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MEMORANDUM 

TO: Metropolitan Washington Air Quality Committee (MWAQC) 

FROM: Julie Kimmel, Air and Climate Public Advisory Committee (ACPAC) Chair 

CC: ACPAC Members 

SUBJECT: Recommendations on Regional Action to Address Air Quality Risks Linked to Climate 

Change 

DATE: May 20, 2024 

As the 18 members of ACPAC, representing a diversity of communities and professions in DC, 

Maryland, and Virginia, we want to communicate in the strongest terms our concern about the 

planetary emergency that is climate change. The world has been seeing ever-increasing 

temperatures in the atmosphere and in the oceans, with worsening impacts on natural ecosystems 

and human societies and disproportionate harm to low-income and marginalized communities. Here 

in the metropolitan Washington region, we have been burdened with more frequent and extreme 

flash flooding, drought, and heat waves; and last year, many of us were stunned to experience Code 

Red air pollution events resulting from record-shattering wildfires across Canada. The global average 

temperature increase is now uncomfortably close to the 1.5°C threshold acknowledged in the Paris 

Climate Agreement that separates us from potentially catastrophic impacts. (Please see the three 

attachments.) 

We acknowledge the important air emissions reductions and resulting air quality improvements that 

MWAQC has presided over in recent years. At the same time, we believe that nascent, climate-driven, 

external factors like wildfire smoke and more frequent and intense episodes of hot, humid, and 

stagnant atmospheric conditions may increasingly reverse air quality gains. The metropolitan 

Washington region is currently allowed to exclude exceptional events like the 2023 wildfires from air 

quality monitoring data and thus avoid responsibility for any non-attainment of air quality standards 

brought about by such events. Furthermore, climate change may exacerbate the unhealthful and 

unjust impacts of air pollution on over-burdened communities in our region.   

ACPAC has sent a parallel memo to CEEPC with climate-specific recommendations. The following are 

our key recommendations to MWAQC on air quality action: 

1. MWAQC should account for potential impacts of climate change, including increases in smog-

promoting heat waves and exceptional air pollution sources such as wildfires, in its air quality

planning and then lead the region’s local governments in reducing pollutant emissions

sufficiently to offset the impacts of those external factors.

2. MWAQC should work harder to alleviate air pollution hotspots that harm the health of

environmental justice communities. In support of this, MWAQC should do more to monitor air

pollution in these communities, and provide more effective alerts and early warning for them.
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3. Any new urban or industrial development will make it even more challenging to meet our 

region's clean energy demand and air quality standards (as well as our GHG emission 

reduction targets). Thus, regional land-use planning and permitting need to consider and 

firmly address the impacts of proposed projects on our ability to achieve climate, air quality, 

and justice and equity goals.  

 

4. MWAQC needs to continuously track the impacts of wildfires and other external factors on 

regional air quality, and make adjustments in its work as necessary in order to better protect 

public health.  

 

Thank you for hearing our concerns and considering our recommendations. We look forward to 

hearing back on next steps and would be glad to provide further input. 

 

Attachments (3) 
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bDepartment of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
cSchool of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
dCenter for Environmental Politics and School of Interdisciplinary Arts and Sciences, University of Washington, Seattle, WA 98195, USA
eAfrican Climate and Development Initiative and FitzPatrick Institute, University of Cape Town, Cape Town 7700, South Africa
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Abstract
Human development has ushered in an era of converging crises: climate change, ecological destruction, disease, pollution, and 
socioeconomic inequality. This review synthesizes the breadth of these interwoven emergencies and underscores the urgent need for 
comprehensive, integrated action. Propelled by imperialism, extractive capitalism, and a surging population, we are speeding past 
Earth’s material limits, destroying critical ecosystems, and triggering irreversible changes in biophysical systems that underpin the 
Holocene climatic stability which fostered human civilization. The consequences of these actions are disproportionately borne by 
vulnerable populations, further entrenching global inequities. Marine and terrestrial biomes face critical tipping points, while 
escalating challenges to food and water access foreshadow a bleak outlook for global security. Against this backdrop of Earth at risk, 
we call for a global response centered on urgent decarbonization, fostering reciprocity with nature, and implementing regenerative 
practices in natural resource management. We call for the elimination of detrimental subsidies, promotion of equitable human 
development, and transformative financial support for lower income nations. A critical paradigm shift must occur that replaces 
exploitative, wealth-oriented capitalism with an economic model that prioritizes sustainability, resilience, and justice. We advocate a 
global cultural shift that elevates kinship with nature and communal well-being, underpinned by the recognition of Earth’s finite 
resources and the interconnectedness of its inhabitants. The imperative is clear: to navigate away from this precipice, we must 
collectively harness political will, economic resources, and societal values to steer toward a future where human progress does not 
come at the cost of ecological integrity and social equity.

Keywords: environmental policy, global economics, climate change, biodiversity loss, socioeconomic inequality
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Climate change and global sustainability
It is unequivocal that human influence has warmed the atmos
phere (1) and the climate crisis is now well underway. Global 
greenhouse gas (GHG) emissions set a new record in 2023 (2), rising 

an estimated 1.1%, the third annual increase in a row since the 
COVID-19 recession. With a record 1.45 ± 0.12°C of anthropogenic 
global heating reached in 2023 (3), we already see nearly one-third 
of the world population exposed to deadly heat waves (4), a 9-fold 
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increase in large North American wildfires (5), record-setting 
regional-scale megadrought (6), the Antarctic ice sheet losing 
nearly 75% more ice between 2011 and 2020 than it did for the pe
riod 2001 and 2010 (7), animal and plant extinctions projected to 
increase 2- to 5-fold in coming decades (8), deepening genetic di
versity loss (9), and a weakened global ecosystem (10) pushed to 
its breaking point (11).

Scientists suspect the last several years have been warmer 
than any point in more than 125,000 years (12). Yet demand for 
oil climbed to over 100 million barrels per day in 2023, the highest 
in history (13). Despite decades of global investment in clean en
ergy (14), fossil fuels still provide over 80% of global energy use 
(15), a figure that has not changed for decades. In the absence of 
climate action, our world is on course (16) to heat a blistering 
3°C, perhaps more (17), potentially displacing one-third of hu
manity (18).

One study (19) suggests that ∼9% of people (>600 million) al
ready live outside the human climate “niche.” Another concludes 
that, compared with people born in 1960, children born today will 
experience 7.5 times as many heatwaves, 3.6 times as many 
droughts, 3 times as many crop failures, 2.8 times as many river 
floods, and 2 times as many wildfires (20). Studies (21) forecast 
climate-related extinction of 14–32% of macroscopic species in 
the next ∼50 years, including 3–6 million animal and plant spe
cies, even under intermediate climate change scenarios. With 
continued warming, the frequency of wildfires will increase over 
74% of the global landmass by the end of this century (22). Such 
assessments are conservative as they are based on projections 
from climate models that may not capture some important proc
esses through which human-caused heating amplifies persistent 
weather extremes (23, 24).

Of the 40 leading economies, all of which agreed in the 2015 
Paris Climate Accord to take all necessary actions to stop global 
heating below 1.5°C, not one nation is on track to do what they 
promised (25). Globally, current climate policies are incompatible 
with limiting global heating to 1.5°C (26). The remaining budget 
for a 50% chance of keeping warming to 1.5°C is approximately 
250 GtCO2 as of January 2023, now equal to around 6 years of cur
rent emissions (27). The energy plans of countries responsible for 
the largest GHG emissions would lead to 460% more coal produc
tion, 83% more natural gas, and 29% more oil in 2030 than is com
patible with limiting global heating to 1.5°C, and 69% more fossil 
fuels than is compatible with the riskier 2°C target (28).

The market cost of oil, coal, and natural gas is distorted by subsid
ies and does not include negative externalities related to pollution, 
climate change, healthcare, and others (29). Worse, the false prom
ise (30) and widespread allure of unregulated quick fixes, such as 
“net-zero” contracts that lack monitoring, auditing, and verification, 
threaten to derail even the best-intentioned commercial and gov
ernmental plans for climate stabilization (31). Investigations suggest 
that the great majority of products transacted on carbon offset mar
kets remove very little GHG from the atmosphere (32), and models 
indicate that even direct removal of atmospheric CO2 does not re
cover former environmental conditions crucial to food and water se
curity or ecosystem restoration (33).

We do not promote a “doom and gloom” philosophy regarding 
the future of human civilization. We are optimistic that humanity 
can correct the unsustainable pathway that we are on. Later in this 
review, we describe necessary steps in this direction. However, we 
do take an objective and realistic stand on the issue of sustainabil
ity. The realities described here quantify a severe and immediate 
threat to human health and well-being. They emphasize the im
perative for a rapid, sweeping reduction in GHG emissions, and 

highlight stubborn barriers that impede progress. Developed na
tions, emerging economies, and commercial entities must invest 
in rapid decarbonization; correct market distortions favoring fossil 
fuels; and avoid the spurious trap of false “net-zero” offsets as an 
excuse to continue polluting the atmosphere.

Imperialism, overpopulation, and resource 
extraction
Around the world, a growing number of entities and environmen
tal activists are taking action (34). As of December 2022, there 
have been 2,180 climate-related legal cases filed in 65 jurisdic
tions, including international and regional courts, tribunals, qua
sijudicial bodies, or other adjudicatory bodies. Lawsuits related to 
climate change have more than doubled over the last 5 years as 
litigants see courts as a way to enhance (or delay) climate action 
(35). Children and youth, women’s groups, local communities, 
and Indigenous Peoples, among others, are taking a prominent 
role in bringing these cases and driving climate change govern
ance reform around the world. This “climate justice movement” 
seeks to extend the principles of human rights and environmental 
justice by arguing that future generations have a birthright to a 
safe climate capable of sustaining genuine human development 
on a healthy and resilient planet (36).

Yet, for hundreds of years, various manifestations of imperial
ism, such as slavery, settler colonization, economic and cultural 
dominance, neocolonialism (37), and the forces of globalization, 
have promoted a mindset of class privilege and wealth. 
Motivated by profit, the mechanisms of industrial capitalism 
have pursued relentless resource depletion achieved by subjuga
tion of local communities, erasure of Indigenous knowledge, and 
unsustainable plunder of the natural world (38).

Modern imperialism is embodied by industrial capitalism, 
which prioritizes resource extraction and maximizing profit. 
This paradigm is deeply embedded in the fabric of global affairs, 
influencing international trade, political dynamics, and the eco
nomic frameworks of nations (39). The persistent reliance on 
extractive economic practices continues to be a significant obs
tacle to making critical progress in decarbonization, conserving 
natural resources, and ensuring social equity. For instance, des
pite decades of international commitments to end deforestation, 
around 4.1 M hectares of primary tropical rainforest was lost glo
bally in 2022—an increase of 10% over 2021—producing 2.7 Gt of 
CO2 emissions, equivalent to the annual fossil fuel emissions of 
India (40). Most modern socioeconomic systems still follow ex
tractive rules of exploitation and trade, and ignore natural rates 
of resource renewal, failing to consider that the end result is cata
strophic (41).

Global population growth amplifies the damage wrought by in
dustrial capitalism. On 15 November 2022, the world’s population 
reached 8 billion people. Human population is expected to in
crease by nearly 2 billion in the next 30 years, and could peak at 
nearly 10.4 billion in the mid-2080s (42). Cambridge economist 
Sir Partha Dasgupta developed a rigorous approach to the ques
tion “What is optimal human population?” (43). His theory relates 
population, consumption, and resource capacity, concluding that 
an optimal global population lies between 0.5 and 5 billion. This 
theory implies that Earth is already overpopulated relative to eco
logical carrying capacity. With every additional person added to 
the planet, wild habitats are disturbed or destroyed by urbanism, 
agricultural activities, and resource consumption, with humanity 
demanding more than what the biosphere can sustainably 
provide.
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Dasgupta highlights the critical connection between our econ
omies, livelihoods, and well-being with the Earth’s resources. He 
argues that current global demand for natural resources sur
passes its capacity to supply, driven by factors like population 
growth and consumption patterns. This overuse threatens bio
diversity and ecosystem services. To safeguard our prosperity 
and the environment, we must rethink our approach to economic 
success. Key recommendations include increasing nature’s cap
acity and ensuring our demands on nature stay within sustainable 
limits. This involves investing in natural capital, revising econo
mic metrics, transforming institutions (especially finance and 
education), and empowering citizens. Legitimate sustainability 
is vital for achieving a long-term balance between population, 
economic growth, and the environment. Future generations’ well- 
being hinges on how we manage economic, social, and natural re
sources today. Urgent action is required to address these intercon
nected challenges.

Given the current state of the ecosphere, a 25% increase in 
population and projected doubling of economic activity by 
2050 (44) may drive major ecological regime shifts (i.e. forest to 
savannah, savannah to desert, thawing tundra, and others) 
well before 2080. Nature may impose its own population correc
tion before standard projections are realized (45). Actions to slow 
and reverse population growth are critical (46). These include 
empowering women, investing in girls’ education, strengthening 
healthcare systems, and implementing social welfare programs 
that create job opportunities, reduce poverty, and improve living 
standards.

Human population growth, increased economic demands, ris
ing heat, and extreme weather events put pressures on ecosys
tems and landscapes to supply food and maintain services such 
as clean water. Studies show that ecosystems threatened by sud
den regime shifts are at greater risk of collapse than previously 
thought (47). Researchers warn that more than a fifth of ecosys
tems worldwide, including the Amazon rainforest, are at risk of 
a catastrophic breakdown within a human lifetime.

The United Nations’ Sustainable Development Goals (SDGs), a 
suite of 17 objectives with 169 targets established in 2015 for 
achievement by 2030, face a grim forecast: current trends suggest 
none of the goals and merely 12% of the targets may be realized 
(48). This shortfall underscores the urgent need to dismantle 
the entrenched model of resource extraction and wealth concen
tration, advocating for a paradigm shift toward genuine sustain
ability and resource regeneration. Such a transformation is 
imperative to reverse the tide of biodiversity loss due to overcon
sumption and to reinstate the security of food and water supplies, 
which are foundational for the survival of global populations.

Global economics and values
Convergence of worldwide trends threatens safe and sustainable 
human development: accelerating impacts from climate change 
(49), biodiversity loss (50) caused by unsustainable consumption 
(51), extractive agriculture, natural resource exploitation (52) 
and limitations, emergent disease (53), pervasive pollution (54), 
and socioeconomic injustice (55). To secure a safe future for hu
manity, global economics and values must protect the well-being 
of the natural world. This requires understanding the impacts, in
tersections and feedbacks of these global emergencies, as well as 
solutions to ensure a livable planet (56). These emergencies, pro
mulgated by extractive policies (57), human population growth, 
and modern imperialism (58), overlap in ways that amplify nega
tive outcomes (Fig. 1). If successive governments treat these issues 

in isolation, hesitate, or formulate shallow responses, the fallout 
may be catastrophic. Without immediate action, we risk entering 
a malignant era of global distress and suffering characterized 
by disease, thirst and hunger, impoverishment, and political 
instability.

The cocoon of wealth enjoyed by developed nations belies the 
suffering and misery many low latitude and semiarid communi
ties already endure in tenuous heat and drought conditions. 
Consider the Northern Hemisphere summer of 2023. Over 80% 
of the global population experienced climate change-driven heat 
in the month of July (59) (Fig. 2). It featured 7 consecutive months 
of record-shattering global temperature driven by a combination 
of a moderately strong El Niño and a decrease of Earth’s albedo 
(equivalent to an increase of atmospheric CO2 from 420 to 
530 ppm) (60). Extreme heatwaves swept many parts of the world. 
Sea surface temperatures leapt to record highs. Antarctic sea ice 
was far below average. Record wildfires burned for months de
stroying tens of millions of acres and produced continental-scale 
public health crises in air quality, and tens of thousands of tem
perature records around the world were broken. Without human- 
induced climate change these events would have been extremely 
rare (61).

It is past time to build a new era of reciprocity with nature that 
redefines natural resource economics. The ecological contribu
tions of Indigenous Peoples through their governance institutions 
and practices are gaining recognition and interest. Indigenous sys
tems of land management encompass a holistic approach that 
values sacred, ethical, and reciprocal relationships with nature, 
integrating traditional knowledge and stewardship principles to 
sustainably manage land and water resources. Indigenous land 
management challenges conventional power structures and in
troduces innovative solutions to environmental issues, especially 
in the context of climate change.

Indigenous Peoples exercise traditional rights over a quarter of 
Earth’s surface, overlapping with a third of intact forests and in
tersecting about 40% of all terrestrial protected areas and eco
logically intact landscapes. These lands typically have reduced 
deforestation, degradation, and carbon emissions, compared 
with nonprotected areas and protected areas (62). Beyond western 
ideas of quarantining land for conservation, Indigenous land 
management involves a mix of active land management, biomi
micry, and conservation to maximize nutrition, food and water 
security, carbon sequestration, biodiversity, and ecosystem res
toration (63). These qualities offer beneficial feedbacks that in
crease human health and resiliency, build social equity, and 
provide for the needs of future generations.

We suggest that an Indigenous worldview, that of kinship with 
nature, should define sustainable practices. Laws that establish 
legal rights for nature have reached a critical point at which 
they may either be normalized or marginalized (64); this progress 
must be sustained. For instance, Māori in New Zealand have suc
cessfully asserted sovereignty to grant legal personhood to the 
Whanganui River and Te Urewera National Park. This reflects 
Māori worldviews and recognizes their governance, allowing “na
ture” to have a legal voice. In the US, the Menominee Forest 
Management Reserve, recognized as a best practice, is driven by 
the Menominee vision and worldviews. It operates under the 
recognition of Menominee sovereignty and decision-making 
authority.

Nations must build on these regenerative practices by elimin
ating environmentally harmful subsidies (65), and restricting 
trade that generates pollution and unsustainable consumption. 
Studies (66) indicate the global economy must achieve absolute 
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decoupling (in which resource impacts decline in absolute terms) 
(67) if we are to eliminate “ecological overshoot”a (68).

In the words of coauthor Jay Bowen, Upper Skagit Elder, “We are 
all Indigenous to this Earth. We are one family.” The authors of 
this review believe that humanity stands at an inflection point 
in human history that will determine many characteristics of fu
ture life on Earth (Fig. 3). Continued failure to integrate these prob
lems in climate resilient development and regenerative practices 
risks the stability of human communities and natural systems. 
Heads of state must recognize the existence of a global emergency 
(56), treat these crises as intertwined issues, and apply the consid
erable power of the economy toward restoring a livable planet and 
an equitable and just socioeconomic system before climate in
stability and ecological regime shift are beyond our control. 
Later in this paper, we offer specific suggestions for implementing 
these changes.

Climate realities and the road to action
In April 2023, CO2 levels measured at Mauna Loa Observatory in 
Hawai‘i reached an annual peak of 424.8 ppm, more than 50% 

greater than the preindustrial level of 278 ppm. In the first decade 

of measurement at Mauna Loa (1959–1968), the average annual 

growth rate was 0.8 ppm per year. The average annual growth 

rate over the most recent decade (2014–2023) was 3 times that 

amount, 2.4 ppm per year, the fastest sustained rate of increase 

in 65 years of monitoring (69).
More than half of all industrial CO2 emissions have occurred 

since 1988 and 40% of the CO2 we emit today will still be in the at

mosphere in 100 years, about 20% will still be there in about 1,000 

years (70). The last time CO2 levels were this high was the Pliocene 

Climatic Optimum, 4.4 milion years ago, when Earth’s climate was 

radically different; global temperature was 2–3°C hotter, beech 

Fig. 1. Global population growth, imperialism, and an economic model based on extractive rules of exploitation and trade that ignores natural rates of 
resource renewal, set the stage for a convergence of several worldwide trends that threaten safe and sustainable human development: accelerating 
impacts from climate change, pollution, social inequality, biodiversity loss, and disease.
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trees grew near the South Pole, there was no Greenland ice sheet, 
no West Antarctic ice sheet, and global sea level was as much as 
25 m higher than today (71).

