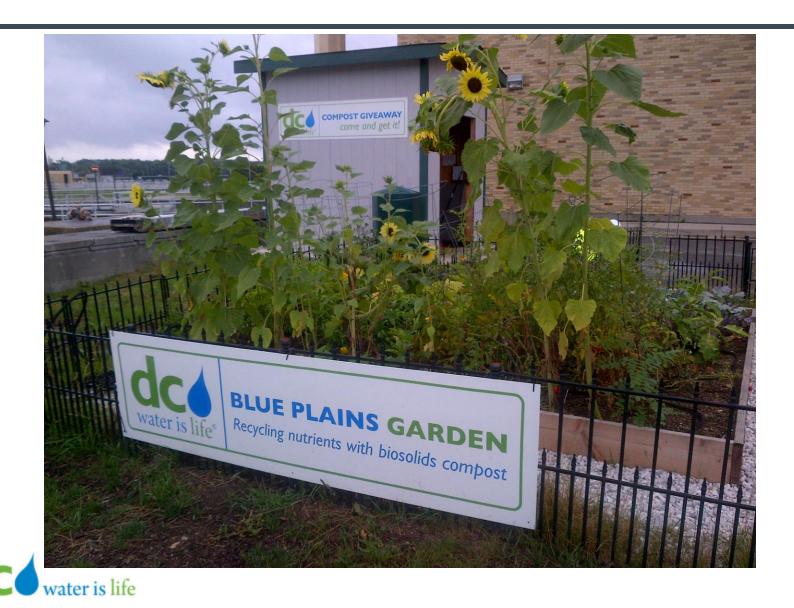

URBAN RESTORATION

own traves and radius runted

dcwater.com/biosolids

DC Water will be the first in North wastewater treatment. When completed, this facility will be the largest plant of its kind in the world.

GREEN BENEFITS:


- generating 13 MW of electricity
- Save DC Water \$10 million annually electricity in the District)
- Reduce carbon emissions by approximately 50,000 metric tons of CO2e per year.
- Reduce trucking by 1.7 million miles per year.
- Save \$10 million in biosolids trucking
- · Produce Class A biosolids to grow trees, sequester carbon and reduce runoff.

Agriculture

Blue Plains Garden & Compost Giveaway

Urban gardening community outreach

Community Gardens

That's right - we're trying out the highly regulated bio-solids compost from DC Water - and the raised bed we're using them in is amazingly healthy! — with Anna Benfield.

 \mathbf{g}_{-}^{A} Kristin Brower, Emily Anne Roberts, Meghan Higginbotham and 23 others like this.

Anaerobic Digestion

Class B vs. Class A Product

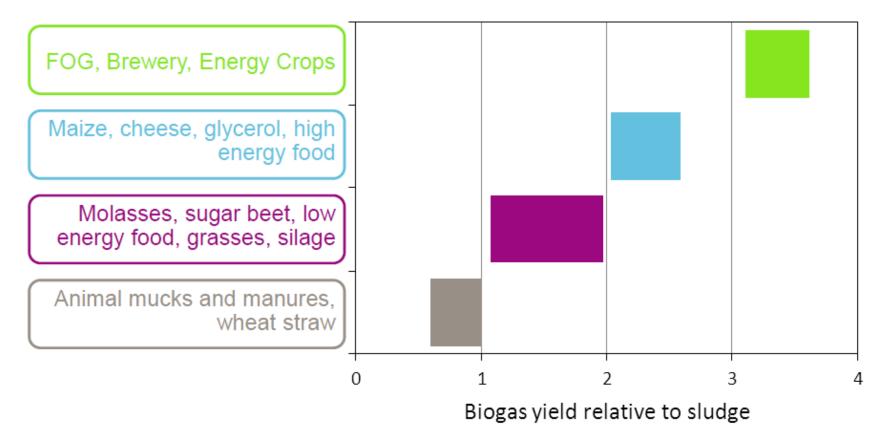
Future Plans for Class A Biosolids

- Continue land application of remaining Class A dewatered biosolids
- Produce a blended soil product (similar to compost)
- Use product in service area for tree planting, restoration, green infrastructure, etc.

