Task 13 –

Review of Version 2.3 Travel Demand Forecasting Model Methods, Scripts, and Potential Enhancements

presented to

TPB Travel Forecasting Subcommittee

presented by Cambridge Systematics, Inc. Dalia Leven, AICP

May 2011

Transportation leadership you can trust.

Task 13 Review of Version 2.3 Methods, Scripts, and Enhancements

- Review the Version 2.3 scripts and provide feedback on the process and the script architecture
- Review the potential for using CUBE Cluster to enhance model run times
- Consider the implications of converting the current TP+ TRNBUILD scripts to Public Transport (PT) application scripts
- Review the existing tolling methodology and potential enhancements
- Provide additional validation as needed

Review of Version 2.3 Scripts

- Reviewed scripts for Version 2.3 build 9
- Focus on three main areas
 - » Traffic Assignment
 - » Highway and Transit Skimming Process
 - » Feedback Mechanism

Review of Version 2.3 Scripts

- Review Findings
 - » Overall, the model process is very solid
 - » "As good as you get with batch files"
 - » CUBE Scenario/Application Manager
 - Graphical User Interface
 - Not necessary, although preferred by some
- Results and recommendations include
 - » General error checking
 - » Small efficiency improvements in congested time calculations
 - » Removal of some submodels from the feedback loop such as repetitive skimming of nonbus transit modes

CUBE Cluster

- CUBE Cluster makes use of parallel processing by using multiple cores in two ways
 - » Intrastep distributed processing splits a single step into groups for processing on multiple cores (i.e., zones 1-1000 on PC#1 and 1001-2000 on PC#2)
 - » Multistep distributed processing: splits independent model steps across multiple cores (i.e., trip generation on PC#1 and network skimming on PC#2)

CUBE Cluster (continued)

 CUBE Cluster distributed processing can be added fairly simply to existing model scripts

» TPB has developed methods to easily comment out distributed processing for users without access to Cluster

• CUBE Cluster licenses are relatively inexpensive

CUBE Cluster Results

- Tests by multiple parties indicate very substantial time savings are possible
 - » Sample highway assignment tested by CS showed 80 percent improvement with 8 cores (from 70 to 14 minutes)
 - » TPB tests presented at the May TFS meeting showed 31 percent improvement in full model run time with 4 cores (from 45 to 31 hours)
 - » Citilabs tests show over 90 percent improvement in a single assignment iteration with 8 cores (from 2 minutes to 20 seconds)
- Diminishing returns with additional cores

• TPB tests have recently encountered some issues with stability

- » Possible rounding issues with older file formats
- » Additional tests are ongoing

Transit Application Scripts

- Public Transport (PT) is the new multipath building program in Cube Voyager for modeling public transit systems
- PT includes several improvements over TRNBUILD
 - » Allows for definition of multiple transit user classes
 - » More advanced transit network builder
 - » Advanced methods for calculating wait time at transit stops
 - » Incorporation of transit capacity to reflect discomfort of standing or traveling in crowded conditions
 - » Better representation of complex fare systems
 - » Allows for circular and linear transit routes
 - » On screen tracing of transit paths
 - » Additional tools for analyzing loaded transit networks

Transit Application Scripts

- Of the 11 large MPOs surveyed who are using Cube Voyager, only 3 report using PT and one uses both PT and TRNBUILD
 - » Houston-Galveston Area Council
 - » San Juan MPO
 - » Northeast Ohio Areawide Coordinating Agency
 - » SERPM in the Miami region uses both TRNBUILD and PT
 - PT for network coding and generating access connectors
 - TRNBUILD for path building, skimming, and assignment

Tolling Operations

- Existing tolling in the Washington Metropolitan region takes several forms
 - » Fixed price by vehicle type
 - » Variable price by time of day
 - » Tolling on all lanes
- Tolling operations may take different forms in the future
 - » Individual nonbarrier separated toll lanes
 - » Barrier separated toll lanes
 - » Reversible toll lanes

Tolling Policies

- Tolling policies can also take many forms, reflecting the needs and priorities of the region
 - » Flat/fixed toll rates
 - » Differential tolls by vehicle type
 - » Differential tolls by time of day
 - » Dynamic congestion pricing
 - » High Occupancy/Toll (HOT) tolling
 - » Mix-and-match

Toll Modeling Methodology

Toll costs are inputs to several model components

- » Destination choice
- » Mode choice
- » Highway assignment

Modeling methodology should be able to account for

- » Different tolling operations
- » Different tolling policies
- » Different values of time associated with varying income levels

Toll Modeling Methodology

Potential Areas for Investigation

- » Obtain data for the region regarding willingness to pay tolls for better calibration
- Calculation of congestion pricing linked to capacity and volume instead of time or speed (current TPB application)
- » Maintain tolling as part of the route choice element in the highway assignment model
- » Incorporate multiple income groups through all model steps
- » Toll choice model
 - After mode choice and preassignment
 - Impact access and egress on toll facilities

Miscellaneous Model Validation Assistance

Senior level resource assistance

- » Trip generation trips per household reasonableness checks
- » VMT validation
- » Distributed processing issues