Atmospheric methane (CH4) growth has surged since 2020. 
Averaged over 2 decades, the global heating potential of CH4 is 
80 times greater than CO2. The largest sources of atmospheric 

CH4 are wetlands, freshwater areas, agriculture, fossil fuel extrac
tion, landfills, and fires. In 2023, atmospheric CH4 exceeded 
1,919 ppb, on track to triple the preindustrial level of 700 ppb by 
2030. Carbon isotopic signatures reveal microbial decomposition 
of organic matter as the major source of CH4 emissions, indicating 
that natural CH4-producing processes are being amplified by 

Fig. 2. In 2023, astonishing new records were set in 2 m surface temperature, sea surface temperature (SST), and global sea ice extent (2 m Temperature 
World, and SST World after Climate Reanalyzer, Climate Change Institute, University of Maine, https://climatereanalyzer.org/; Global Sea Ice Extent after 
https://zacklabe.com/global-sea-ice-extent-conc/).
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climate change itself (72). Is this a sign that global heating is shift
ing beyond our control?

Under an intermediate scenario (SSP2-4.5), GHG emissions are 
very likely to lead to heating of 1.2–1.8°C in the near term (2021– 
2040), 1.6–2.5°C in the midterm (2041–2060), and 2.1–3.5°C in the 
long term (2081–2100) (73). As of November 2023, 145 countries 
had announced or are considering net-zero targets, covering close 
to 90% of global emissions (74). Among these are China, EU, USA, 
and India, who jointly represent more than half of global GHG 
emissions. However, net-zero evaluations for G20 countries and 
selected other countries as of November 2023 show that most net- 
zero targets are formulated vaguely and do not yet conform with 
good practices.

Even as the vast majority of countries pledged to slash their cli
mate emissions, their own plans and projections put them on track 
to extract more than twice the level of fossil fuels by 2030 than would 
be consistent with limiting heating to 1.5°C, and nearly 70% more 
than would be consistent with 2°C of heating (28). The world has a 
67% chance of limiting warming to 2.9°C if countries stick to the na
tionally determined contributions (NDCs) made under the 2015 Paris 
agreement (26). Emission cuts of 14 GtCO2 or 28% are needed by 2030 
to keep within 2°C of warming. A reduction of more than 40% or 
22 GtCO2 is needed for the 1.5°C threshold to be realistic.

The world now only has a 14% chance of limiting warming to 
the 1.5°C goal, even if countries honor all NDCs. Limiting warming 
to 1.5°C would require global emission reduction of 8.7% per year. 
Even with COVID-19 lockdowns limiting manufacturing, ground 
and air transportation, and other economic activities during 
2020, emissions dropped by only 4.7% (26).

Many countries’ net-zero pledges “are not currently considered 
credible” (26). No G20 country is reducing emissions at a pace con
sistent with their net-zero targets. The lifetime emissions of cur
rent and planned oil and gas fields and coal mines is 3 and a 
half times greater than the carbon budget needed to hold tem
perature increase to 1.5°C. It would exhaust almost all the budget 
needed for 2°C.

Under current national climate plans, emissions are expected to 
rise 9% above 2010 levels by the end of this decade even if NDCs are 
fully implemented. GHG emissions would fall to 2% below 2019 

levels by 2030. Although these numbers suggest the world will see 
emissions peak this decade, that’s still far short of the 43% reduc
tion against 2019 levels that the Intergovernmental Panel on 
Climate Change (IPCC) says is needed to stay within the 1.5°C target 
envisioned by the Paris Agreement (26).

Emission reductions of 43% are needed by 2030 to keep 1.5°C in 
play. But since the 26th Conference of Parties (COP) in 2021, na
tions have shaved just 1% off their projected emissions for 2030, 
and COP 28 in 2023 ended with no increase in ambition. 
Seventy-five percent of nations that have set targets to limit 
GHG emissions have enshrined them in law or policy documents, 
but the plans needed to implement those pledges are lacking in al
most all cases (74), and policies based on “net-zero” actions no lon
ger have credibility. Current pledges would lead to long-term 
global heating of 2.4–2.6°C, but on-the-ground policies put the 
world on track for heating approximately 3°C above preindustrial 
levels. Avoiding dangerous levels of heating requires systemic 
transformation to energy, waste, transportation, agriculture, 
and industry.

Climate indicators show that global heating reached 1.14°C 
averaged over the past decade, 1.26°C in 2022, and 1.45 ± 0.12°C 
over the 12-month period of 2023. In 2023, some 7.3 billion people 
worldwide were exposed, for at least 10 days, to temperatures in
fluenced by global warming, with one-quarter of people facing 
dangerous levels of extreme heat. Heating is increasing at an un
precedented rate of over 0.2°C per decade (perhaps faster) caused 
by a combination of annual GHG emissions at an all-time high of 
54 ± 5.3 GtCO2e over the last decade, and reductions in the 
strength of aerosol cooling (17). The Northern Hemisphere sum
mer of 2023 revealed a shift in climate indicators marking a new 
level of intensity. “There has never been a summer like this in re
corded history: shocking ocean heat, deadly land heat, unprece
dented fires and smoke, sea ice melting faster than we’ve ever 
seen or thought possible (75).”

Climate outlook
Planned cuts in global emissions are inadequate for protecting 
human security and Earth’s remaining biodiversity. Under 

HUMAN
VALUES

Promote reproductive healthcare, female equity, and education

Correct market distortions favoring fossil fuels

Relieve debt to accelerate clean energy

Social equity
Reciprocity with nature

Rapid decarbonization

Implement regenerative practices

Environmental justice

Socio-economic inequality

Climate changeBiodiversity lossPollu t i o n
Disease

Fig. 3. The stability of human communities and natural ecosystems is at risk under the shocks and stresses of five planetary emergencies: socioeconomic 
inequality, climate change, biodiversity loss, pollution, and disease. Unless human values shift dramatically and soon, the resulting damage to the 
natural world will likely be catastrophic, with long-lasting consequences for species and ecosystems, and devastating upheavals for humanity. A 
systemic change in human values is needed that focuses on Earth-centered governance, and entails a transition in collective values, behaviors, and 
institutional practices to prioritize long-term ecological health and social well-being over immediate gains.
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implemented national policies alone, dangerous heating is only 
avoidable with a massive rollout of GHG removal technologies and 
large-scale ecosystem restoration that is nowhere in evidence today. 
For instance, even the planned investment of $3.5B to develop four 
“direct air capture” hubs under the 2022 US Bipartisan 
Infrastructure Law will only remove the equivalent of 13 min of glo
bal emissions at full annual capacity (30). Planting 8 billion trees, one 
for every person on Earth, would remove the equivalent of only 43 h 
of global emissions after the trees reached maturity decades from 
now, and the change in albedo related to the new ground cover in
creases the complexity of expected benefits.

The only honest strategy for today is radical, immediate cuts in 
fossil fuel use. Only after emissions have begun a rapid downward 
trajectory should investments in carbon removal (the engineering 
for which has yet to be defined or validated) occur with speed and 
at scale (76). Even this will be met with ocean outgassing of CO2 

such that climate recovery will see a long delay (33).
This urgency is underscored by the fact that current emissions 

are underreported, and decreasing natural carbon storage makes 
limiting global temperatures even more challenging. Global emis
sions are as much as 3 times higher than reported (77) with 70% 
underreporting of energy-related CH4 emissions alone (78). In 
addition, the terrestrial biome, which sequesters about 31% of an
thropogenic CO2 emissions, has already neared, and in places 
crossed, a photosynthetic thermal maximum beyond which ter
restrial carbon storage will grow increasingly impossible (79). 
For instance, global carbon loss from tropical forests has doubled 
in the last 20 years (80), and the Brazilian portion of the Amazon 
Forest has become a net GHG source (81). Eighty-three percent 
of tropical forest carbon loss is driven by agriculture, suggesting 
that strategies to reduce deforestation have failed, and that car
bon emissions from forest destruction are undercounted (82).

The United Nations estimates that 1.84 billion people world
wide, or nearly a quarter of humanity, were living under drought 
in 2022 and 2023, the vast majority in low- and middle-income 
countries (83). Megadrought projected for the year 2100 could 
strike up to 50 years earlier according to models (84). Global heat
ing risks food (85) and water (86) availability with human popula
tions in conditions of extreme to exceptional drought (87) 
doubling by 2100 (88).

Climate change threatens natural ecosystems (89), human se
curity (90), livable conditions for communities (91), and the stabil
ity of 1/3 of the human population (18). Under current levels of 
heating, people are 15 times more likely to die from extreme wea
ther than in years past, and 3.3 billion human lives are “highly vul
nerable” to climate change (92). At 2°C heating, up to 3 billion 
people may suffer chronic water scarcity. Today, 1 in 3 people 
are exposed to deadly heat stress. This number is projected to in
crease up to 75% by the end of the century.

By 2050, over 300 million people living on coasts will be exposed 
to flooding from sea level rise (93). Forced to migrate, the impacts 
of these displaced communities will ripple through the larger 
population. Climate change drives the spread of disease in people, 
crops, domesticated animals, and wildlife. Even if heating is held 
below 1.6°C, 8% of today’s farmland will be unfit to produce food. 
Declining food production and nutrient losses will result in severe 
stunting affecting 1 million children in Africa alone and cause 183 
million additional people to go hungry by 2050 (92).

Abrupt change
Earth’s biophysical systems are shifting toward instability (94), 
perhaps irreversibly (95). The IPCC has identified 15 Earth system 

components with potential for abrupt destabilizing change, in
cluding ice, ocean, and air circulation; large ecosystems; and pre
cipitation. These systems are the pillars of life that permit stable 
plant, animal, and microbial communities, food production, clean 
water and establish the conditions for safe human development. 
However, these systems may be characterized by threshold be
havior. That is, they appear to remain stable as global tempera
ture rises, but at a certain level of heating, they may “tip” into a 
fundamentally irreversible new state (96).

As Earth retains heat, ice melt accelerates (97), especially in the 
Arctic which is heating nearly 4 times faster than the global aver
age (98). Arctic sea ice is declining (99), and the transition from a 
snow- to rain-dominated Arctic in the summer and autumn 
may occur as early as 2040, with profound climatic, ecosystem, 
and socioeconomic impacts (100). The Greenland Ice Sheet is vul
nerable to ice loss due to melt-elevation feedback (101), and 
Greenland is losing ice 7 times faster than in the 1990s (102). 
Antarctic melting has tripled in the past 5 years (103), and ice shelf 
collapse may lead to amplified sea level rise (104, 105).

According to one study, if temperatures rise by 1.5°C, the loss of 
four biophysical systems will become “likely” and loss of an add
itional six will be “possible.” Loss of 13 biophysical systems will 
be either “likely” or “possible” if the planet warms by 2.6°C, as ex
pected under current climate policies (94). Emerging changes such 
as deep ocean heating (106), marine stratification (107), declining 
marine vertical circulation (108), and sea level rise (109) will con
tinue for centuries even if net-zero emission targets are reached. 
The Intergovernmental Panel on Climate Change Assessment 
Report 6, Working Group I (110) projects possibly abrupt and irre
versible change in permafrost carbon, West Antarctic ice sheets 
and shelves, and ocean acidification and deoxygenation. These 
changes could unleash feedback loops that place climate impacts 
beyond our control (111).

Oceans
The world’s oceans face irreversible impacts from climate change, 
with heating, acidification, stratification, and loss of dissolved 
oxygen posing high costs for marine ecosystems (112). Ocean 
heating has intensified (113), with the Southern Ocean taking up 
most of the excess heat generated by anthropogenic activities 
(114). These changes affect marine species distributions, interac
tions, abundance, and biomass. Combined with other stressors 
like pollution, they are putting marine biodiversity and its societal 
benefits at risk (115).

Amplified by global heating (116), marine biodiversity is being 
decimated by more than 440,000 industrial fishing vessels around 
the world that are responsible for 72% of the world’s ocean catch. 
Over 35% of the world’s marine fishery stock is overfished and an
other 57% is sustainably fished at the maximum level (117). One 
study showed that more than 90% of the world’s marine food sup
plies are at risk from environmental changes such as rising tem
peratures and pollution, essential to over 3.2 billion people. Top 
producers like China, Norway and the United States face the big
gest threat (118). Marine heatwaves (119) are increasing with 
negative impacts on marine organisms and ecosystems. Marine 
coastal biodiversity is at risk, with over 98% of coral reefs pro
jected to experience bleaching-level thermal stress by 2050 (120).

Relative to the period 1995–2014, global mean sea level is con
servatively projected to rise 0.15–0.29 m by 2050, and 0.28–1.01 m 
by 2100 (109). Higher rise would ensue from disintegration of 
Antarctic ice shelves and faster-than-projected ice melt from 
Greenland (121). On multiple occasions over the past 3 million 
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years, when temperatures increased 1–2°C, global sea levels rose 
at least 6 m above present levels (122). Sea level rise will flood toxic 
waste sites, cesspools and septic systems, municipal dumps, and 
polluted groundwater. In many cases, communities of color will 
be first to experience health impacts (123).

Ocean pollution affects marine species and people who depend 
on them. Toxic metals, plastics, manufactured chemicals, petrol
eum, urban and industrial wastes, pesticides, fertilizers, pharma
ceutical chemicals, agricultural runoff, and sewage are the most 
detrimental and persistent pollutants (124). More than 80% of 
marine pollutants originate from land-based sources, reaching 
the oceans through rivers, runoff, and atmospheric deposition. 
Pollution is heaviest in coastal waters, especially in low- and 
middle-income countries (125).

Toxic metals such as mercury, lead, and cadmium accumulate 
in marine animals, causing health problems in fish species and dis
rupting endocrine systems in their human consumers (126). Plastics 
take hundreds of years to degrade, breaking down into microplas
tics that are ingested by fish, humans, and other organisms (127). 
Manufactured chemicals such as polychlorinated biphenyls and di
oxins are environmentally persistent toxins that accumulate in the 
tissues of marine animals, disrupting hormonal systems (128). 
Urban and agricultural runoff, and sewage contain pathogens 
(129), heavy metals, and organic compounds that harm marine an
imals and cause human health problems. Nitrogen pollution also 
results in toxic algal blooms and oxygen-depleted dead zones 
(130). The equity and justice implications of this massive problem 
have been largely overlooked or downplayed (131).

Terrestrial biome
Tropical forests now emit more carbon than they are able to ab
sorb from the atmosphere as a result of the dual effects of defor
estation and land degradation (132). Rich-nation demand (133) for 
lumber, minerals, beef, and animal feed outside their own borders 
undermine attempts to mitigate climate change (134). Demand 
for food, feed, fiber, minerals, and energy is resulting in whole for
ests being clear-cut. CO2 emissions from boreal forest fires have 
reached a new high, producing nearly 1/4 of the total global CO2 

emissions from wildfires (135). Only 40% of remaining forests 
have high ecosystem integrity (136). Forests are degraded (137) 
by drought, pests, and wildfire related (138) to climate change.

Forest loss sacrifices soil biodiversity and integrity to oxidation, 
dehydration, and heating, transforming soil into a persistent 
source of CO2 emission (139). Only 2.9% of Earth’s land remains 
ecologically intact (140). Essential ecosystems are disappearing, 
and many species are at risk of extinction (141). Anthropogenic ex
tinction rates are driving Earth’s sixth mass extinction (142). Each 
year, the world consumes more than 92 Gt of materials—biomass 
(mostly food), metals, fossil fuels, and minerals. This figure is 
growing at the rate of 3.2% per year. Resources are being extracted 
from the planet 3 times faster than in 1970, even though the popu
lation has only doubled within that time (143). During the 20th 
century, this boosted the global economy, but since then resour
ces have become more expensive to extract and the environmen
tal costs harder to ignore.

Both plant and soil carbon storage originate with photosynthesis, 
which withdraws about 31% of annual anthropogenic CO2 emis
sions (2). However, studies (144) across a range of forest ecosystems 
have found that heating leads to thermal stress and reduced carbon 
assimilation. Many ecosystems (80) are already operating at or be
yond thermal thresholds for photosynthesis (145). Widespread ter
restrial ecological decline has resulted from the combination of 

climate change, resource extraction, bushmeat hunting, and agri
cultural and urban development. Since 1970, vertebrate popula
tions have declined 69% (146), and 1 in 4 species are at risk of 
extinction (147), in part because 75% of the terrestrial environment 
has been severely altered by human actions.

Agricultural development has further eroded ecosystem 
health, with over 15 billion trees per year lost since the emergence 
of agriculture; the global number of trees has fallen by over 45% 
(148). An estimated 67,340 km2 of global forest were lost in 2021 
alone, unleashing 3.8 Gt of GHG emissions, roughly 10% of the glo
bal average (149). Such losses extend to wetland areas; more than 
85% of the wetlands present in 1700 had been lost by 2000, and 
loss of wetlands is currently 3 times faster than forest loss.

Food and water security
Increasing human population, and the need to expand food produc
tion, were the drivers of the Green Revolution over 50 years ago 
(150). This increased productivity through selective genetic breed
ing, monocultures, seed improvement, and the use of chemical fer
tilizers and pesticides. These steps have not solved the problem of 
food insecurity which has been aggravated in more vulnerable pop
ulations (151). Worldwide, it is estimated that 16,000 children are 
pushed into hunger every day—a 32% increase from 2022 (152).

Agriculture now uses half of the world’s ice- and desert-free land, 
and causes 78% of global ocean and freshwater eutrophication (153). 
Pesticide and fertilizer runoff, as well as sewage, find their way to 
aquatic environments (154) and degrade water quality, while spread
ing infectious diseases. Humans poison the soil annually with micro
plastics between 4 and 23 times  more than we do the oceans. 
Microplastics reduce beneficial bacteria concentrations, and can be 
absorbed by plants, and then passed up the food chain (155).

Industrial farming employs deep plowing that depletes and ox
idizes soil, turning acreage into a source of GHG (156). Agriculture 
is responsible for 70% of global freshwater withdrawals (157). By 
one estimate (158), 94% of nonhuman mammal biomass is now 
livestock, and 71% of bird biomass is poultry livestock. 50% of all 
agricultural expansion has come at the expense of forests. In 
2022, the rate of global deforestation was the equivalent of 11 soc
cer/football fields per minute (40), predominantly for cattle ranch
ing and grain animal feed crops (such as soy) for export.

Today, agriculture uses half of all habitable land (159), and ei
ther through grazing or growing animal feed, 77% of that is dedi
cated to livestock (153). Animal agriculture is expanding. From 
1998 to 2018 global meat consumption increased 58%. Cattle 
and the grain they eat use 1/3 of all available land surface, 1/3 
of global grain production, and 16% of all available freshwater. 
Yet cattle agriculture only generates 18% of food calories and 
27% of protein (153). The production of fertilizer for feed crops 
emits 41 MtCO2/yr. The combination of emissions from manufac
turing, transporting, and applying synthetic fertilizer on the land 
(which releases the potent GHG N2O) today likely outpaces the 
emissions of the commercial aviation industry. These fertilizer- 
related GHG emissions are projected to grow. Additionally, live
stock feed demands a minimum of 80% of global soybean crop 
and over 50% of global corn crop. Thirty-five to 40% of yearly an
thropogenic CH4 emissions are a result of domestic livestock pro
duction due to enteric fermentation and manure (160).