Program Benefits

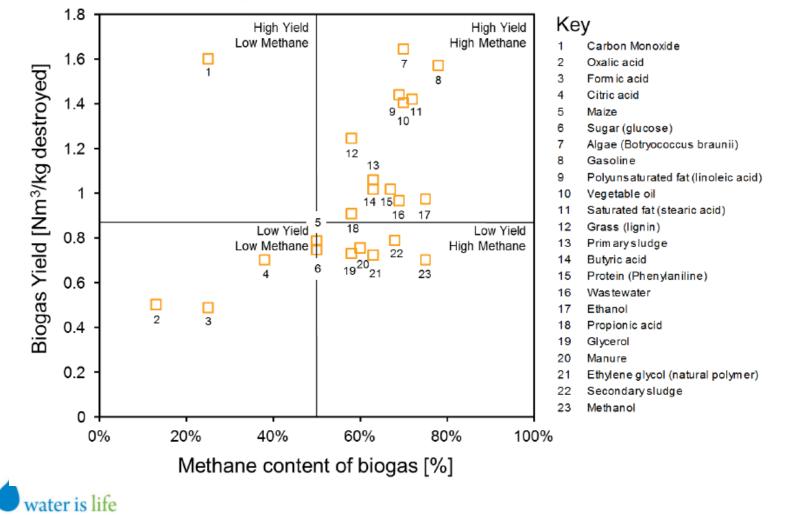
Resource Recovery

Reduce biosolids quantities by more than 50% Improve product quality (Class A and more) Generate 10 MW of clean, renewable power Cut GHG emissions dramatically Save millions of dollars annually when the facility begins operating in 2014

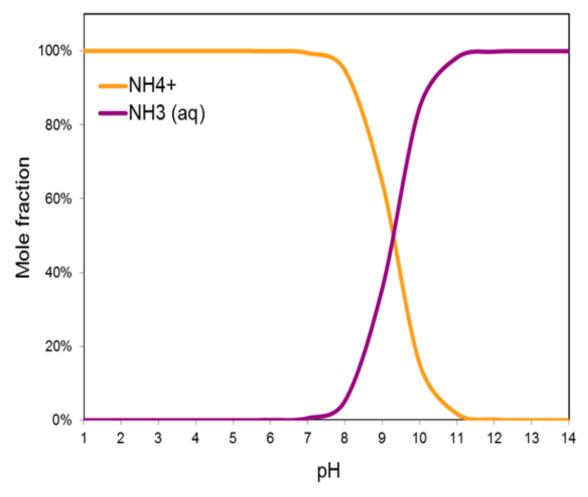


Co-Digestion Concept Overview

- Digester capacity is an asset we can maximize
 - Most days we have considerable excess capacity
- Done at hundreds of plants worldwide (several in the US)
- Fits well in the GM's revenue generation goal
 - Potential revenue from gas production, tip fees, and REC sales
- Can help maximize the asset of digester capacity
- Start with low hanging fruit likely processed foodwaste (high C:N ratio)
- Currently testing blends in pilot digesters promising results
- Steps toward a 15 dtpd pilot project (5% of average flow)
 - Market survey (ongoing)
 - Research and development (ongoing)
 - Concept report
 - Design
 - Construction