Under a range of GHG emission pathways, cropland exposure 
to drought and heat-wave events will increase by a factor of 10 
in the midterm and a factor of 20–30 in the long term on all conti
nents, especially Asia and Africa (161). Harvest failures across ma
jor crop-producing regions are a threat to global food security. Jet 
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stream changes are projected to increase synchronous crop fail
ure and lower crop yields in multiple agricultural regions around 
the world (162). Crop failure due to drought, flood, or extreme 
weather (163) events increases disproportionately between 1.5 
and 2°C of global heating (164). For maize, risks of multiple bread
basket failures increase from 6– 40% at 1.5°C to 54% at 2°C. In rela
tive terms, the highest climate risk increases, between 1.5 and 2°C 
heating, is for wheat (40%), followed by maize (35%) and soybean 
(23%). Limiting global heating to 1.5°C would reduce the risk of 
simultaneous crop failure for maize, wheat, and soybean by 
26%, 28%, and 19%, respectively (164).

Demand for wheat is projected to increase 60% by 2050. Yet, ris
ing CO2 depletes the nutrient and protein content of wheat, and 
with drought, fire, and flood, leads to a 15% decline in projected 
wheat yield by midcentury (165). Increased levels of CO2 are de
creasing the amount of protein, iron, zinc, and B vitamins in rice 
with potential adverse health consequences for a global popula
tion of approximately 600 million (166). Harvests of staple cereal 
crops, such as rice and maize, could decrease by 20–40% as a func
tion of heightened surface temperatures in tropical and subtrop
ical regions by 2100 (167). This will exacerbate existing food 
security issues, as 1 billion people are currently classified as 
food insecure (168).

Worldwide, fungal infections cause growers to lose 10–23% of 
their crops each year, and an additional 10–20% is lost following 
harvest. Global heating is driving a poleward migration of fungal 
infections, meaning more countries will see fungal infections 
damaging harvests. Growers have reported wheat stem rust infec
tions, usually tropical, in Ireland and England. Experts (169) also 
warn that fungi tolerance to higher temperatures could increase 
the likelihood of soil-dwelling pathogens to infect animals or hu
mans. Across the five most important calorie crops of rice, wheat, 
maize (corn), soybeans, and potatoes, fungal infections already 
cause losses equal to provisions for 600 million to 4 billion people. 
Without major and rapid policy changes, food productivity in 2050 
could be reduced to 1980 yield levels because new technologies 
will be unable to mitigate climate change in major growing re
gions (170).

Clean water security is a critical issue (171). Research shows 
that groundwater levels are rapidly declining, especially in dry re
gions with extensive croplands, and has accelerated over the past 
four decades in 30% of the world’s regional aquifers (172). The 
Southern Hemisphere has experienced a 20% drop in water avail
ability over the past two decades (173). Approximately 3.6 billion 
people, or 47% of the global population, suffer water scarcity at 
least 1 month each year (174). Global water security is an urgent 
concern due to the increasing imbalance between the finite supply 
of freshwater and the escalating demand driven by population 
growth, economic development, and agricultural needs. Climate 
change compounds the crisis by altering precipitation patterns, 
causing droughts, and depleting glaciers—key freshwater sour
ces. Contamination from industrial, agricultural, and residential 
waste further restricts the amount of clean water available. This 
scarcity threatens human health, food production, and ecosystem 
stability, leading to conflicts and displacements. Addressing this 
problem requires global cooperation for sustainable manage
ment, technological innovation for conservation and purification, 
and policies that prioritize equitable access to clean water (174).

Heat
The impact of heat on food production is disproportionately se
vere in low-income communities. Workers in agriculture, 

construction, and other outdoor sectors often work in conditions 
that can lead to heat stress or heatstroke. Food production, too, 
is critically affected as extreme heat can reduce crop yields, in
crease irrigation needs, and lead to soil degradation. These com
munities have less access to heat-protection technologies such 
as air-conditioned spaces, efficient irrigation systems, or 
heat-resistant crop varieties. Consequently, their economic sta
bility and food security are more vulnerable to climate-induced 
temperature increases, exacerbating existing inequalities and 
pushing these populations further into poverty.

In 2022, global heat stress caused the loss of 490 billion poten
tial labor hours, 143 h per person, a 42% increase from the 1991 to 
2000 average (175). The loss of labor due to heat exposure resulted 
in a $863 billion loss of “potential income” and wiped out the 
equivalent of 4% of Africa’s GDP. The agriculture sector was hard
est hit, accounting for 82% of losses in least developed countries. 
The global land area affected by at least 1 month of extreme 
drought per year increased from 18% averaged over the decade 
1951–1960 to 47% in the decade 2013–2022. Because of heat stress, 
under a 2°C warming scenario, 525 million additional people will 
experience food insecurity by midcentury, compared to the period 
1995–2014, and the number of heat-related deaths each year will 
increase by 370%. Older people and infants now are exposed to 
twice the number of heat-wave days annually as they were aver
aged over the period 1986–2005.

Heat-related deaths of people older than 65 have increased by 
85% since the 1990s (175). Even under moderate warming, heat 
and drought levels in Europe that were virtually impossible 20 
years ago reach 1-in-10 likelihoods as early as the 2030s (84). 
Averaged over the period 2050–2074, projections for two succes
sive years of single or compound end-of-century extremes, unpre
cedented to date, exceed 1-in-10 likelihoods; while Europe-wide 
5-year megadroughts become plausible. Whole decades of 
end-of-century heat stress could start by 2040, by 2020 for 
drought, and with a warm North Atlantic, end-of-century decades 
starting as early as 2030 become twice as likely.

For thousands of years, fundamental limits on food and water 
security meant that human communities have concentrated 
under a narrow range of climate variables characterized by 
mean annual temperatures (MATs) around 13°C (18). With contin
ued GHG emissions, global heating of 3°C is projected to drive a 
MAT >29°C across 19% of the planet’s land surface and displace 
one-third of the human population. Today, this MAT accounts 
for only 0.8% percent of Earth’s land surface, mostly concentrated 
in the deep Sahara.

Model projections indicate that in the Middle East and North 
Africa, continued emissions will cause the emergence of unprece
dented super- and ultraextreme heat-wave conditions (176). These 
events involve excessively warm temperatures (56°C and higher) 
and will be of extended duration (several weeks), quickly becoming 
life-threatening for humans (177). Researchers found that by 2100, 
under current levels of GHG emissions, 3 of 4 people in the world 
will be exposed to deadly heat conditions every year, with a higher 
occurrence of these conditions in intertropical areas (2). Coupled 
with significant socioeconomic differences within countries, heat 
waves intensify global disparities in health, especially given the de
pleted resources for several of these regions to respond to acceler
ated heating. In the last decade, there has been >2,300% increase 
in the loss of human life from heat waves as a result of about 1°C 
heating. On our current pathway, the global health and socio
economic risks of continued heating are catastrophic.

The distribution of these conditions is unequal, and people and 
communities subjected to the loss of security are powerless to 

Fletcher et al. | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/4/pgae106/7638480 by guest on 01 M
ay 2024



respond. The impacts of this inequity may cause regionally exist
ential deterioration and suffering. As temperatures rise, death 
rates increase most among the poorest populations (178). By 
2099, under a scenario of continued high emissions growth, cli
mate change increases death rates in low-income countries by 
over 106 deaths per 100,000, while high-income countries are pro
jected to see death rates decrease by 25 deaths per 100,000, while 
spending significantly to prevent more deaths. Overall, today’s 
rich countries pay nearly 3 times more than poor countries to 
adapt to rising temperatures and prevent additional deaths. 
When it comes to cutting emissions, the social and economic bur
den of inaction is predominantly carried by the poorest and most 
vulnerable in human society, including Indigenous and local com
munities, concentrated in developing countries.

Illness and disease
As the planet heats up, infectious diseases once confined to trop
ical regions are expanding their range. The World Health 
Organization estimates that by the end of this decade the climate 
impact on health will cost between $2 billion and $4 billion per 
year (179). Between 2030 and 2050, climate change is expected 
to cause approximately 250,000 additional deaths per year from, 
for example, undernutrition, malaria, cholera, diarrhea, and 
heat stress alone. This does not include massive climate burdens 
on agriculture, water, and sanitation, which also shape public 
health.

In July 2023, for the first time in 20 years, the United States ex
perienced locally acquired malaria infections. Six cases were con
firmed in Florida and one in Texas, none related to international 
travel (180). In Seattle, cases of West Nile disease were reported 
for the first time. Over half of the infectious diseases confronted 
by humanity have been aggravated by climatic hazards at some 
point (181). All communities are vulnerable to climate change im
pacts; however, children, elders, the sick, and the poor face the 
greatest risks (182). People with cardiovascular and/or respiratory 
chronic illnesses are particularly vulnerable to high temperatures 
(183). Air pollution from GHG emissions leads to increased health 
complications such as asthma and allergies. The impacts of cli
mate change disproportionately affect vulnerable communities, 
including low-income regions and communities of color which 
have been disempowered by a history of colonialism, racism, op
pression, and injustice. Extreme weather events further exacer
bate the situation, driving animals and people together in 
unsanitary conditions and disrupting essential services like 
healthcare and clean water supplies.

Approximately 17% of diseases are spread by animal vectors 
causing over 700,000 deaths annually. Concentrated animal farm
ing operations are breeding grounds for virulent pathogens (184), 
and over 15,000 new cases of mammals transmitting viruses to 
other mammals could occur in the next 50 years due to climate 
change (185). Smaller species like bats, rats, and other rodents 
are thriving in human-populated areas, contributing to the spread 
of diseases through their interactions. Biodiversity loss and 
deforestation are directly linked to the rise of infectious diseases, 
with 1/3 of zoonotic diseases attributed to these factors. Some 60% 
of known pathogens, and 3 out of every 4 new or emergent infec
tious diseases are zoonotic (186), and roughly 1/3 of those are at
tributed to deforestation and habitat loss (187). A new disease 
surfaces 5 times a year, and future global heating and precipita
tion changes will further expand habitats for pathogens and vec
tors, proliferating dengue fever, cholera, malaria, diarrhea, and 
other diseases (188).

Climate change intensifies the spread of infectious diseases, 
particularly in low-income communities, by expanding the habi
tats of disease vectors such as mosquitoes and ticks. Warmer tem
peratures and altered rainfall patterns increase the incidence and 
geographic range of vector-borne diseases like malaria and den
gue fever. Flooding and extreme weather events, more common 
as the climate changes, can lead to waterborne diseases due to 
the contamination of freshwater supplies. Low-income areas 
often have insufficient healthcare infrastructure, making them 
more vulnerable to these outbreaks. Additionally, malnutrition 
from climate-induced food scarcity can weaken immune systems, 
further raising the susceptibility to infections. Thus, climate 
change magnifies health disparities, with low-income communi
ties facing disproportionately high risks of disease.

Economic inequality, ecological destruction, 
and global security
A grossly unequal distribution of wealth couples with the increas
ing consumption patterns of a rising global middle class (189) to 
amplify ecological destruction. The poorest half of the global 
population owns barely 2% of total global wealth, while the richest 
10% owns 76% of all wealth (190). The poorest 50% of the global 
population contribute just 10% of emissions, while the richest 
10% emit more than 50% total carbon emissions (191). Climate 
change, economic inequality, and rising consumption levels inter
twine to amplify ecological destruction.

Climate change, driven by carbon emissions, often stems from 
industrial activities catering to increased consumption, particular
ly in wealthier nations. This consumption depletes natural resour
ces and exacerbates pollution and habitat loss. Economic 
inequality compounds these issues, as poorer communities lack 
the resources to adapt to environmental changes or invest in sus
tainable practices. Consequently, low-income communities bear 
the brunt of ecological degradation, such as soil erosion, water 
scarcity, and biodiversity loss, while their limited economic means 
prevent effective response or recovery. This cycle of consumption, 
inequality, and environmental impact creates a feedback loop, per
petuating and intensifying ecological damage globally.

Fifty years ago, underdevelopment and scarcity were drivers of 
unsustainable resource use, but today these roots have morphed 
into overdevelopment, affluence, and privilege driving unsustain
able wealth accumulation and aggregate consumption. At pre
sent, not a single country delivers what its citizens need without 
transgressing planetary boundaries of long-term sustainability 
(192). Modern imperialism amplifies these inequalities through 
economic exploitation, wealth accumulation, political interfer
ence, cultural dominance, and other methods that leverage colo
nial power structures. Recognizing and addressing neocolonial 
practices is crucial for promoting equitable and sustainable devel
opment and respecting the sovereignty and self-determination of 
nations (193).

The use of natural materials and their benefits are unevenly 
distributed across the globe. Overconsumption is closely linked 
to wealth and income disparities with large amounts of money 
concentrated in a few rich countries, largely in the Northern 
Hemisphere (194). For example, environmental stresses and 
shocks related to natural resource extraction and use are out
sourced to countries and regions outside the European Union, 
while more than 85% of the economic benefits stay within mem
ber countries (195).

Global inequality results in fragile regions where intensified 
conflict over scarce resources allows malevolent actors to thrive 
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(196). One study (197) found strong causal evidence linking climat
ic events to human conflict across all major regions of the world: 
for each 1 SD (1σ) change in climate toward warmer temperatures 
or more extreme rainfall, data show that the frequency of inter
personal violence rises 4% and the frequency of intergroup con
flict rises 14%. Temperatures across the developed world are 
expected to warm 2σ to 4σ by 2050. Hence, amplified rates of hu
man conflict could represent a large and critical impact of an
thropogenic climate change.

Over the next 3 decades, even under best-case scenarios of low 
heating, national, and global security face severe risks in every re
gion of the world. Higher levels of heating will pose catastrophic, 
and likely irreversible, global security risks over the course of the 
21st century. A world where global mean surface temperature has 
increased 3°C will be characterized by widespread and intense 
heat stress, extreme weather events, ruptured and unproductive 
marine and terrestrial ecosystems, broken food systems, disease 
and morbidity, intense decadal megadrought, freshwater scarcity, 
catastrophic sea level rise, and large numbers of migrant popula
tions. By 2050, under these malignant conditions, up to 1.2 billion 
humans could be displaced by climate change (198). These inten
sifying crises now threaten the very fabric of our global socio
economic system. Immediate action is imperative to avert a 
collapse that endangers societal structures worldwide.

Climate purgatory
Although the global condition is bleak, after 200 years of fossil fuel 
expansion, we are at a turning point in the energy system. The 
clean-energy revolution is underway. Global sales of vehicles 
powered by fossil fuels peaked in 2017 (199), and in 2023 electric 
vehicle sales grew by 55%, reaching a record high of more than 
10 million. For the first time ever, announced manufacturing cap
acity for electric vehicle batteries is now sufficient to fulfill ex
pected demand requirements by 2030 (200).

Renewable energy installations jumped nearly 50% in 2023, the 
most rapid growth rate in two decades (200). After remaining flat 
for several years, global clean energy spending is increasing. Last 
year, renewables made up about 30% of total electricity gener
ation, up from 25% in 2018. Global investment in the energy tran
sition totaled $1.77 trillion in 2023, an increase of 17% from the 
prior year. Solar energy is expected to become the cheapest 
form of energy in many places by 2030 and major global powers 
are investing in infrastructure for energy transformation.

However, increasing global energy consumption offsets these 
gains in renewable energy. Because of rising power needs in devel
oping nations due to population growth and industrialization, on
going electrification of the transport and building sectors, and 
other areas of energy expansion, the International Energy 
Agency (IEA) projects increasing growth of energy demand, rising 
at an annual average rate of 3.4% in 2024–2026. Although the ex
pansion of clean-energy sources is set to meet this demand 
growth, decoupling energy consumption and CO2 production, 
the separation is not nearly wide enough to meet Paris 
Agreement Goals for stopping global heating.

Countries and companies are taking steps to address climate 
change while simultaneously making choices that undermine 
these efforts. This paradox places us in a state of climate purga
tory. The IEA predicts (200) a peak in fossil fuel demand by 2030, 
but reports show governments planning to increase coal, oil, 
and gas production well beyond climate commitments. This 
math does not align with the 1.5°C or even the 2°C warming tar
gets. Many experts consider these targets nearly impossible due 

to the global reluctance to urgently phase out fossil fuels. In this 
climate purgatory, we are at a critical juncture, where urgent, 
transformative action is required to reconcile our ambitions 
with our actions.

The 2023 UN “gap report” (26) tells us that governments plan to 
produce around 110% more fossil fuels in 2030 than would be con
sistent with limiting warming to 1.5°C, and 69% more than would 
be consistent with 2°C. National carbon-cutting policies are so in
adequate that 3°C of heating could be reached this century. Based 
on existing national pledges, global emissions in 2030 will be only 
2% below 2019 levels, rather than the 43% cut required to limit glo
bal heating to 1.5°C. To get on track, 22 GtCO2 must be cut from 
currently projected global emissions in 2030. That is 42% of the to
tal and equivalent to the output of the world’s five worst polluters: 
China, US, India, Russia, and Japan.

The world will need to increase climate spending to around $9 
trillion annually by 2030 and to nearly $11 trillion by 2035 to roll 
out clean sources of energy and prepare for the inevitable impacts 
of a warming climate during coming decades (201). To limit warm
ing to 1.5°C now requires eliminating emissions shortly after 2040. 
Although technically feasible, few mainstream scientists believe 
it is still achievable (202). Instead, analysts predict (203) that glo
bal fossil fuel emissions will peak at some point in the next dec
ade, followed not by a decline but a long plateau (204), 
culminating with end-of-century warming potentially reaching 
3°C (Fig. 4).

Although global renewable energy capacity is growing, there is 
a lack of financing for emerging and developing economies. 
Redirecting financial resources to lower income nations is crucial. 
More than 90% of clean-energy investment comes from advanced 
economies and China, risking new dividing lines in global energy. 
The biggest shortfalls in clean-energy investment are in emerging 
and developing economies. More needs to be done by the inter
national community to drive investment in lower income econ
omies, where the private sector has been reluctant to venture. 
There is ample capital available—evidenced by the nearly $12 tril
lion allocated for COVID-19 economic relief and the over $1 trillion 
annually in fossil fuel subsidies, which balloons to $7 trillion with 
indirect incentives. Reallocating these funds is complex, particu
larly due to potential impacts on the poorest populations, yet it re
mains a vital reservoir for investment as the world plans for a 
sustainable future.

A new era of reciprocity with nature and 
among human societies
The purpose of this review is to draw immediate attention to the 
careless, foolish way that humanity is gambling with the future. 
Unless things change dramatically, and soon, damage to the nat
ural world will have long-lasting consequences for species and 
ecosystems, and devastating upheavals for humanity. Although 
this will particularly affect vulnerable populations, all of human
ity faces an unprecedented catastrophe.

There are signs that humanity is awakening to the need for a 
new system of values that recognize Earth as an island in space 
with limitations on resource availability. No one is coming to res
cue us. Many of the changes that we call for in this essay are con
sistent with the work of the Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services (141) and the 
UN SDG framework (205). But carbon assimilation in natural 
systems is decreasing— potentially with significant effects in 
only decades; planetary-scale biophysical systems such as 
the Atlantic Meridional Overturning Circulation, the Southern 
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Ocean overturning circulation, atmospheric Hadley circulation, 
summer sea ice, tropical forests, and others have shifted and 
are projected to falter. And urbanism, deforestation, consumer
ism, pollution, disease, social stratification, and extractive agri
culture are all on accelerating and expanding trends.

This is a human inflection point that will determine future con
ditions of life on Earth (206). While transitioning to a carbon-free 
energy system comes with major societal restructuring, the socio
economic adjustments needed to rapidly decrease emissions also 
present opportunities for achieving social and ecological justice, 
reducing disease, promoting the successful achievement of 
SDGs, and securing food and water availablity for our children.

We can end pollution, improve human health, reign in popula
tion growth, and reduce further biophysical risks. Indigenous com
munities have practiced regenerative ways of managing natural 
resources by understanding the reciprocal relationship between 
humans and their natural surroundings. Nature is not a commodity 
for exploitation, but a living system with its own rights, where hu
mans are life-supported and in turn play a regenerative role. This 
kinship promotes nature and humanity thriving together.

Under current national plans, global GHG emissions are set to 
increase 9% by 2030, compared to 2010 levels. Yet the science is 
clear: emissions must fall by 45% by the end of this decade com
pared to 2010 levels to meet the goal of limiting global tempera
ture rise to 1.5°C (207). As governments invest in renewable 
energy sources, there are enormous cobenefits to be gained in 
terms of disease reduction, social equity, and a growing respect 
for Earth’s rhythms. Yet renewable energy will not address the 
root problem of ecological overshoot, social justice, or pollution. 
Policies are needed that end the production of superfluous and 
luxury commodities, conserve energy at household and societal 
levels, stabilize global population, and replace the extractive mod
el with one that emphasizes true sustainability so that more nat
ural resources per capita become available and wealth is far more 
equitably distributed (208).

The shift away from an extractive, resource-driven global econ
omy toward one that values human rights and livelihoods could 

redefine global economics and offer reasons for optimism. 
Opportunities to prevent catastrophic levels of heating are being 
missed due to accelerating consumerism, the false seduction of 
dubious climate quick fixes, unverifiable “carbon offsets”, exorbi
tant pollution levels, and growing economic disparity. Halting glo
bal ecological decline and addressing the crises of climate change, 
biodiversity collapse, pollution, pandemics, and human injustice 
requires a shift in economic structures, human behavior, and 
above all, values.

Whether the world is considered overpopulated depends on 
various factors. It is essential to consider not only population 
numbers but also consumption patterns, resource distribution, 
and sustainability when discussing this complex issue. 
Additionally, strategies for addressing concerns related to popula
tion growth often involve a combination of policies related to edu
cation, healthcare, resource management, and environmental 
protection. In developing economies, overpopulation is not just 
about how many people there are but also about how much 
each person consumes compared to the availability of resources.

High levels of consumption in developed countries contribute 
to environmental degradation, raising the issue of unequal distri
bution of resources. While some regions may be densely popu
lated and face resource constraints, others have much lower 
population densities and abundant resources. Inequities in re
source distribution can lead to perceptions of overpopulation 
but are in reality more closely related to social inequalities, often 
with deep historical roots related to imperialism and unjust re
source extraction.

Humans must become rejuvenators of natural systems (209). 
We must shift from wealth as a goal, to sustainaiblity as a goal 
driving our decisons. This includes developing replacements for 
plastics, adopting regenerative and restorative cultivation and 
harvesting methods, investing in cradle to grave research and de
velopment focused on material reuse, absolute decoupling of the 
economy from net resource depletion, and establishing conserva
tion goals to conserve 30–50% of Earth’s land, freshwater, and 
oceans (210).

Fig. 4. Global GHG emissions and temperature rise. Net emissions including removals (billion metric tons of CO2-equivalent). Policy and technological 
progress over the past 8 years has significantly reduced the global temperature outlook. Models now project very likely temperature increases of 2.0 to 
4.0°C by century’s end, with a 2.3 to 3.4°C likely range and a mean of 2.8°C. While this is progress from just 8 years ago, it still represents a dire climate 
future—falling significantly short of the Paris Agreement goal of limiting warming to well below 2°C (204).
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Addressing social inequities based on gender, ethnicity, and in
come is crucial, and leaders in political, educational, business, 
and religious organizations must analyze and redress discrimin
atory practices, historical racism, and unjust distributions of 
power that hinder communities from adapting to climate change. 
It is imperative to promote reproductive healthcare, education, 
poverty eradication, ecological restoration, environmental just
ice, and reciprocal relationships with nature. Economic develop
ment must not come at the cost of destroying Earth.

As reported in numerous peer-reviewed studies (211), to re
verse the many negative impacts generated by our modern socio
economic system there must be global investment in (Fig. 5): 

1. Rapid and legitimate decarbonization, correcting market distor
tions favoring fossil fuels, avoiding the spurious trap of “net 
zero” as an excuse to continue polluting the atmosphere 
(212), and proper monitoring, verification, and reporting of 
carbon offset contracts.

2. Revising the basis for decision-making under the UNFCCC. 
Decision-making under the UNFCCC should be reorganized 
by transitioning from unanimous voting to qualified majority 
voting, enabling decisions to be made with agreement from a 
defined majority of member nations. To encourage compli
ance and accountability, penalties such as financial sanctions 
could be introduced for noncompliance with UNFCCC deci
sions. These changes would enhance efficiency, enabling 
prompt action and stronger enforcement of climate-related 
agreements among member nations.

3. Building a new era of reciprocity and kinship with nature, and de
coupling economic activity from net resource depletion. We 
must shift Earth-centered governance from an aspirational 
political issue to a foundational principle through constitu
tional reforms with policy implications (213).

4. Implementing sustainable/regenerative practices in all areas of 
natural resource economics including, especially, 
agriculture.

5. Eliminating environmentally harmful subsidies and restricting trade 
that promotes pollution and unsustainable consumption.

6. Promote gender justice by supporting women’s and girls’ educa
tion and rights, which reduces fertility rates and raises the 
standard of living.

7. Accelerating human development in all SDG sectors, especially 
promoting reproductive healthcare, education, and equity 
for girls and women.

8. In low- and middle-income nations, relieving debt, providing low- 
cost loans, financing loss and damage, funding clean-energy 
acceleration, arresting the dangerous loss of biodiversity, 
and restoring natural ecosystems.

A cultural shift in values
How do we achieve these goals? The authors call for a global cul
tural shift in social and economic values. Creating a cultural shift 
toward regenerative practices in socioeconomic activities is com
plex and requires a multifaceted approach involving, critically, 
the leaders of the G20, and all nations, comprehensively engaging 
programs in the following: 

1. Education in sustainability and equity concepts: Increasing 
awareness and understanding of sustainability and equity 
issues through education at all levels to empower individu
als to make more environmentally conscious decisions. 
Embedding sustainability and equity into educational 

curricula at all levels can shape future generations’ values 
and actions. We advocate adoption of the issues discussed 
in this paper in school curricula, public service announce
ments, and as a guide to government decision-making.

2. Policy, legal frameworks, and legislation: Governments can en
act and enforce policies that mandate sustainable practices 
and ensure social equity, such as progressive environmental 
regulations, social justice legislation, and economic reforms 
that prioritize community well-being over individual profit.

3. Economic incentives: Shifting the economic focus from growth 
at any cost to a model that values environmental and social 
well-being. Aligning economic incentives with sustainable 
outcomes, such as tax breaks for green businesses, can en
courage companies and consumers to adopt better 
practices.

4. Cross-sector partnerships: Facilitating collaboration between 
the public sector, private sector, civil society, and academia 
to develop integrated and comprehensive approaches to 
sustainability and equity.

5. Community empowerment and inclusion: Encouraging partici
patory governance that includes diverse community voices 
in decision-making processes, particularly those of margi
nalized and indigenous groups, to ensure that practices 
are equitable and culturally sensitive.

6. Corporate responsibility and accountability: Promoting corpor
ate social responsibility through transparency, fair trade, 
ethical sourcing, and sustainability reporting.

7. Incentives for sustainable/equitable behavior: Channeling in
vestment into the development and deployment of green 
technologies that enable sustainable production and con
sumption patterns. Creating economic and social incentives 
for businesses and individuals to adopt sustainable practi
ces, like subsidies for renewable energy or tax benefits for 
sustainable/equitable business practices.

8. Innovation and technology: Investing in research and develop
ment for new technologies can provide more efficient and 
cleaner alternatives to current practices.

9. Leadership and commitment: Encouraging leaders within com
munities, businesses, and governments to model sustain
able and equitable behaviors. Leaders in business, politics, 
and community groups must commit to sustainability goals 
and lead by example to inspire others.

10. Cultural narratives: Leveraging media, art, and culture to pro
mote stories and images that valorize sustainability and 
equity, thereby shaping public opinion and cultural values. 
Changing the cultural narratives around consumption and 
progress to value sustainability and long-term thinking 
over immediate gratification or economic growth at any 
cost.

11. Global engagement and solidarity: Participating in international 
efforts and agreements that aim to address global chal
lenges collectively, ensuring that sustainability and social 
equity are global priorities.

This systemic transformation requires a shift in collective values, 
behaviors, and institutional practices to prioritize long-term eco
logical health and social well-being over immediate gains.

Heads of state must immediately pivot the considerable power of 
the economy toward restoring a livable planet and an equitable and 
just socioeconomic system. To achieve a successful future where hu
manity can thrive, economic values must embrace human equity, 
health, and welfare, kinship with nature, regenerative resource 
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use, sustainability, and resilience. Emphasizing fairness and inclu
sivity, these values promote social cohesion and reduce disparities.

Recognizing our interconnectedness with the environment, a fo
cus on sustainability and regenerative resource use ensures the pres
ervation of nature for future generations. Prioritizing health and 
well-being, societies must invest in healthcare systems, fostering a 
higher quality of life by building resilience against uncertainties. A 
new economic paradigm is needed to create a prosperous and harmo
nious future, meeting the challenges of a rapidly deteriorating world.

Earth is our lifeboat in the sea of space
As succinctly stated by Rees (68), “We are consuming and pollut

ing the biophysical basis of our own existence.” Climate change, 

biodiversity loss, pollution, disease, and social injustice risk the 

stability of human communities on Earth (Fig. 6). We must stop 

treating these issues as isolated challenges, and establish a sys

temic response based on kinship with nature that recognizes 

Earth as our lifeboat in the cosmic sea of space.

Fig. 5. The historical context of imperialism, population growth, and an extractive relationship with nature has led to a series of modern outcomes that 
put our planet at risk: disease, climate change, biodiversity loss, socioeconomic inequality, and pollution. These risk the stability of human communities. 
Humanity may achieve a just and sustainable future through global investment in rapid decarbonization, correcting market distortions favoring fossil 
fuels, avoiding “net zero” as an excuse to continue GHG emissions, proper monitoring and validation of carbon offsets, revising the basis for 
decision-making under the UNFCCC, decoupling economic activity from net resource depletion, shifting to Earth-centered governance, sustainable/ 
regenerative practices in all areas of natural resource economics, eliminating environmentally harmful subsidies, restrict trade that promotes pollution 
and unsustainable consumption, accelerate human development in all SDG sectors, promote gender justice by supporting women’s and girls’ education 
and rights which reduces fertility rates and raises the standard of living, and for low- and middle-income nations: relieve debt, provide low-cost loans, 
finance loss and damage, fund clean-energy acceleration, arrest the dangerous loss of biodiversity, and restore natural ecosystems.
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Coauthor Jay Bowen, Upper Skagit Elder, explained why North 
American Indigenous Peoples described their North America as 
“turtle island” (Fig. 6): 

“It was not understood why the ancestors had referenced it in this 

way until the pictures of Earth were seen in 1969 from the Apollo 

Space Mission. The outline of North America resembled a turtle. 

We had an understanding of the whole Earth even though we lived 

on only a tiny piece of it. The ancestors understood global society. 

We understood that Earth was of one family. This family built and 

strengthened ties through voyaging to engage in trade, cultural ex

change, and discovery.”

There is no guarantee of a just, nourishing, and healthy future 
for humanity, and hope will not catalyze the change we need. 
That work must fall upon us, and it is clear from this review 
that we are past due for, and critically far away from, an appropri
ate reaction to the global emergency we have created.

Note
a “Ecological overshoot” is defined as depleting essential ecosystems 

faster than they can regenerate and polluting the ecosphere beyond 
nature’s assimilative capacity.
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The economic commitment of climate change

Maximilian Kotz1,2, Anders Levermann1,2 & Leonie Wenz1,3 ✉

Global projections of macroeconomic climate-change damages typically consider 
impacts from average annual and national temperatures over long time horizons1–6. 
Here we use recent empirical findings from more than 1,600 regions worldwide over 
the past 40 years to project sub-national damages from temperature and precipitation, 
including daily variability and extremes7,8. Using an empirical approach that provides 
a robust lower bound on the persistence of impacts on economic growth, we find that 
the world economy is committed to an income reduction of 19% within the next 
26 years independent of future emission choices (relative to a baseline without 
climate impacts, likely range of 11–29% accounting for physical climate and empirical 
uncertainty). These damages already outweigh the mitigation costs required to limit 
global warming to 2 °C by sixfold over this near-term time frame and thereafter diverge 
strongly dependent on emission choices. Committed damages arise predominantly 
through changes in average temperature, but accounting for further climatic 
components raises estimates by approximately 50% and leads to stronger regional 
heterogeneity. Committed losses are projected for all regions except those at very 
high latitudes, at which reductions in temperature variability bring benefits. The 
largest losses are committed at lower latitudes in regions with lower cumulative 
historical emissions and lower present-day income.

Projections of the macroeconomic damage caused by future climate 
change are crucial to informing public and policy debates about adap-
tation, mitigation and climate justice. On the one hand, adaptation 
against climate impacts must be justified and planned on the basis of 
an understanding of their future magnitude and spatial distribution9. 
This is also of importance in the context of climate justice10, as well as to 
key societal actors, including governments, central banks and private 
businesses, which increasingly require the inclusion of climate risks in 
their macroeconomic forecasts to aid adaptive decision-making11,12. 
On the other hand, climate mitigation policy such as the Paris Climate 
Agreement is often evaluated by balancing the costs of its implementa-
tion against the benefits of avoiding projected physical damages. This 
evaluation occurs both formally through cost–benefit analyses1,4–6,  
as well as informally through public perception of mitigation and  
damage costs13.

Projections of future damages meet challenges when informing 
these debates, in particular the human biases relating to uncertainty 
and remoteness that are raised by long-term perspectives14. Here we 
aim to overcome such challenges by assessing the extent of economic 
damages from climate change to which the world is already commit-
ted by historical emissions and socio-economic inertia (the range of  
future emission scenarios that are considered socio-economically 
plausible15). Such a focus on the near term limits the large uncer-
tainties about diverging future emission trajectories, the resulting 
long-term climate response and the validity of applying historically 
observed climate–economic relations over long timescales during 
which socio-technical conditions may change considerably. As such, 
this focus aims to simplify the communication and maximize the cred-
ibility of projected economic damages from future climate change.

In projecting the future economic damages from climate change, 
we make use of recent advances in climate econometrics that provide 
evidence for impacts on sub-national economic growth from numer-
ous components of the distribution of daily temperature and precipi-
tation3,7,8. Using fixed-effects panel regression models to control for 
potential confounders, these studies exploit within-region variation 
in local temperature and precipitation in a panel of more than 1,600 
regions worldwide, comprising climate and income data over the 
past 40 years, to identify the plausibly causal effects of changes in 
several climate variables on economic productivity16,17. Specifically, 
macroeconomic impacts have been identified from changing daily 
temperature variability, total annual precipitation, the annual number 
of wet days and extreme daily rainfall that occur in addition to those 
already identified from changing average temperature2,3,18. Moreo-
ver, regional heterogeneity in these effects based on the prevailing 
local climatic conditions has been found using interactions terms. 
The selection of these climate variables follows micro-level evidence 
for mechanisms related to the impacts of average temperatures on 
labour and agricultural productivity2, of temperature variability on 
agricultural productivity and health7, as well as of precipitation on 
agricultural productivity, labour outcomes and flood damages8 (see 
Extended Data Table 1 for an overview, including more detailed refer-
ences). References 7,8 contain a more detailed motivation for the use 
of these particular climate variables and provide extensive empirical 
tests about the robustness and nature of their effects on economic 
output, which are summarized in Methods. By accounting for these 
extra climatic variables at the sub-national level, we aim for a more 
comprehensive description of climate impacts with greater detail 
across both time and space.
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Constraining the persistence of impacts
A key determinant and source of discrepancy in estimates of the mag-
nitude of future climate damages is the extent to which the impact of 
a climate variable on economic growth rates persists. The two extreme 
cases in which these impacts persist indefinitely or only instantaneously 
are commonly referred to as growth or level effects19,20 (see Methods 
section ‘Empirical model specification: fixed-effects distributed lag 
models’ for mathematical definitions). Recent work shows that future 
damages from climate change depend strongly on whether growth 
or level effects are assumed20. Following refs. 2,18, we provide con-
straints on this persistence by using distributed lag models to test the 
significance of delayed effects separately for each climate variable. 
Notably, and in contrast to refs. 2,18, we use climate variables in their 
first-differenced form following ref. 3, implying a dependence of the 
growth rate on a change in climate variables. This choice means that 
a baseline specification without any lags constitutes a model prior of 
purely level effects, in which a permanent change in the climate has only 
an instantaneous effect on the growth rate3,19,21. By including lags, one 
can then test whether any effects may persist further. This is in contrast 
to the specification used by refs. 2,18, in which climate variables are 
used without taking the first difference, implying a dependence of the 
growth rate on the level of climate variables. In this alternative case, 
the baseline specification without any lags constitutes a model prior 
of pure growth effects, in which a change in climate has an infinitely 
persistent effect on the growth rate. Consequently, including further 
lags in this alternative case tests whether the initial growth impact is 
recovered18,19,21. Both of these specifications suffer from the limiting 
possibility that, if too few lags are included, one might falsely accept 
the model prior. The limitations of including a very large number of 
lags, including loss of data and increasing statistical uncertainty with 
an increasing number of parameters, mean that such a possibility is 
likely. By choosing a specification in which the model prior is one of 
level effects, our approach is therefore conservative by design, avoiding 
assumptions of infinite persistence of climate impacts on growth and 
instead providing a lower bound on this persistence based on what is 
observable empirically (see Methods section ‘Empirical model speci-
fication: fixed-effects distributed lag models’ for further exposition of 
this framework). The conservative nature of such a choice is probably 
the reason that ref. 19 finds much greater consistency between the 
impacts projected by models that use the first difference of climate 
variables, as opposed to their levels.

We begin our empirical analysis of the persistence of climate impacts 
on growth using ten lags of the first-differenced climate variables in 
fixed-effects distributed lag models. We detect substantial effects 
on economic growth at time lags of up to approximately 8–10 years 
for the temperature terms and up to approximately 4 years for the 
precipitation terms (Extended Data Fig. 1 and Extended Data Table 2). 
Furthermore, evaluation by means of information criteria indicates that 
the inclusion of all five climate variables and the use of these numbers 
of lags provide a preferable trade-off between best-fitting the data and 
including further terms that could cause overfitting, in comparison 
with model specifications excluding climate variables or including 
more or fewer lags (Extended Data Fig. 3, Supplementary Methods 
Section 1 and Supplementary Table 1). We therefore remove statistically 
insignificant terms at later lags (Supplementary Figs. 1–3 and Sup-
plementary Tables 2–4). Further tests using Monte Carlo simulations 
demonstrate that the empirical models are robust to autocorrelation 
in the lagged climate variables (Supplementary Methods Section 2 and 
Supplementary Figs. 4 and 5), that information criteria provide an effec-
tive indicator for lag selection (Supplementary Methods Section 2 and 
Supplementary Fig. 6), that the results are robust to concerns of imper-
fect multicollinearity between climate variables and that including 
several climate variables is actually necessary to isolate their separate 
effects (Supplementary Methods Section 3 and Supplementary Fig. 7). 