Biogas yield of wastes relative to sewage sludge



Theoretical Biogas Yield

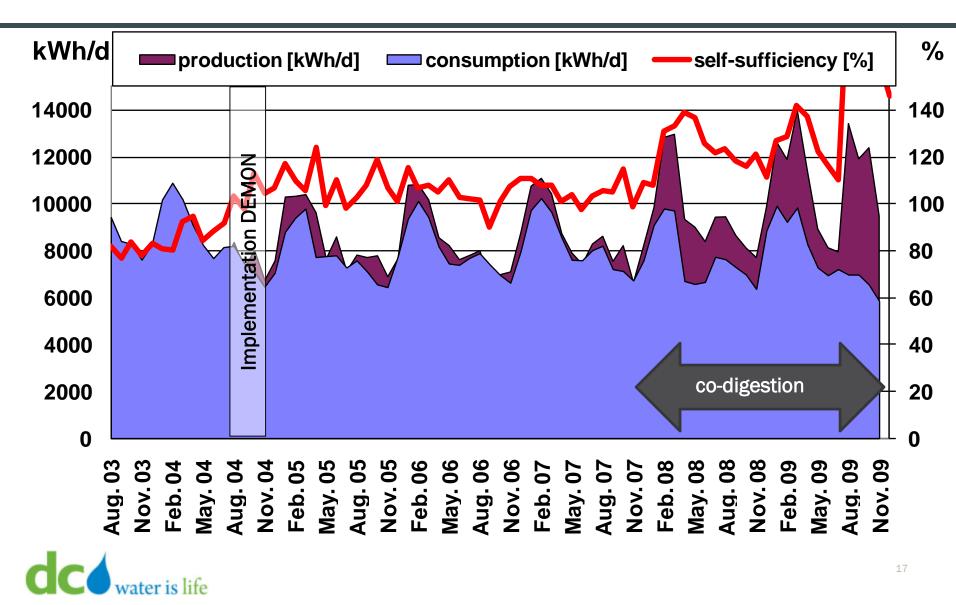
Food effect on pH

• At pH 8, ~10% ammonia, enough to put us on the edge of TH digestion performance

 Add a waste with high C:N ratio (like foodwaste) pH will drop.

• At 7.5 pH the ammonia drops to about 3% and the toxicity of ammonia has dropped by a factor of 3.

•The digester is no longer performing on the edge, so in principle we can add more material.

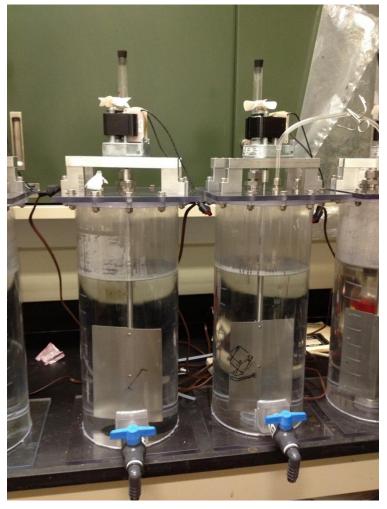


Co-digestion Experience

- Summary of Representative Programs
 - North America
 - EBMUD (Oakland, CA)
 - Central Marin County (Northern SF Bay Area, CA)
 - Tacoma, WA
 - Sheboygan, WI
 - MWRA (Boston, MA)
 - NYC DEP
 - Europe
 - All over
 - 20+ yrs experience

L6

Strass, Austria – Co-Digestion and DEMON Degree of self-sufficiency ~ 150%



DC WATER PILOT DIGESTER FINDINGS (TO DATE)

LAB DIGESTERS

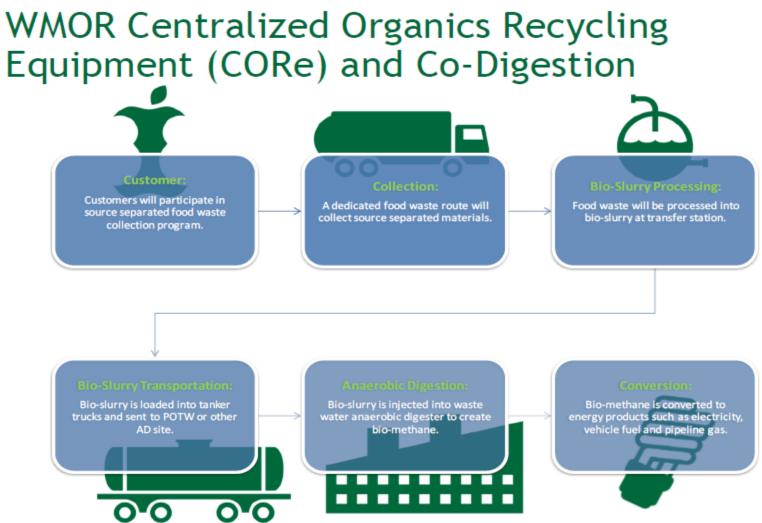
- 10 L active volume
- Large Paddle Mixer
- High Torque, 100 rpm Motor
- Continuous Mixing
- Gas Volume and Rate by Respirometer

OPERATION AND TESTING

- Fed once per day, same time every day
- Measurements so far include:
 - 1. TS/VS (Influent and Effluent)
 - 2. TCOD, sCOD (Influent and Effluent)
 - 3. Headspace Gas (CH₄, CO₂, H₂, MT, DMS)
 - 4. Total gas volume and gas production rates
 - 5. pH and alkalinity
 - 6. Viscosity
 - 7. NH_4^+ , and other cations
 - 8. VFA concentration and speciation

POTENTIAL FEEDSTOCKS IN THE DC REGION

DC feedstocks


- Food
- FOG
- Bottling waste
- Industrial wastes
- Others??
- Have launched a comprehensive market survey

WM PROPOSAL FOR FOOD SLURRY (15 DTPD)

WM food slurry – 10% TS

Addition of 150 wet tons/d (15 dt/day) organic waste = 5% addition by flow

= 11% addition by load

Parameter	Baseline*	With Organic Waste	Units
Digester HRT	21.5	20.4	[d]
Organic Loading	5.59	6.31	[kg VS/m ³ .d]
Power Generation	8.13	9.61 (= +1.47)	[MW]
Turbine capacity used (at 85% uptime)	69%	82%	[%]
Dewatering capacity used	58%	59%	[%]
Additional (20m ³)** trucks		11	[trucks/d]
Additional Ammonia***-N		0.76 (+12%)	[t/d]
Additional COD		13.5 (+8%)	[t/d]

- * Baseline of 290 tones/d dry solids feed to digesters
- ** Based on deliveries 5 days per week for 52 weeks
- *** Based on waste containing 3% N

System limitations

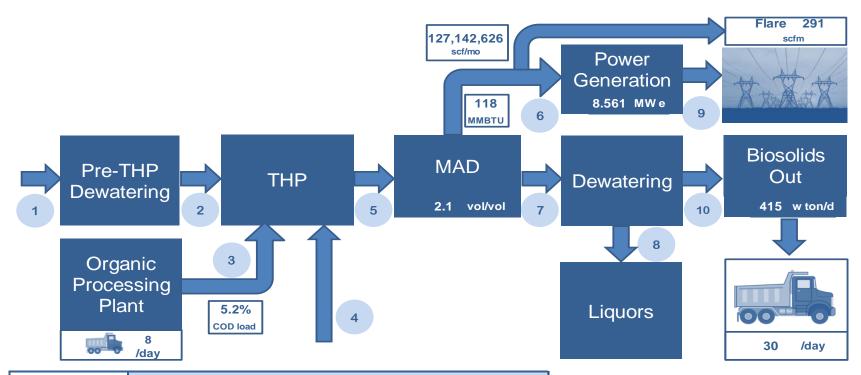
Quantity of waste required to:	wtpd	Trucks/d**
Require a 4 th turbine*	366	26
Decrease digestion retention time by 25%	1251	88
Increase digester loading to 8 kg VS/m ³ .d	501	36
Quantity proposed	150	11

- * Based on 85% availability
- ** Based on deliveries 5 days per week for 52 weeks