We provide a further robustness check using a restricted distributed lag 
model to limit oscillations in the lagged parameter estimates that may 
result from autocorrelation, finding that it provides similar estimates 
of cumulative marginal effects to the unrestricted model (Supplemen-
tary Methods Section 4 and Supplementary Figs. 8 and 9). Finally, to 
explicitly account for any outstanding uncertainty arising from the 
precise choice of the number of lags, we include empirical models with 
marginally different numbers of lags in the error-sampling procedure 
of our projection of future damages. On the basis of the lag-selection 
procedure (the significance of lagged terms in Extended Data Fig. 1 and 
Extended Data Table 2, as well as information criteria in Extended Data 
Fig. 3), we sample from models with eight to ten lags for temperature 
and four for precipitation (models shown in Supplementary Figs. 1–3 
and Supplementary Tables 2–4). In summary, this empirical approach 
to constrain the persistence of climate impacts on economic growth 
rates is conservative by design in avoiding assumptions of infinite per-
sistence, but nevertheless provides a lower bound on the extent of 
impact persistence that is robust to the numerous tests outlined above.

Committed damages until mid-century
We combine these empirical economic response functions (Supplemen-
tary Figs. 1–3 and Supplementary Tables 2–4) with an ensemble of 21 
climate models (see Supplementary Table 5) from the Coupled Model 
Intercomparison Project Phase 6 (CMIP-6)22 to project the macroeco-
nomic damages from these components of physical climate change 
(see Methods for further details). Bias-adjusted climate models that 
provide a highly accurate reproduction of observed climatological 
patterns with limited uncertainty (Supplementary Table 6) are used to 
avoid introducing biases in the projections. Following a well-developed 
literature2,3,19, these projections do not aim to provide a prediction of 
future economic growth. Instead, they are a projection of the exog-
enous impact of future climate conditions on the economy relative to 
the baselines specified by socio-economic projections, based on the 
plausibly causal relationships inferred by the empirical models and 
assuming ceteris paribus. Other exogenous factors relevant for the 
prediction of economic output are purposefully assumed constant.

A Monte Carlo procedure that samples from climate model pro-
jections, empirical models with different numbers of lags and model 
parameter estimates (obtained by 1,000 block-bootstrap resamples 
of each of the regressions in Supplementary Figs. 1–3 and Supplemen-
tary Tables 2–4) is used to estimate the combined uncertainty from 
these sources. Given these uncertainty distributions, we find that pro-
jected global damages are statistically indistinguishable across the two 
most extreme emission scenarios until 2049 (at the 5% significance 
level; Fig. 1). As such, the climate damages occurring before this time 
constitute those to which the world is already committed owing to 
the combination of past emissions and the range of future emission 
scenarios that are considered socio-economically plausible15. These 
committed damages comprise a permanent income reduction of 19% 
on average globally (population-weighted average) in comparison 
with a baseline without climate-change impacts (with a likely range of 
11–29%, following the likelihood classification adopted by the Inter-
governmental Panel on Climate Change (IPCC); see caption of Fig. 1). 
Even though levels of income per capita generally still increase relative 
to those of today, this constitutes a permanent income reduction for 
most regions, including North America and Europe (each with median 
income reductions of approximately 11%) and with South Asia and 
Africa being the most strongly affected (each with median income 
reductions of approximately 22%; Fig. 1). Under a middle-of-the road 
scenario of future income development (SSP2, in which SSP stands for 
Shared Socio-economic Pathway), this corresponds to global annual 
damages in 2049 of 38 trillion in 2005 international dollars (likely 
range of 19–59 trillion 2005 international dollars). Compared with 
empirical specifications that assume pure growth or pure level effects, 
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our preferred specification that provides a robust lower bound on the 
extent of climate impact persistence produces damages between these 
two extreme assumptions (Extended Data Fig. 3).

Damages already outweigh mitigation costs
We compare the damages to which the world is committed over the 
next 25 years to estimates of the mitigation costs required to achieve 
the Paris Climate Agreement. Taking estimates of mitigation costs 
from the three integrated assessment models (IAMs) in the IPCC AR6 
database23 that provide results under comparable scenarios (SSP2 
baseline and SSP2-RCP2.6, in which RCP stands for Representative 
Concentration Pathway), we find that the median committed climate 
damages are larger than the median mitigation costs in 2050 (six trillion 
in 2005 international dollars) by a factor of approximately six (note 
that estimates of mitigation costs are only provided every 10 years 
by the IAMs and so a comparison in 2049 is not possible). This com-
parison simply aims to compare the magnitude of future damages 
against mitigation costs, rather than to conduct a formal cost–benefit 
analysis of transitioning from one emission path to another. Formal 

cost–benefit analyses typically find that the net benefits of mitigation 
only emerge after 2050 (ref. 5), which may lead some to conclude that 
physical damages from climate change are simply not large enough 
to outweigh mitigation costs until the second half of the century. Our 
simple comparison of their magnitudes makes clear that damages 
are actually already considerably larger than mitigation costs and the 
delayed emergence of net mitigation benefits results primarily from the 
fact that damages across different emission paths are indistinguishable 
until mid-century (Fig. 1).

Although these near-term damages constitute those to which the 
world is already committed, we note that damage estimates diverge 
strongly across emission scenarios after 2049, conveying the clear 
benefits of mitigation from a purely economic point of view that have 
been emphasized in previous studies4,24. As well as the uncertainties 
assessed in Fig. 1, these conclusions are robust to structural choices, 
such as the timescale with which changes in the moderating variables 
of the empirical models are estimated (Supplementary Figs. 10 and 11), 
as well as the order in which one accounts for the intertemporal and 
international components of currency comparison (Supplementary 
Fig. 12; see Methods for further details).

Damages from variability and extremes
Committed damages primarily arise through changes in average 
temperature (Fig. 2). This reflects the fact that projected changes in 
average temperature are larger than those in other climate variables 
when expressed as a function of their historical interannual variabil-
ity (Extended Data Fig. 4). Because the historical variability is that on 
which the empirical models are estimated, larger projected changes in 
comparison with this variability probably lead to larger future impacts 
in a purely statistical sense. From a mechanistic perspective, one may 
plausibly interpret this result as implying that future changes in average 
temperature are the most unprecedented from the perspective of the 
historical fluctuations to which the economy is accustomed and there-
fore will cause the most damage. This insight may prove useful in terms 
of guiding adaptation measures to the sources of greatest damage.

Nevertheless, future damages based on empirical models that con-
sider changes in annual average temperature only and exclude the other 
climate variables constitute income reductions of only 13% in 2049 
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Fig. 1 | The commitment and divergence of economic climate damages 
versus mitigation costs. Estimates of the projected reduction in income per 
capita from changes in all climate variables based on empirical models of 
climate impacts on economic output with a robust lower bound on their 
persistence (Extended Data Fig. 1) under a low-emission scenario compatible 
with the 2 °C warming target and a high-emission scenario (SSP2-RCP2.6 and 
SSP5-RCP8.5, respectively) are shown in purple and orange, respectively. 
Shading represents the 34% and 10% confidence intervals reflecting the likely 
and very likely ranges, respectively (following the likelihood classification 
adopted by the IPCC), having estimated uncertainty from a Monte Carlo 
procedure, which samples the uncertainty from the choice of physical climate 
models, empirical models with different numbers of lags and bootstrapped 
estimates of the regression parameters shown in Supplementary Figs. 1–3. 
Vertical dashed lines show the time at which the climate damages of the two 
emission scenarios diverge at the 5% and 1% significance levels based on the 
distribution of differences between emission scenarios arising from the 
uncertainty sampling discussed above. Note that uncertainty in the difference 
of the two scenarios is smaller than the combined uncertainty of the two 
respective scenarios because samples of the uncertainty (climate model and 
empirical model choice, as well as model parameter bootstrap) are consistent 
across the two emission scenarios, hence the divergence of damages occurs 
while the uncertainty bounds of the two separate damage scenarios still 
overlap. Estimates of global mitigation costs from the three IAMs that provide 
results for the SSP2 baseline and SSP2-RCP2.6 scenario are shown in light green 
in the top panel, with the median of these estimates shown in bold.
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(Extended Data Fig. 5a, likely range 5–21%). This suggests that account-
ing for the other components of the distribution of temperature and 
precipitation raises net damages by nearly 50%. This increase arises 
through the further damages that these climatic components cause, 
but also because their inclusion reveals a stronger negative economic 
response to average temperatures (Extended Data Fig. 5b). The latter 
finding is consistent with our Monte Carlo simulations, which suggest 
that the magnitude of the effect of average temperature on economic 
growth is underestimated unless accounting for the impacts of other 
correlated climate variables (Supplementary Fig. 7).

In terms of the relative contributions of the different climatic compo-
nents to overall damages, we find that accounting for daily temperature 
variability causes the largest increase in overall damages relative to 
empirical frameworks that only consider changes in annual average 
temperature (4.9 percentage points, likely range 2.4–8.7 percentage 
points, equivalent to approximately 10 trillion international dollars). 
Accounting for precipitation causes smaller increases in overall dam-
ages, which are—nevertheless—equivalent to approximately 1.2 trillion 
international dollars: 0.01 percentage points (−0.37–0.33 percentage 
points), 0.34 percentage points (0.07–0.90 percentage points) and  

0.36 percentage points (0.13–0.65 percentage points) from total annual 
precipitation, the number of wet days and extreme daily precipitation, 
respectively. Moreover, climate models seem to underestimate future 
changes in temperature variability25 and extreme precipitation26,27 in 
response to anthropogenic forcing as compared with that observed 
historically, suggesting that the true impacts from these variables 
may be larger.

The distribution of committed damages
The spatial distribution of committed damages (Fig. 2a) reflects a com-
plex interplay between the patterns of future change in several climatic 
components and those of historical economic vulnerability to changes 
in those variables. Damages resulting from increasing annual mean 
temperature (Fig. 2b) are negative almost everywhere globally, and 
larger at lower latitudes in regions in which temperatures are already 
higher and economic vulnerability to temperature increases is great-
est (see the response heterogeneity to mean temperature embodied 
in Extended Data Fig. 1a). This occurs despite the amplified warming 
projected at higher latitudes28, suggesting that regional heterogeneity 
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Fig. 2 | The committed economic damages of climate change by sub-national 
region and climatic component. Estimates of the median projected reduction 
in sub-national income per capita across emission scenarios (SSP2-RCP2.6 and 
SSP2-RCP8.5) as well as climate model, empirical model and model parameter 
uncertainty in the year in which climate damages diverge at the 5% level (2049, 
as identified in Fig. 1). a, Impacts arising from all climate variables. b–f, Impacts 

arising separately from changes in annual mean temperature (b), daily 
temperature variability (c), total annual precipitation (d), the annual number  
of wet days (>1 mm) (e) and extreme daily rainfall (f) (see Methods for further 
definitions). Data on national administrative boundaries are obtained from  
the GADM database version 3.6 and are freely available for academic use 
(https://gadm.org/).

https://gadm.org/
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in economic vulnerability to temperature changes outweighs hetero
geneity in the magnitude of future warming (Supplementary Fig. 13a). 
Economic damages owing to daily temperature variability (Fig. 2c) 
exhibit a strong latitudinal polarisation, primarily reflecting the 
physical response of daily variability to greenhouse forcing in which 
increases in variability across lower latitudes (and Europe) contrast 
decreases at high latitudes25 (Supplementary Fig. 13b). These two 
temperature terms are the dominant determinants of the pattern of 
overall damages (Fig. 2a), which exhibits a strong polarity with dam-
ages across most of the globe except at the highest northern latitudes. 
Future changes in total annual precipitation mainly bring economic 
benefits except in regions of drying, such as the Mediterranean and 
central South America (Fig. 2d and Supplementary Fig. 13c), but these 
benefits are opposed by changes in the number of wet days, which 
produce damages with a similar pattern of opposite sign (Fig. 2e and 
Supplementary Fig. 13d). By contrast, changes in extreme daily rainfall 
produce damages in all regions, reflecting the intensification of daily 
rainfall extremes over global land areas29,30 (Fig. 2f and Supplemen-
tary Fig. 13e).

The spatial distribution of committed damages implies consider-
able injustice along two dimensions: culpability for the historical 
emissions that have caused climate change and pre-existing levels of 
socio-economic welfare. Spearman’s rank correlations indicate that 
committed damages are significantly larger in countries with smaller 
historical cumulative emissions, as well as in regions with lower current 
income per capita (Fig. 3). This implies that those countries that will 
suffer the most from the damages already committed are those that 
are least responsible for climate change and which also have the least 
resources to adapt to it.

To further quantify this heterogeneity, we assess the difference in 
committed damages between the upper and lower quartiles of regions 
when ranked by present income levels and historical cumulative emis-
sions (using a population weighting to both define the quartiles and 
estimate the group averages). On average, the quartile of countries 
with lower income are committed to an income loss that is 8.9 per-
centage points (or 61%) greater than the upper quartile (Extended 
Data Fig. 6), with a likely range of 3.8–14.7 percentage points across 
the uncertainty sampling of our damage projections (following the 

likelihood classification adopted by the IPCC). Similarly, the quartile of 
countries with lower historical cumulative emissions are committed to 
an income loss that is 6.9 percentage points (or 40%) greater than the 
upper quartile, with a likely range of 0.27–12 percentage points. These 
patterns reemphasize the prevalence of injustice in climate impacts31–33 
in the context of the damages to which the world is already committed 
by historical emissions and socio-economic inertia.

Contextualizing the magnitude of damages
The magnitude of projected economic damages exceeds previous 
literature estimates2,3, arising from several developments made on 
previous approaches. Our estimates are larger than those of ref. 2 (see 
first row of Extended Data Table 3), primarily because of the facts that 
sub-national estimates typically show a steeper temperature response 
(see also refs. 3,34) and that accounting for other climatic components 
raises damage estimates (Extended Data Fig. 5). However, we note that 
our empirical approach using first-differenced climate variables is 
conservative compared with that of ref. 2 in regard to the persistence 
of climate impacts on growth (see introduction and Methods section 
‘Empirical model specification: fixed-effects distributed lag models’), 
an important determinant of the magnitude of long-term damages19,21. 
Using a similar empirical specification to ref. 2, which assumes infinite 
persistence while maintaining the rest of our approach (sub-national 
data and further climate variables), produces considerably larger dam-
ages (purple curve of Extended Data Fig. 3). Compared with studies 
that do take the first difference of climate variables3,35, our estimates 
are also larger (see second and third rows of Extended Data Table 3). 
The inclusion of further climate variables (Extended Data Fig. 5) and 
a sufficient number of lags to more adequately capture the extent of 
impact persistence (Extended Data Figs. 1 and 2) are the main sources 
of this difference, as is the use of specifications that capture nonlin-
earities in the temperature response when compared with ref. 35. In 
summary, our estimates develop on previous studies by incorporating 
the latest data and empirical insights7,8, as well as in providing a robust 
empirical lower bound on the persistence of impacts on economic 
growth, which constitutes a middle ground between the extremes of 
the growth-versus-levels debate19,21 (Extended Data Fig. 3).
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Fig. 3 | The injustice of committed climate damages by cumulative historical 
emissions and income. Estimates of the median projected change in national 
income per capita across emission scenarios (RCP2.6 and RCP8.5) as well as 
climate model, empirical model and model parameter uncertainty in the year 
in which climate damages diverge at the 5% level (2049, as identified in Fig. 1) 
are plotted against cumulative national emissions per capita in 2020 (from the 

Global Carbon Project) and coloured by national income per capita in 2020 
(from the World Bank) in a and vice versa in b. In each panel, the size of each 
scatter point is weighted by the national population in 2020 (from the World 
Bank). Inset numbers indicate the Spearman’s rank correlation ρ and P-values 
for a hypothesis test whose null hypothesis is of no correlation, as well as the 
Spearman’s rank correlation weighted by national population.
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Compared with the fraction of variance explained by the empirical 

models historically (<5%), the projection of reductions in income of 19% 
may seem large. This arises owing to the fact that projected changes in 
climatic conditions are much larger than those that were experienced 
historically, particularly for changes in average temperature (Extended 
Data Fig. 4). As such, any assessment of future climate-change impacts 
necessarily requires an extrapolation outside the range of the historical 
data on which the empirical impact models were evaluated. Never-
theless, these models constitute the most state-of-the-art methods 
for inference of plausibly causal climate impacts based on observed 
data. Moreover, we take explicit steps to limit out-of-sample extrapola-
tion by capping the moderating variables of the interaction terms at 
the 95th percentile of the historical distribution (see Methods). This 
avoids extrapolating the marginal effects outside what was observed 
historically. Given the nonlinear response of economic output to annual 
mean temperature (Extended Data Fig. 1 and Extended Data Table 2), 
this is a conservative choice that limits the magnitude of damages that 
we project. Furthermore, back-of-the-envelope calculations indicate 
that the projected damages are consistent with the magnitude and 
patterns of historical economic development (see Supplementary 
Discussion Section 5).

Missing impacts and spatial spillovers
Despite assessing several climatic components from which economic 
impacts have recently been identified3,7,8, this assessment of aggregate 
climate damages should not be considered comprehensive. Important 
channels such as impacts from heatwaves31, sea-level rise36, tropical 
cyclones37 and tipping points38,39, as well as non-market damages such 
as those to ecosystems40 and human health41, are not considered in 
these estimates. Sea-level rise is unlikely to be feasibly incorporated 
into empirical assessments such as this because historical sea-level vari-
ability is mostly small. Non-market damages are inherently intractable 
within our estimates of impacts on aggregate monetary output and 
estimates of these impacts could arguably be considered as extra to 
those identified here. Recent empirical work suggests that accounting 
for these channels would probably raise estimates of these commit-
ted damages, with larger damages continuing to arise in the global 
south31,36–42.

Moreover, our main empirical analysis does not explicitly evaluate 
the potential for impacts in local regions to produce effects that ‘spill 
over’ into other regions. Such effects may further mitigate or amplify 
the impacts we estimate, for example, if companies relocate production 
from one affected region to another or if impacts propagate along sup-
ply chains. The current literature indicates that trade plays a substantial 
role in propagating spillover effects43,44, making their assessment at the 
sub-national level challenging without available data on sub-national 
trade dependencies. Studies accounting for only spatially adjacent 
neighbours indicate that negative impacts in one region induce further 
negative impacts in neighbouring regions45–48, suggesting that our pro-
jected damages are probably conservative by excluding these effects. In 
Supplementary Fig. 14, we assess spillovers from neighbouring regions 
using a spatial-lag model. For simplicity, this analysis excludes temporal 
lags, focusing only on contemporaneous effects. The results show that 
accounting for spatial spillovers can amplify the overall magnitude, and 
also the heterogeneity, of impacts. Consistent with previous literature, 
this indicates that the overall magnitude (Fig. 1) and heterogeneity 
(Fig. 3) of damages that we project in our main specification may be 
conservative without explicitly accounting for spillovers. We note that 
further analysis that addresses both spatially and trade-connected 
spillovers, while also accounting for delayed impacts using temporal 
lags, would be necessary to adequately address this question fully. 
These approaches offer fruitful avenues for further research but are 
beyond the scope of this manuscript, which primarily aims to explore 
the impacts of different climate conditions and their persistence.

Policy implications
We find that the economic damages resulting from climate change 
until 2049 are those to which the world economy is already commit-
ted and that these greatly outweigh the costs required to mitigate 
emissions in line with the 2 °C target of the Paris Climate Agreement 
(Fig. 1). This assessment is complementary to formal analyses of the 
net costs and benefits associated with moving from one emission path 
to another, which typically find that net benefits of mitigation only 
emerge in the second half of the century5. Our simple comparison of 
the magnitude of damages and mitigation costs makes clear that this 
is primarily because damages are indistinguishable across emissions 
scenarios—that is, committed—until mid-century (Fig. 1) and that they 
are actually already much larger than mitigation costs. For simplicity, 
and owing to the availability of data, we compare damages to mitigation 
costs at the global level. Regional estimates of mitigation costs may 
shed further light on the national incentives for mitigation to which 
our results already hint, of relevance for international climate policy. 
Although these damages are committed from a mitigation perspective, 
adaptation may provide an opportunity to reduce them. Moreover, 
the strong divergence of damages after mid-century reemphasizes 
the clear benefits of mitigation from a purely economic perspective, 
as highlighted in previous studies1,4,6,24.
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Methods

Historical climate data
Historical daily 2-m temperature and precipitation totals (in mm) are 
obtained for the period 1979–2019 from the W5E5 database. The W5E5 
dataset comes from ERA-5, a state-of-the-art reanalysis of historical 
observations, but has been bias-adjusted by applying version 2.0 of the 
WATCH Forcing Data to ERA-5 reanalysis data and precipitation data 
from version 2.3 of the Global Precipitation Climatology Project to bet-
ter reflect ground-based measurements49–51. We obtain these data on a 
0.5° × 0.5° grid from the Inter-Sectoral Impact Model Intercomparison 
Project (ISIMIP) database. Notably, these historical data have been 
used to bias-adjust future climate projections from CMIP-6 (see the 
following section), ensuring consistency between the distribution of 
historical daily weather on which our empirical models were estimated 
and the climate projections used to estimate future damages. These 
data are publicly available from the ISIMIP database. See refs. 7,8 for 
robustness tests of the empirical models to the choice of climate data 
reanalysis products.

Future climate data
Daily 2-m temperature and precipitation totals (in mm) are taken from 
21 climate models participating in CMIP-6 under a high (RCP8.5) and a 
low (RCP2.6) greenhouse gas emission scenario from 2015 to 2100. The 
data have been bias-adjusted and statistically downscaled to a common 
half-degree grid to reflect the historical distribution of daily tempera-
ture and precipitation of the W5E5 dataset using the trend-preserving 
method developed by the ISIMIP50,52. As such, the climate model data 
reproduce observed climatological patterns exceptionally well (Sup-
plementary Table 5). Gridded data are publicly available from the ISIMIP 
database.

Historical economic data
Historical economic data come from the DOSE database of sub- 
national economic output53. We use a recent revision to the DOSE data-
set that provides data across 83 countries, 1,660 sub-national regions 
with varying temporal coverage from 1960 to 2019. Sub-national 
units constitute the first administrative division below national,  
for example, states for the USA and provinces for China. Data come 
from measures of gross regional product per capita (GRPpc) or 
income per capita in local currencies, reflecting the values reported in 
national statistical agencies, yearbooks and, in some cases, academic  
literature. We follow previous literature3,7,8,54 and assess real sub- 
national output per capita by first converting values from local cur-
rencies to US dollars to account for diverging national inflationary 
tendencies and then account for US inflation using a US deflator. 
Alternatively, one might first account for national inflation and then 
convert between currencies. Supplementary Fig. 12 demonstrates that 
our conclusions are consistent when accounting for price changes 
in the reversed order, although the magnitude of estimated dam-
ages varies. See the documentation of the DOSE dataset for further 
discussion of these choices. Conversions between currencies are  
conducted using exchange rates from the FRED database of the  
Federal Reserve Bank of St. Louis55 and the national deflators from 
the World Bank56.

Future socio-economic data
Baseline gridded gross domestic product (GDP) and population data  
for the period 2015–2100 are taken from the middle-of-the-road sce-
nario SSP2 (ref. 15). Population data have been downscaled to a half- 
degree grid by the ISIMIP following the methodologies of refs. 57,58, 
which we then aggregate to the sub-national level of our economic  
data using the spatial aggregation procedure described below. Because 
current methodologies for downscaling the GDP of the SSPs use 
downscaled population to do so, per-capita estimates of GDP with a 

realistic distribution at the sub-national level are not readily available 
for the SSPs. We therefore use national-level GDP per capita (GDPpc) 
projections for all sub-national regions of a given country, assuming 
homogeneity within countries in terms of baseline GDPpc. Here we use 
projections that have been updated to account for the impact of the 
COVID-19 pandemic on the trajectory of future income, while remain-
ing consistent with the long-term development of the SSPs59. The choice 
of baseline SSP alters the magnitude of projected climate damages in 
monetary terms, but when assessed in terms of percentage change 
from the baseline, the choice of socio-economic scenario is incon-
sequential. Gridded SSP population data and national-level GDPpc 
data are publicly available from the ISIMIP database. Sub-national 
estimates as used in this study are available in the code and data  
replication files.

Climate variables
Following recent literature3,7,8, we calculate an array of climate vari-
ables for which substantial impacts on macroeconomic output have 
been identified empirically, supported by further evidence at the 
micro level for plausible underlying mechanisms. See refs. 7,8 for 
an extensive motivation for the use of these particular climate vari-
ables and for detailed empirical tests on the nature and robustness of 
their effects on economic output. To summarize, these studies have 
found evidence for independent impacts on economic growth rates 
from annual average temperature, daily temperature variability, total 
annual precipitation, the annual number of wet days and extreme daily 
rainfall. Assessments of daily temperature variability were motivated 
by evidence of impacts on agricultural output and human health, 
as well as macroeconomic literature on the impacts of volatility on 
growth when manifest in different dimensions, such as government 
spending, exchange rates and even output itself7. Assessments of 
precipitation impacts were motivated by evidence of impacts on 
agricultural productivity, metropolitan labour outcomes and con-
flict, as well as damages caused by flash flooding8. See Extended Data 
Table 1 for detailed references to empirical studies of these physical 
mechanisms. Marked impacts of daily temperature variability, total 
annual precipitation, the number of wet days and extreme daily rainfall 
on macroeconomic output were identified robustly across differ-
ent climate datasets, spatial aggregation schemes, specifications of 
regional time trends and error-clustering approaches. They were also 
found to be robust to the consideration of temperature extremes7,8. 
Furthermore, these climate variables were identified as having inde-
pendent effects on economic output7,8, which we further explain here 
using Monte Carlo simulations to demonstrate the robustness of the 
results to concerns of imperfect multicollinearity between climate 
variables (Supplementary Methods Section 2), as well as by using infor-
mation criteria (Supplementary Table 1) to demonstrate that includ-
ing several lagged climate variables provides a preferable trade-off 
between optimally describing the data and limiting the possibility of  
overfitting.

We calculate these variables from the distribution of daily, d, tem-
perature, Tx,d, and precipitation, Px,d, at the grid-cell, x, level for both 
the historical and future climate data. As well as annual mean tem-
perature, Tx y, , and annual total precipitation, Px,y, we calculate annual, 
y, measures of daily temperature variability, ∼Tx y, :

∼ ∑ ∑T
D

T T=
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12
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( − ) , (1)x y
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and extreme daily rainfall:

∑ H P P PPext = ( − 99.9 ) × , (3)x y
d

D

x d x x d,
=1

, ,

y

in which Tx,d,m,y is the grid-cell-specific daily temperature in month m 
and year y, Tx m y, ,  is the year and grid-cell-specific monthly, m, mean 
temperature, Dm and Dy the number of days in a given month m or year 
y, respectively, H the Heaviside step function, 1 mm the threshold used 
to define wet days and P99.9x is the 99.9th percentile of historical 
(1979–2019) daily precipitation at the grid-cell level. Units of the climate 
measures are degrees Celsius for annual mean temperature and daily 
temperature variability, millimetres for total annual precipitation and 
extreme daily precipitation, and simply the number of days for the 
annual number of wet days.

We also calculated weighted standard deviations of monthly rain-
fall totals as also used in ref. 8 but do not include them in our projec-
tions as we find that, when accounting for delayed effects, their effect 
becomes statistically indistinct and is better captured by changes in 
total annual rainfall.

Spatial aggregation
We aggregate grid-cell-level historical and future climate measures, as 
well as grid-cell-level future GDPpc and population, to the level of the 
first administrative unit below national level of the GADM database, 
using an area-weighting algorithm that estimates the portion of each 
grid cell falling within an administrative boundary. We use this as our 
baseline specification following previous findings that the effect of 
area or population weighting at the sub-national level is negligible7,8.

Empirical model specification: fixed-effects distributed lag 
models
Following a wide range of climate econometric literature16,60, we use 
panel regression models with a selection of fixed effects and time 
trends to isolate plausibly exogenous variation with which to maxi-
mize confidence in a causal interpretation of the effects of climate on 
economic growth rates. The use of region fixed effects, μr, accounts 
for unobserved time-invariant differences between regions, such as 
prevailing climatic norms and growth rates owing to historical and geo-
political factors. The use of yearly fixed effects, ηy, accounts for region-
ally invariant annual shocks to the global climate or economy such as 
the El Niño–Southern Oscillation or global recessions. In our baseline 
specification, we also include region-specific linear time trends, kry, to 
exclude the possibility of spurious correlations resulting from common 
slow-moving trends in climate and growth.

The persistence of climate impacts on economic growth rates is a 
key determinant of the long-term magnitude of damages. Methods for 
inferring the extent of persistence in impacts on growth rates have typi-
cally used lagged climate variables to evaluate the presence of delayed 
effects or catch-up dynamics2,18. For example, consider starting from 
a model in which a climate condition, Cr,y, (for example, annual mean 
temperature) affects the growth rate, Δlgrpr,y (the first difference of 
the logarithm of gross regional product) of region r in year y:

μ η k y αC εΔlgrp = + + + + , (4)r y r y r r y r y, , ,

which we refer to as a ‘pure growth effects’ model in the main text. 
Typically, further lags are included,

∑μ η k y α C εΔlgrp = + + + + , (5)r y r y r
L

L r y L r y,
=0

NL

, − ,

and the cumulative effect of all lagged terms is evaluated to assess the 
extent to which climate impacts on growth rates persist. Following 
ref. 18, in the case that,

∑ ∑α α α α< 0 for < 0 or > 0 for > 0, (6)
L

L
L

L
=0

NL

0
=0

NL

0

the implication is that impacts on the growth rate persist up to NL 
years after the initial shock (possibly to a weaker or a stronger extent), 
whereas if

∑ α = 0, (7)
L

L
=0

NL

then the initial impact on the growth rate is recovered after NL years 
and the effect is only one on the level of output. However, we note that 
such approaches are limited by the fact that, when including an insuf-
ficient number of lags to detect a recovery of the growth rates, one 
may find equation (6) to be satisfied and incorrectly assume that a 
change in climatic conditions affects the growth rate indefinitely. In 
practice, given a limited record of historical data, including too few 
lags to confidently conclude in an infinitely persistent impact on the 
growth rate is likely, particularly over the long timescales over which 
future climate damages are often projected2,24. To avoid this issue, we 
instead begin our analysis with a model for which the level of output, 
lgrpr,y, depends on the level of a climate variable, Cr,y:

μ η k y αC εlgrp = + + + + . (8)r y r y r r y r y, , ,

Given the non-stationarity of the level of output, we follow the lit-
erature19 and estimate such an equation in first-differenced form as,

μ η k y α C εΔlgrp = + + + Δ + , (8)r y r y r r y r y, , ,

which we refer to as a model of ‘pure level effects’ in the main text. 
This model constitutes a baseline specification in which a permanent 
change in the climate variable produces an instantaneous impact on 
the growth rate and a permanent effect only on the level of output.  
By including lagged variables in this specification,

∑μ η k y α C εΔlgrp = + + + Δ + , (9)r y r y r
L

L r y L r y,
=0

NL

, − ,

we are able to test whether the impacts on the growth rate persist any 
further than instantaneously by evaluating whether αL > 0 are statisti-
cally significantly different from zero. Even though this framework is 
also limited by the possibility of including too few lags, the choice of 
a baseline model specification in which impacts on the growth rate 
do not persist means that, in the case of including too few lags, the 
framework reverts to the baseline specification of level effects. As 
such, this framework is conservative with respect to the persistence 
of impacts and the magnitude of future damages. It naturally avoids 
assumptions of infinite persistence and we are able to interpret any 
persistence that we identify with equation (9) as a lower bound on the 
extent of climate impact persistence on growth rates. See the main text 
for further discussion of this specification choice, in particular about its 
conservative nature compared with previous literature estimates, such  
as refs. 2,18.

We allow the response to climatic changes to vary across regions, 
using interactions of the climate variables with historical average 
(1979–2019) climatic conditions reflecting heterogenous effects iden-
tified in previous work7,8. Following this previous work, the moderating 
variables of these interaction terms constitute the historical average 
of either the variable itself or of the seasonal temperature difference, 
T̂r, or annual mean temperature, Tr , in the case of daily temperature 
variability7 and extreme daily rainfall, respectively8.

The resulting regression equation with N and M lagged variables, 
respectively, reads:
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in which Δlgrpr,y is the annual, regional GRPpc growth rate, measured 
as the first difference of the logarithm of real GRPpc, following previ-
ous work2,3,7,8,18,19. Fixed-effects regressions were run using the fixest 
package in R (ref. 61).

Estimates of the coefficients of interest αi,L are shown in Extended 
Data Fig. 1 for N = M = 10 lags and for our preferred choice of the number 
of lags in Supplementary Figs. 1–3. In Extended Data Fig. 1, errors are 
shown clustered at the regional level, but for the construction of dam-
age projections, we block-bootstrap the regressions by region 1,000 
times to provide a range of parameter estimates with which to sample 
the projection uncertainty (following refs. 2,31).

Spatial-lag model
In Supplementary Fig. 14, we present the results from a spatial-lag 
model that explores the potential for climate impacts to ‘spill over’ 
into spatially neighbouring regions. We measure the distance between 
centroids of each pair of sub-national regions and construct spatial 
lags that take the average of the first-differenced climate variables and 
their interaction terms over neighbouring regions that are at distances 
of 0–500, 500–1,000, 1,000–1,500 and 1,500–2000 km (spatial lags, 
‘SL’, 1 to 4). For simplicity, we then assess a spatial-lag model without 
temporal lags to assess spatial spillovers of contemporaneous climate 
impacts. This model takes the form:



∑

∑
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∑

∑
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in which SL indicates the spatial lag of each climate variable and interac-
tion term. In Supplementary Fig. 14, we plot the cumulative marginal 
effect of each climate variable at different baseline climate conditions 
by summing the coefficients for each climate variable and interaction 
term, for example, for average temperature impacts as:

∑ α α TME = ( + ). (12)
N

r
SL=0

1,SL 2,SL −SL

These cumulative marginal effects can be regarded as the over-
all spatially dependent impact to an individual region given a one- 
unit shock to a climate variable in that region and all neighbouring 
regions at a given value of the moderating variable of the interaction  
term.

Constructing projections of economic damage from future 
climate change
We construct projections of future climate damages by applying the 
coefficients estimated in equation (10) and shown in Supplementary 
Tables 2–4 (when including only lags with statistically significant effects 
in specifications that limit overfitting; see Supplementary Methods Sec-
tion 1) to projections of future climate change from the CMIP-6 models. 
Year-on-year changes in each primary climate variable of interest are 
calculated to reflect the year-to-year variations used in the empirical 
models. 30-year moving averages of the moderating variables of the 
interaction terms are calculated to reflect the long-term average of 
climatic conditions that were used for the moderating variables in 
the empirical models. By using moving averages in the projections, we 
account for the changing vulnerability to climate shocks based on the 
evolving long-term conditions (Supplementary Figs. 10 and 11 show 
that the results are robust to the precise choice of the window of this 
moving average). Although these climate variables are not differenced, 
the fact that the bias-adjusted climate models reproduce observed 
climatological patterns across regions for these moderating variables 
very accurately (Supplementary Table 6) with limited spread across 
models (<3%) precludes the possibility that any considerable bias or 
uncertainty is introduced by this methodological choice. However, we 
impose caps on these moderating variables at the 95th percentile at 
which they were observed in the historical data to prevent extrapola-
tion of the marginal effects outside the range in which the regressions 
were estimated. This is a conservative choice that limits the magnitude 
of our damage projections.

Time series of primary climate variables and moderating climate 
variables are then combined with estimates of the empirical model 
parameters to evaluate the regression coefficients in equation (10), 
producing a time series of annual GRPpc growth-rate reductions 
for a given emission scenario, climate model and set of empirical 
model parameters. The resulting time series of growth-rate impacts 
reflects those occurring owing to future climate change. By contrast, 
a future scenario with no climate change would be one in which cli-
mate variables do not change (other than with random year-to-year 
fluctuations) and hence the time-averaged evaluation of equation (10) 
would be zero. Our approach therefore implicitly compares the 
future climate-change scenario to this no-climate-change baseline  
scenario.

The time series of growth-rate impacts owing to future climate 
change in region r and year y, δr,y, are then added to the future baseline 
growth rates, πr,y (in log-diff form), obtained from the SSP2 scenario 
to yield trajectories of damaged GRPpc growth rates, ρr,y. These tra-
jectories are aggregated over time to estimate the future trajectory 
of GRPpc with future climate impacts:

∑

∑

ρ

π δ

GRPpc = GRPpc

= GRPpc (1 + + ) ,

(13)
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in which GRPpcr,y=2020 is the initial log level of GRPpc. We begin damage 
estimates in 2020 to reflect the damages occurring since the end of 
the period for which we estimate the empirical models (1979–2019) 
and to match the timing of mitigation-cost estimates from most IAMs 
(see below).

For each emission scenario, this procedure is repeated 1,000 times 
while randomly sampling from the selection of climate models, the 
selection of empirical models with different numbers of lags (shown 
in Supplementary Figs. 1–3 and Supplementary Tables 2–4) and boot-
strapped estimates of the regression parameters. The result is an 
ensemble of future GRPpc trajectories that reflect uncertainty from 



both physical climate change and the structural and sampling uncer-
tainty of the empirical models.

Estimates of mitigation costs
We obtain IPCC estimates of the aggregate costs of emission mitiga-
tion from the AR6 Scenario Explorer and Database hosted by IIASA23. 
Specifically, we search the AR6 Scenarios Database World v1.1 for IAMs 
that provided estimates of global GDP and population under both a 
SSP2 baseline and a SSP2-RCP2.6 scenario to maintain consistency with 
the socio-economic and emission scenarios of the climate damage 
projections. We find five IAMs that provide data for these scenarios, 
namely, MESSAGE-GLOBIOM 1.0, REMIND-MAgPIE 1.5, AIM/GCE 2.0, 
GCAM 4.2 and WITCH-GLOBIOM 3.1. Of these five IAMs, we use the 
results only from the first three that passed the IPCC vetting procedure 
for reproducing historical emission and climate trajectories. We then 
estimate global mitigation costs as the percentage difference in global 
per capita GDP between the SSP2 baseline and the SSP2-RCP2.6 emis-
sion scenario. In the case of one of these IAMs, estimates of mitigation 
costs begin in 2020, whereas in the case of two others, mitigation costs 
begin in 2010. The mitigation cost estimates before 2020 in these two 
IAMs are mostly negligible, and our choice to begin comparison with 
damage estimates in 2020 is conservative with respect to the relative 
weight of climate damages compared with mitigation costs for these 
two IAMs.