IMPACTS – TIP FEES, GAS & POWER PRODUCTION, CARBON VALUE, OPERATIONS AND SIDESTREAM TREATMENT COSTS

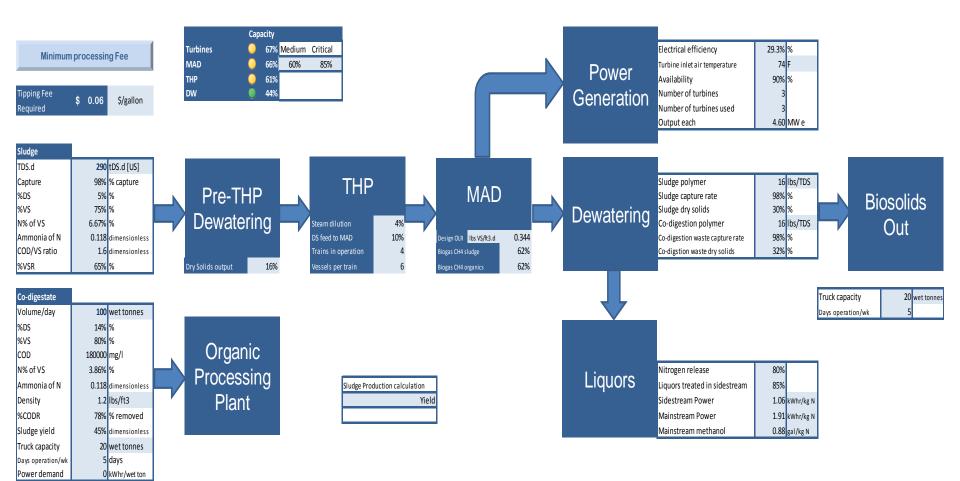
Value and Cost

Values

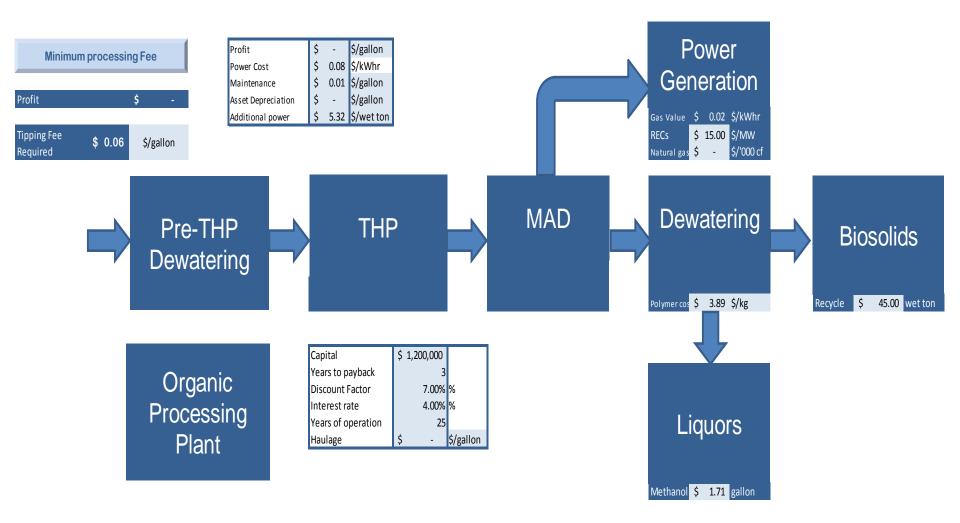

- Power: currently saves DC Water \$0.02/kwhr
- REC's: current value ~\$12/MWhr (in MD)
- Tip fee: need to negotiate

Costs

- Sidestream treatment based on existing process
 - \$9/wt
- Additional steam
 - \$1.50/wt
- Additional dewatering and hauling
 - May be a wash need to investigate further
- Total cost estimate \$575,000 / yr
- DC Water wants to break even or show positive cash flow in order to undertake this project



Technical Summary for Co – Digestion Model (DRAFT)



	Stream	1	2	3	4	5	6	7	8	9	10
	Name	Raw sludge	THP sludge feed	Organic Waste	Trim Water	MAD feed	Biogas	DW feed	Liquors	Power output	Biosolids output
TDSd	tDS.d [US]	290	284	14		298		135			133
%DS	%	5%	16%	14%		10%		4.5%			32%
%VS	%	75%	75%	80%		75%		51%			51%
Wet	gpm	1063	326	18		547		547	471		76
DS	lbs/hr	24167	23683	1167		24850		11290	226		11064
VS	lbs/hr	18125	17763	933		18696		5756	115		5641
COD	lbs/hr	28420		1658		30078			10707		
Trim Water	gpm				88	3					
Ammonia	lbs/hr	142.7	142.7	4.3		146.9		705.6	705.6		
Ammonia	mg/l	267	872	462		535		2618	2618		
Biogas	scfm						2903				
Biogas	MMBTU						118				
Power output	MW e									8.56	

Technical Inputs for Co – Digestion Model (DRAFT)

Financial Inputs for Co – Digestion Model (DRAFT)

Conceptual Schedule

Task Force Activities to be undertaken between now and 2018

- 1. Market Assessment
- 2. Continue R&D to define successful concept
- 3. 15dtpd Co-Digestion Demo
- 4. Full Scale Design
- 5. Construction
- 6. Start-up & operations

There is no such thing as waste, only wasted resources.

Chris Peot cpeot@dcwater.com