Data availability
Data on economic production and ERA-5 climate data are publicly 
available at https://doi.org/10.5281/zenodo.4681306 (ref. 62) and 
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, 
respectively. Data on mitigation costs are publicly available at https://
data.ene.iiasa.ac.at/ar6/#/downloads. Processed climate and eco-
nomic data, as well as all other necessary data for reproduction of the 
results, are available at the public repository https://doi.org/10.5281/
zenodo.10562951 (ref. 63).

Code availability
All code necessary for reproduction of the results is available at the 
public repository https://doi.org/10.5281/zenodo.10562951 (ref. 63).
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Article

Extended Data Fig. 1 | Constraining the persistence of historical climate 
impacts on economic growth rates. The results of a panel-based fixed-effects 
distributed lag model for the effects of annual mean temperature (a), daily 
temperature variability (b), total annual precipitation (c), the number of wet 
days (d) and extreme daily precipitation (e) on sub-national economic growth 
rates. Point estimates show the effects of a 1 °C or one standard deviation 
increase (for temperature and precipitation variables, respectively) at the 
lower quartile, median and upper quartile of the relevant moderating variable 
(green, orange and purple, respectively) at different lagged periods after the 
initial shock (note that these are not cumulative effects). Climate variables are 
used in their first-differenced form (see main text for discussion) and the 

moderating climate variables are the annual mean temperature, seasonal 
temperature difference, total annual precipitation, number of wet days and 
annual mean temperature, respectively, in panels a–e (see Methods for further 
discussion). Error bars show the 95% confidence intervals having clustered 
standard errors by region. The within-region R2, Bayesian and Akaike information 
criteria for the model are shown at the top of the figure. This figure shows results 
with ten lags for each variable to demonstrate the observed levels of persistence, 
but our preferred specifications remove later lags based on the statistical 
significance of terms shown above and the information criteria shown in 
Extended Data Fig. 2. The resulting models without later lags are shown in 
Supplementary Figs. 1–3.



Extended Data Fig. 2 | Incremental lag-selection procedure using 
information criteria and within-region R2. Starting from a panel-based fixed- 
effects distributed lag model estimating the effects of climate on economic 
growth using the real historical data (as in equation (4)) with ten lags for all 
climate variables (as shown in Extended Data Fig. 1), lags are incrementally 
removed for one climate variable at a time. The resulting Bayesian and Akaike 
information criteria are shown in a–e and f–j, respectively, and the within-region 
R2 and number of observations in k–o and p–t, respectively. Different rows 

show the results when removing lags from different climate variables, ordered 
from top to bottom as annual mean temperature, daily temperature variability, 
total annual precipitation, the number of wet days and extreme annual 
precipitation. Information criteria show minima at approximately four lags for 
precipitation variables and ten to eight for temperature variables, indicating 
that including these numbers of lags does not lead to overfitting. See 
Supplementary Table 1 for an assessment using information criteria to 
determine whether including further climate variables causes overfitting.
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Extended Data Fig. 3 | Damages in our preferred specification that provides 
a robust lower bound on the persistence of climate impacts on economic 
growth versus damages in specifications of pure growth or pure level 
effects. Estimates of future damages as shown in Fig. 1 but under the emission 
scenario RCP8.5 for three separate empirical specifications: in orange our 
preferred specification, which provides an empirical lower bound on the 
persistence of climate impacts on economic growth rates while avoiding 
assumptions of infinite persistence (see main text for further discussion); in 
purple a specification of ‘pure growth effects’ in which the first difference of 
climate variables is not taken and no lagged climate variables are included (the 
baseline specification of ref. 2); and in pink a specification of ‘pure level effects’ 
in which the first difference of climate variables is taken but no lagged terms 
are included.



Extended Data Fig. 4 | Climate changes in different variables as a function of 
historical interannual variability. Changes in each climate variable of interest 
from 1979–2019 to 2035–2065 under the high-emission scenario SSP5-RCP8.5, 
expressed as a percentage of the historical variability of each measure. Historical 
variability is estimated as the standard deviation of each detrended climate 
variable over the period 1979–2019 during which the empirical models were 

identified (detrending is appropriate because of the inclusion of region-specific 
linear time trends in the empirical models). See Supplementary Fig. 13 for 
changes expressed in standard units. Data on national administrative boundaries 
are obtained from the GADM database version 3.6 and are freely available for 
academic use (https://gadm.org/).

https://gadm.org/
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Extended Data Fig. 5 | Contribution of different climate variables to overall 
committed damages. a, Climate damages in 2049 when using empirical models 
that account for all climate variables, changes in annual mean temperature only 
or changes in both annual mean temperature and one other climate variable 
(daily temperature variability, total annual precipitation, the number of wet 
days and extreme daily precipitation, respectively). b, The cumulative marginal 

effects of an increase in annual mean temperature of 1 °C, at different baseline 
temperatures, estimated from empirical models including all climate variables 
or annual mean temperature only. Estimates and uncertainty bars represent 
the median and 95% confidence intervals obtained from 1,000 block-bootstrap 
resamples from each of three different empirical models using eight, nine or 
ten lags of temperature terms.



Extended Data Fig. 6 | The difference in committed damages between the 
upper and lower quartiles of countries when ranked by GDP and cumulative 
historical emissions. Quartiles are defined using a population weighting, as 
are the average committed damages across each quartile group. The violin 
plots indicate the distribution of differences between quartiles across the two 
extreme emission scenarios (RCP2.6 and RCP8.5) and the uncertainty sampling 
procedure outlined in Methods, which accounts for uncertainty arising from 
the choice of lags in the empirical models, uncertainty in the empirical model 
parameter estimates, as well as the climate model projections. Bars indicate 
the median, as well as the 10th and 90th percentiles and upper and lower sixths 
of the distribution reflecting the very likely and likely ranges following the 
likelihood classification adopted by the IPCC.
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Extended Data Table 1 | A summary of several physical mechanisms that plausibly underlie the impact of the different 
climate variables on macroeconomic growth, with references to empirical evidence

This summary is not intended to be an exhaustive list of all mechanisms or references. In the case of most climate variables, several plausible physical mechanisms supported by empirical 
evidence exist. The only exception here is the number of wet days, for which plausible mechanisms are listed but empirical evidence does not yet exist (as far as the authors are aware). The use 
of the number of wet days in the main empirical models is therefore guided primarily by the empirical evidence indicating robust impacts on economic growth8. References 64–76 in the table.



Extended Data Table 2 | Regression results for the historical effects of different climate variables on sub-national economic 
growth rates in the period 1979–2019

Numbers show the point estimates for the effect of each climate variable and their interaction term on sub-national economic growth rates (in percentage points), having estimated equation (4) 
with ten lags for each climate variable (that is, each table entry denotes a specific regression coefficient αX,L of the same model as indicated in equation (4)). Standard errors are shown in  
parentheses and *, ** and *** denote significance at the 5%, 1% and 0.1% levels, respectively, having clustered standard errors by region. Formulas for climate variables and their interaction 
terms are denoted as in equation (4). Note that an interpretation of the significance of the effects of a given climate variable requires an assessment of both the coefficient of the climate  
variable itself as well as its interaction term. Extended Data Fig. 1 provides the opportunity for such an interpretation by plotting the estimated marginal effects with confidence intervals. The R2, 
within-region R2 (the R2 along the temporal dimension), Akaike information criterion (AIC), Bayesian information criterion (BIC) and number of observations are also shown.
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Extended Data Table 3 | A comparison of the magnitude of estimated economic damage from future climate change across 
recent panel-based empirical studies

All studies use fixed-effects panel regressions. The first four columns describe differences in the underlying data and empirical specification. The third column shows the nature of the baseline 
specification without lags with regards to growth or level effects (see main text for further discussion). The last column compares projections of future economic damage under RCP8.5 by 2100 
as reported by the respective study.
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1 Introduction

Wildfire activity has increased substantially over the US in the last two decades, with the
largest increases observed in the western US (1–5 ). As a result, air pollution that is as-
sociated with wildfire smoke (specifically fine particulate matter, PM2.5) has significantly
increased (6–9 ). Given established relationships between ambient smoke PM2.5 exposure
and poor health (10–13 ), these increases have likely worsened several health outcomes.
In many parts of the western US, smoke PM2.5 accounted for over 50% of the annual con-
centration of PM2.5 in extreme smoke years (14 , 15 ), and has led to stagnation or even
reversal of the substantial improvements in ambient PM2.5 concentrations over the last
two decades – improvements brought about substantially by the Clean Air Act and its
amendments (16–18 ). Importantly, and unlike most other sources of air pollutants, wild-
fire smoke is currently unregulated under the Clean Air Act, and thus quantifying drivers
of past and future wildfire activity and smoke is central to understanding how this grow-
ing source of pollution will change in coming decades, how health might be impacted, and
whether policy should respond.

Mounting evidence has suggested that human-induced climate change is a leading cause
for the increased wildfire activity, especially in forested areas in the western US (2–4 ,
19–21 ), alongside other important causes that include historical fire suppression and the
expansion of human activities into forested areas (22 ). A warming climate can influence
wildfire activities by altering the aridity of the fuel (2 , 23 ), conditions for fire spread (24 ,
25 ), as well as lightning ignitions (26 ). For the western US, many studies have projected
increasing wildfire risks under a warming climate primarily due to increasing fuel aridity
under higher ambient temperature (27–29 ).

However, the relationship between a warming climate and the resulting increase in wild-
fire smoke and health impacts remains poorly quantified, and as a result, leading esti-
mates of climate impacts in the US and globally do not consider health impacts from wild-
fire smoke (30–32 ). Several studies use regression models or land-vegetation-fire mod-
els to first project the wildfire activities under future climate and then utilize chemical
transport models to estimate changes in smoke PM2.5 concentrations (33–37 ) and asso-
ciated health outcomes (38–41 ). However, prior projections of future mortality due to
climate-driven fire smoke span a very wide range (42 ) – reflecting an important knowledge
gap given the large potential impacts. Uncertainties in the prior projections come from
three key sources. First, large uncertainties exist in how wildfire emissions respond to cli-
mate change (43 ). Second, modeling fire impacts on surface PM2.5 often faces large uncer-
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tainty in emission inventories (44 , 45 ), the vertical distribution of emission profiles (46 ),
and fire-weather interactions (47 ), which results in modeled smoke concentrations that
sometimes differ by an order of magnitude when compared to surface observations (48 ).
Third, most prior studies quantify the health impacts of smoke PM2.5 by applying exist-
ing concentration-response functions derived from total PM2.5 exposures, which could fail
to capture unique health impacts of smoke PM2.5 exposure, such as from smoke-specific
chemical composition and toxicity (49 ) or behavioral responses unique to smoke events
(13 ).

Because of these challenges, very few studies to date have projected future smoke PM2.5

concentrations using empirically grounded relationships between climate, wildfire, and
PM2.5 (40 , 50 ). To our knowledge, no studies have estimated the future smoke mortal-
ity burden accounting for the unique health impacts of smoke PM2.5 using dose-response
functions that are specific to smoke pollution exposure. Absent this quantification, lead-
ing estimates of the societal impact of climate change – many of which are directly used to
guide policy – do not incorporate potential mortality impacts due to wildfire smoke PM2.5

(31 , 32 , 51 ). Detailed projections of future smoke PM2.5 exposure and health burden are
crucial to inform policies to mitigate and adapt to the negative impacts of smoke PM2.5 on
humans.

In this paper, we develop a comprehensive, data-driven approach that directly address all
three of the above challenges. First, to improve understanding of the climate-fire emissions
relationship, we construct an ensemble of statistical and machine learning models that pre-
dict fire emissions as a function of climate and land-use variables over North America (in-
cluding Mexico and Canada), using observational data from 2001-2021. By using historical
data that includes recent years with extreme weather conditions (e.g., drought in the west-
ern US in 2020), which is projected to increase under future climate change, our ensemble
of models can better characterize how climate influences wildfire emissions in future sce-
narios. By modeling changes in wildfire emissions in Canada and Mexico, our approach
can also capture important transboundary influences on US smoke PM2.5 and health ef-
fects, such as those that occurred in the summer of 2023 (52 ).

Second, we use surface wildfire smoke PM2.5 estimates from (8 ) to establish an empirical
relationship between wildfire emissions and smoke PM2.5 concentration across the contigu-
ous US at 10 km resolution, accounting for variation in wind directions and spatial trans-
port. Our approach fits the observed surface PM2.5 data well and allows us to efficiently
predict smoke concentration in one location from changes in wildfire emissions in another
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(Methods). Third, to address the challenge of accurately estimating the health impacts
of ambient smoke exposure, we empirically estimate the effects of annual smoke PM2.5

concentration on annual mortality rates using county-level data from 2006 to 2019 on all
recorded deaths in the US. We estimate dose-response functions using a Poisson model
in which mortality rates are allowed to respond non-linearly to variation in smoke PM2.5

, consistent with prior papers that suggest responses could be non-linear (13 , 53 ), while
flexibly controlling for temperature, precipitation, and a broad range of possible spatial
and temporal confounds (Methods).

Finally, we combine the empirical relationships between climate, wildfire emissions, smoke
PM2.5, and mortality rates derived above with projected climate variables derived from
CMIP6 global climate model ensembles to generate future projections of smoke PM2.5 and
mortality burden. We project the annual average smoke PM2.5 concentration in each 10
km location across the contiguous US (48 states and the District of Columbia) between
2046 and 2055 under different climate scenarios. We then quantify changes in mortality
rates in each county in the contiguous US between 2050 and the historical period, and
the difference across three future emissions scenarios representing ambitious emissions
reductions, moderate emissions, and a high-emissions scenario (SSP1-2.6, SSP2-4.5, and
SSP3-7.0) to quantify the potential health benefits from climate mitigation and adapta-
tion. We value future excess deaths using standard VSL-based methods and quantify the
uncertainty in the final projected mortality burden across the different components of our
modeling framework. Finally, we compare our mortality estimates with estimates of direct
temperature-related mortality burden and aggregate climate costs from prior work (51 ,
54 , 55 ) to contextualize the importance of climate-smoke channels relative to other known
climate impacts.

We report four main findings. First, using an ensemble of statistical and machine learn-
ing models, we find that wildfire smoke is likely to substantially increase under future
climate change, with average exposure across the US population increasing 2-3 fold in
2050 relative to 2011-2020. This large increase is a result of the tight coupling between
fuel aridity and wildfire activity, and the large projected changes in fuel aridity under a
warming climate. Second, using historical data, we show that increases in annual expo-
sure to smoke PM2.5 are associated with higher county-level annual mortality rates across
the contiguous US, with increases detectable at even very low levels of wildfire smoke ex-
posure. Our findings are consistent with a host of recent work suggesting that there is
no safe level of air pollution exposure (e.g. (56 )). Third, using our empirically-derived
dose response functions, we estimate that smoke PM2.5 will cause 23,800 to 27,800 annual
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excess deaths by mid-century across the three climate scenarios – an increase of 51-76%
relative to 2011-2020 estimates. Even under a low warming scenario (SSP1-2.6), we esti-
mate that climate-induced smoke PM2.5 will lead to 8,000 more annual excess deaths in
the US than were observed in the last decade, suggesting that even aggressive mitigation
will not substantially limit this source of climate damages through mid-century. Fourth,
when monetized, climate-induced smoke deaths result in annual damages of $244 billion by
mid-century, comparable to prior aggregate estimates of all other economic damage due to
climate change in the US (51 , 55 ). We also estimate that increasing deaths from smoke
offset about two-thirds of one of the largest (and frequently under-recognized) benefits of
climate change in the US: the substantial decline in cold-related deaths that is expected
in the US in coming decades (54 ). Our research suggests that the health cost of climate-
driven wildfire smoke could be among the most important and costly consequences of a
warming climate in the US.

2 Data and empirical approach

2.1 Wildfire and smoke PM2.5 datasets

We use annual fire emissions from the fourth version of the Global Fire Emissions Database
with small fires (GFED4s) from 2001-2021 (57 ). The native spatial resolution of GFED4s
is 0.25×0.25 degrees. We use the estimated dry matter (DM) emissions as our primary
variable for the emissions. DM emissions capture the amount of biomass being consumed
in the burning process. We choose DM emissions as the proxy for overall fire emissions
(rather than individual emissions species such as black carbon or NOx) due to uncertainty
in the emission factors used in GFED4s. GFED4s include fire emissions from agriculture
fires and land-use change as well. However, as wildland fire emissions dominate in most
study regions (especially in western US and Canada where we see the largest effects), we
refer to our estimates as “wildfire emissions” and “wildfire smoke” for simplicity and consis-
tency (Table S1).

For smoke PM2.5, we use gridded daily wildfire smoke PM2.5 predictions for the contigu-
ous US at 10 km resolution from January 1, 2006 to December 31, 2020 derived from (8 ).
This dataset specifically estimates the ambient PM2.5 concentration due to wildfire smoke
influence by constructing a machine learning model that uses smoke plume data, remotely-
sensed variables, and meteorological variables to predict the anomalous increases in surface
PM2.5 measured by surface air quality monitors during wildfire. To estimate contributions
of smoke PM2.5 to total PM2.5, we use the total PM2.5 estimates from (58 ), which com-
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bines satellite retrievals of aerosol optical depth, chemical transport modeling, and ground-
based measurements to estimate monthly total ambient PM2.5 concentrations.

2.2 Climate and meteorological datasets

We use climate and land use variables to predict wildfire DM emissions. The climate vari-
ables include 2m air temperature, precipitation, relative humidity, soil moisture (of the top
soil layer), vapor pressure deficit (VPD), wind speed (at 10m level), and runoff (sum of
surface and subsurface). We include these climate variables because they are available in
both the historical data and the climate projections from CMIP6 climate model ensem-
bles. Our models do not include other potentially important variables such as fire weather
index and fuel moisture (as used in (59 )) because they are unavailable in future projec-
tions. These climate variables are derived from the North American Regional Reanaly-
sis (NARR) (60 ), with the exception of soil moisture. Soil moisture is derived from the
VIC land-surface model of phase 2 of the North American Land Data Assimilation System
(NLDAS-2) (61 ) and only available in the contiguous US. The native spatial resolution is
32 km for NARR variables and 0.125 degree for NLDAS-2 variables. Land use variables
are derived from the North American Land Change Monitoring System (NALCMS) for the
year 2015 (62 ). More specifically, we use three land use variables which each represents
the percentage of area in three categories: cropland, forest, and grassland. The native res-
olution of land use variables is 30m. Because high-resolution projections of future land use
change are not available, the land use variables are held constant across time in both the
historical and future periods.

For future climate change scenarios, we use the projected climate variables from the Cou-
pled Model Intercomparison Project Phase 6 (CMIP6). We examine three primary climate-
forcing scenarios featured by the IPCC, which are constructed as pairs between the Shared
Socio-economic Pathways (SSPs) and the Representative Concentration Pathways (RCPs)
(63 ). We use SSP1-2.6 (which the IPCC refers to as the “Low” scenario), SSP2-4.5 (which
the IPCC refers to as the “Intermediate” scenario), and SSP3-7.0 (which the IPCC refers
to as the “High” scenario). We use projections from 28 global climate models that include
the selected variables that cover the study region (Table S6). Following practice of IPCC,
we select only one ensemble realization for each model – we use the first ensemble variant
of each model (“r1i1p1f1”) when possible.

When modeling the relationship between wildfire emissions and smoke PM2.5, we also in-
clude meteorological variables in the regression model. The daily gridded meteorological
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variables are derived from gridMET (64 ). In our main specification, we aggregate the me-
teorological variable to the monthly and smoke grid cell level. We include the splines of
daily surface temperature, precipitation, dewpoint temperature, boundary layer height, air
pressure, 10m wind direction (U and V components) and wind speed.

2.3 Predicting wildfire emissions

We construct an ensemble of statistical and machine learning models to predict wildfire
emissions using climate and land use variables. Our models predict the annual dry mat-
ter (DM) emissions derived from GFED4s emission inventory using climate and land-use
variables from 2001 to 2021. We build separate models for each of the five regions (western
US, southeastern US, northeastern US, Canada-Alaska, and Mexico) to capture the re-
gionally heterogeneous relationships between climate, land type and wildfire emissions. For
each region, we construct six different models as potential model candidates: linear regres-
sion model, linear regression model with log outcomes, Least Absolute Shrinkage and Se-
lection Operator (LASSO) models, LASSO models with log outcomes, 2-layer Neural Net-
work (NN) model, and NN models with log outcomes. These six algorithms are selected to
cover a possible range of model candidates with varying desired characteristics – including
simple models that are commonly used in prior studies (e.g., the linear and log-linear re-
gression models), models that are easy to interpret (e.g., the linear regression and LASSO
models), and more flexible machine learning models that are used in prior studies (e.g., the
NN model).

One key challenge for this prediction problem is that the fire occurrence, spread, and re-
sulting emissions at local scales are often fairly stochastic due to varying and hard-to-
predict non-climate factors, including where and when human and natural ignitions occur
and how much suppression effort is applied. Therefore, to better capture the predictable
components of the climate-wildfire relationship, we create models to predict annual emis-
sions aggregated at different spatial scales for each of the six model types mentioned above.
We aggregate the outcome variables and model features at four spatial scales: the grid
scale (0.25 deg, 26956 cells in total), the North America Level-3 Ecoregion scale (177 re-
gions in total), the North America Level-2 Ecoregion scale (51 regions in total), and the
regional scale (5 regions in total). We then select the spatial resolution that optimizes
model performance for each model type (as described below), allowing the optimal spa-
tial resolution to differ across different model types and regions (see Figure S3 for model
performances across spatial scales).
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To evaluate the model performance, we use nested leave-one-out cross-validations (LOOCV)
at the temporal scale. We divide our data into 21 temporal folds, each including one year
of data. For each holdout fold, we train the model using the remaining 20 folds of data
with hyper-parameters selected using an inner-loop 5-fold CV within the training data.
We then obtain out-of-sample predictions for the holdout fold and repeat this process to
obtain out-of-sample predictions for the entire time period. As we focus on projecting the
future wildfire emissions over a 10-year period (i.e. decadal averages) under future climate
scenarios, we thus evaluate the performance of our models on similar 10-year intervals. We
compute the moving averages of predicted and observed emissions over 10-year moving
windows. We compute two metrics and use them as the basis for evaluating the perfor-
mance of each model: 1) the root mean square error between predictions and observations,
and 2) the prediction biases of the highest-emitting 10-year period. The first metric al-
lows us to assess the model performance across years with different climate conditions to
detect differences between current and future climate for different climate scenarios. The
second metric allows us to assess the model performance under the extreme smoke condi-
tions which are more likely to occur under future climate. To obtain the final model that
can be used for future projections, we create an “ensemble model” which combines the pre-
dictions from the selected base models with the corresponding optimal spatial resolution.
The selected models and their performances can be found in Table S2.

2.4 Quantifying fire impacts on smoke PM2.5

To estimate smoke PM2.5 concentrations associated with future wildfire emissions, we de-
sign a statistical approach to establish an empirical relationship between ambient smoke
PM2.5 from (8 ) and wildfire emissions derived from GFED4s. We estimate the relationship
between wildfire emissions and smoke PM2.5 concentration across the contiguous US (48
states and the District of Columbia) at 10 km resolution, accounting for variation in wind
directions and atmospheric transport. This approach allows us to efficiently predict smoke
concentration in one location from changes in wildfire emissions in another. Despite using
estimated DM emissions from GFED4s as an input, our estimates of smoke PM2.5 concen-
trations strongly predict the variations in the empirical estimates of surface smoke PM2.5

concentrations, and are thus directly constrained by surface PM2.5 measurement during
wildfire episodes.

Specifically, we use the following regression equation to empirically quantify the impacts of
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the wildfire DM emissions on smoke PM2.5 in the US in our historical data:

Smokeiym =
∑
d,w

βdw∆Emisdw,iym + γWiym + ηy + ψm + θi + ϵiym (1)

where Smokeiym denotes the smoke PM2.5 at grid cell i (resolution: 10 km), year y and
month-of-year m. Emisdw,iym denotes the wildfire DM emissions that in the distance bin d
and wind direction w (w ∈ {upwind, other, downwind}) of the smoke location i on month-
of-year m and year y. In our main specification, we estimate the impacts of wildfire DM
emissions at different distances from the smoke location: <50 km, 50-100 km, 100-200 km,
200-350 km, 350-500 km, 500-750 km, 750-1000 km, 1000-1500 km, 1500-2000 km, >2000
km. Wiym are the meteorological variables at the grid cell i (as described in the dataset
section). We include these meteorological variables to capture potential meteorological
variability that could influence ambient PM2.5 concentrations. Our main specification in-
cludes linear year trend (ηy) and month-of-year fixed effects (ψm) to capture the long-term
trend and seasonality of smoke PM2.5 concentration, and grid cell-level fixed effects (θi) to
control for the time-invariant unobserved factors at the grid cell location. ϵiym represents
the error term.

To better capture the atmospheric transport of smoke PM2.5, we divide the wildfire emis-
sions (from a given distance bin) into three categories depending on wind direction and
the location of fire. Following methods in (65 ), wildfire emissions are classified into “up-
wind” or “downwind”, depending on whether the wildfire location is at the upwind or down-
wind direction of the smoke grid cell. We combine daily emissions with daily wind direc-
tion (10m wind) to calculate the daily emission from each wind direction and further ag-
gregate to the monthly level.

Many previous studies have demonstrated that wildfire emission factors (e.g., mass of or-
ganic carbon particles emitted from burning one kg fuel) strongly depend on the combus-
tion conditions (e.g., the combustion completeness) and the underlying fuel type among
many other factors (66–69 ). As many of these characteristics (e.g., the combustion effi-
ciency of different fires) are not available at the national scale, we use a data-driven ap-
proach and estimate different models/equations for the nine US climate regions deter-
mined by National Centers for Environmental Information (see Figure 2 for region defi-
nitions), which allows the relationship between emissions and surface smoke PM2.5 to differ
by region. The resulting regional estimates therefore implicitly account for some hetero-
geneity in the vegetation fuel types, fire intensities (as characterized in historical fires),
and topographies for different locations. For example, prior studies have shown that smol-

8



dering fires often have higher PM2.5 emission factors compared to flaming fires due to in-
complete combustion (68 ), which might partly explain the relatively high emissions factors
in the Southeast as smoldering fires are more common there due to high humidity (70 ).

2.5 Projecting wildfire emissions and smoke PM2.5 under future cli-

mate

We combine our ensemble of statistical and machine learning models with climate projec-
tions from ensembles of global climate models to project the wildfire emissions and smoke
PM2.5 under future climate scenarios. Consistent with the optimal spatial resolutions se-
lected for each region, we predict the annual wildfire DM emissions at different spatial res-
olutions, from 2001-2055. We then statistically downscale the predicted regional emissions
to the native grid cell level (0.25 degree) by distributing predicted DM emissions using av-
erage historical spatial distribution of emissions at the grid cell level (2001-2021).

We combine the downscaled predicted DM emissions at GFED4s grid cell level (0.25 de-
gree) with the empirical relationship we established between smoke PM2.5 and GFED4s
DM emissions to calculate predicted smoke PM2.5 in each smoke grid cell (resolution of 10
km). When calculating the smoke PM2.5 in future scenarios, the wind direction and mete-
orological conditions are held constant at the average conditions in the historical period.
We further calculate the difference between the estimated smoke in any future year and
the average estimated smoke between 2011-2020. The delta difference is then added to the
average observed smoke PM2.5 concentration between 2011-2020 to obtain the final smoke
predictions for each grid cell in the future years.

2.6 Impacts of smoke PM2.5 on mortality

We calculate all-cause mortality associated with wildfire smoke exposure historically and
under future climate scenarios using a dose-response function empirically derived from
2006-2019 county-level data. We combine county-level population-weighted annual smoke
PM2.5, derived from (8 ), with county-level all-cause mortality rates by different age groups.
We obtain individual-level multiple cause of death mortality data from the National Cen-
ter for Health Statistics to calculate age-standardized mortality rates for all ages, those
under 65 years of age, and those 65 years and older (71 ). County-level mortality rates
were age-standardized using the direct method and 5-year bins (0-4, 5-9, ..., 85 and over)
based on the 2000 US Census Standard Population. Monthly mortality rates were stan-
dardized per 100,000 population. To fully capture damages from ambient wildfire smoke
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concentrations, our preferred outcome is age-standardized, all-cause, all-age mortality rates
at the county-year level. We also separately estimate impacts among those 65 years and
older and those under 65 years of age (Figure S6).

In our main analysis, we estimate a Poisson model in which we allow non-linear impacts of
annual smoke PM2.5 on mortality rates at the county-year level:

Dcsy = exp (
∑
i

βismokeBIN
i
csy + γWcsy + ηsy + θc + εcsy) (2)

where Dcsy denotes the age-adjusted all-cause mortality rates in county c, state s, and
year y. smokeBIN i

csy is a dummy variable for whether annual population-weighted smoke
PM2.5 in county c, state s, and year y falls into the range of bin i (0-0.1, 0.1-0.25, 0.25-
0.5, 0.5-0.75, 0.75-1, 1-2, 2-3, 3-4, 4-5, 5-6, >6 µg/m3; 0-0.1 is the reference category).
The main coefficients of interest are the βi’s, which estimate the effects of a year with an-
nual smoke concentration of bin i on mortality rates, relative to a year with annual mean
smoke PM2.5 concentration below 0.1 µg/m3. The reference category included <0.1 be-
cause only 4 county-year observations had exactly zero ambient wildfire smoke. Wcsy de-
notes a flexible control of temperature (the number of days that fall in different tempera-
ture bins) and linear and quadratic terms of annual population-weighted precipitation. ηsy
denotes a vector of state-year fixed effects (i.e. separate intercepts for each year in each
state) that accounts for all factors that differ across states in a given year (e.g. Califor-
nia 2018 versus Oregon 2018) as well as all factors that differ within states across years
(e.g. California 2017 versus California 2018). θc denotes a set of county-level fixed effects
that accounts for any county-specific time-invariant factors that could be correlated with
both smoke exposure and mortality (e.g., high income communities in the mountainous ar-
eas on the west coast could have higher smoke exposure but lower mortality rates due to
non-smoke reasons). In essence, we identify the effect of wildfire smoke on mortality us-
ing within-county variation over time, after accounting for any factors that trend over time
within that county’s state, and for any correlation between smoke variation and variation
in temperature and precipitation. Because temporal variation in wildfire smoke exposure is
largely a function of idiosyncratic factors such as where a given fire starts and which way
the wind blows, our estimates have a plausibly causal interpretation. The coefficients are
estimated using weighted Poisson regression models, with function “fepois” from R package
“fixest”. The estimations are weighted by county-level population counts to enable esti-
mates of population-averaged effects, as well as to reduce statistical uncertainty. The un-
certainty of the coefficients are estimated using bootstrap of 500 runs. ϵcsy represents the
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error terms.

While we observe historical data on daily smoke PM2.5 concentrations and monthly cause-
specific mortality rates, we estimate the dose-response functions at the annual level to be
consistent with our smoke concentration projections, which are only feasible at the annual
level. This approach deviates from previous studies estimating health impacts from wild-
fire smoke which focus primarily on sub-annual exposures, but it allows for a direct appli-
cation of the estimated response functions to annual smoke projections. It also has the ad-
vantage of allowing us to capture the net effect of either behavioral dynamics in response
to short-term variation, as has been observed in related settings (13 ), or “displacement”
of mortality that would of otherwise occurred but was hastened as a result of short-term
exposure – a common concern in climate impact studies (30 ).

To evaluate the influence of functional forms of the dose-response function, we estimate al-
ternative response functions using a Poisson model, a least-squares linear regression, and
a quadratic model where wildfire smoke concentrations were treated as a continuous expo-
sure, and calculate how different functional forms influence the estimates of projected an-
nual excess deaths (Figure S9). We find that non-binned models generally fail to capture
meaningful impacts of both low-level and high-level smoke exposure (Figure S12).

Further, to assess the sensitivity of our results to multiple assumptions, we estimate sev-
eral alternative specifications of the Poisson model. Specifically, we estimate a model which
uses alternative bin definitions, a model which includes year 2020, a model which calcu-
lates the number of months or the number of days in a year that fall in different smoke
bins to represent different temporal aggregations, and a model which is estimated at county-
month level. While we cannot calculate the impact on projected mortality under scenarios
using these sub-annual measures of wildfire smoke PM2.5 given the resolution of the wild-
fire smoke projections, we instead compare between estimated historical excess deaths dur-
ing 2011-2020, calculated as the difference between predicted deaths at observed smoke
levels relative to what would have occurred absent any smoke. We find that the largest
differences occur when using monthly bins, likely due to the lagged effects of smoke on
mortality at the monthly level (Figure S10).

To calculate smoke attributable deaths in the historical scenario, we use the county-level
population data for the year 2019. We use the county-level average death rate between
2006 to 2019 as the baseline mortality rate for calculations with the Poisson model. For
projections of future mortality burden, we scale the population according to the future
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population projections from the US Census (72 ).

2.7 Monetizing health impacts

The mortality impacts are monetized using a value of statistical life (VSL) of $10.95 mil-
lion (year 2019 dollars), as recommended by the US EPA (73 ) and used in previous stud-
ies (54 ). For future scenarios, we adjust VSL values using the projected economic growth
of 2% and income elasticity of one, following a similar method from Carleton et al. (54 ).
We compare the monetized health impacts from climate-induced smoke with two prior es-
timates of aggregate monetized/economic damage due to climate change. Hsiang et al. es-
timated an annual damage of 0.4%-0.8% of US GDP or $166-332 billion (in year 2019 dol-
lars, using annual projected GDP of $38.5 trillion from (55 )). Their approach empirically
calculated the effects of climate change on a variety of economic damages from temperature-
related mortality, agriculture, crime, coastal storms, energy, and labor channels (51 ). The
Framework for Evaluating Damages and Impacts (FrEDI), developed by US EPA (55 ),
estimated an annual damage of $292 billion in the 2050s. FrEDI considered 21 sectors (in-
cluding estimated wildfire damages from western US (40 )). The wildfire health damages
considered in FrEDI only accounted for effects of wildfire in the western US and used an
empirical climate-fire relationship derived from historical data before 2013 which did not
include recent extreme wildfire years (40 ). We use the default parameters and results from
FrEDI in the year of 2050.

3 Results

3.1 Empirical relationship between climate and smoke PM2.5

We considered three different statistical and machine learning frameworks for modeling
the climate-fire relationship (Methods). To account for geographical heterogeneity, we esti-
mated each of our frameworks separately by region, resulting in five ensembles of climate-
fire models. Our models can capture the variability of wildfire dry matter emissions at 10-
year intervals (to account for fire stochasticity at the annual level, see Methods), highlight-
ing their ability to quantify changes in wildfire emissions under different climate conditions
(Figure 1A). When evaluating through cross-validation of temporal blocks (i.e. randomly
splitting a time series of observations into disjoint sets of training and testing years), our
models achieve high prediction performance, especially in the western US, Canada, and
Mexico, with correlation coefficients of 0.87-0.95 in the out-of-sample evaluations (Table
S2). Under these evaluation criteria, our model achieves higher performance relative to
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other commonly-used regression methods such as a log-linear model to model climate im-
pacts on burned area (2 ), as well as more flexible machine learning methods (43 ) (Figure
S1). However, the model performance indicates that climate conditions are not the only
factors influencing the variability of wildfire emissions over time. For example, we find that
the model performs less well in the southeastern US and northeastern US, where many
fires are agricultural or prescribed fires, which are less directly influenced by climate fac-
tors (74 ). Furthermore, while our models can predict spatially- and temporally-aggregated
emissions effectively, the predictive performance deteriorates when the same model is eval-
uated at finer temporal and spatial resolutions (Figures S3 and S4). Such evaluation re-
sults are consistent with prior literature on global fire modeling (75 ). Our findings suggest
that, although climate conditions such as low soil moisture and high ambient temperatures
are related to enhanced fire activity in aggregate, whether a fire occurs in a specific loca-
tion depends on more stochastic factors such as lightning and human ignitions that are
very hard to predict (76 ).

Combining our statistical and machine learning models with future climate projections
from CMIP6 global climate models, we project that wildfire emissions will increase by
2050 in all study regions except for the eastern US (Figure 1B). The largest increases in
wildfire emissions are projected in the western US, where the model estimates that the an-
nual wildfire emissions will increase by between 248% (SSP1-2.6) and 470% (SSP3-7.0) in
the 2050s relative to average emissions during 2011-2020. When compared to 2020, the
largest wildfire year for the western US in our historical data, projected annual wildfire
emissions during the 2050s will either reach (as in the case of SSP1-2.6) or exceed (by 34%
under SSP2-4.5 or 62% under SSP3-7.0) emissions observed in 2020. This magnitude of in-
creases is largely consistent with prior estimates of the western US derived from statistical
models and process-based models (28 , 29 , 36 ). Consistent with prior literature, we find
that decreased soil moisture and increased ambient temperature, especially in the forest
areas in the western US, are the leading contributors to increased wildfire emissions (Fig-
ure S5, Table S3, Table S4). In the eastern US, we estimate a decrease of wildfire emis-
sions by 15% under SSP1-2.6 and an increase of wildfire emissions by 10% under SSP3-7.0.
These opposing predictions are driven by a combination of two conflicting factors: pro-
jected increases in ambient temperature, which increase emissions, and projected increases
in precipitation, which decrease projected emissions (Figure S5). Our projected patterns
in the eastern US are consistent with a prior study that used a process-based fire-climate
model (36 ). By the 2050s, we project an increase in emissions of 33-43% in Mexico, and
of 30-49% in Canada, relative to average emissions during 2011-2020, in large part due to

13



projected increases in Vapor Pressure Deficit (VPD).

To link wildfire emissions to smoke PM2.5 concentrations, we develop an empirical relation-
ship that accounts for wind direction, distance from fire, and geographical region (Figure
2). As shown in Figure 2A, we find that wildfire emissions increase smoke PM2.5 concen-
trations near an active fire, with the effects gradually decaying as the distance from the
fire increases. Consistent with previous evidence of long-range transport of smoke (77 ,
78 ), we find a statistically significant effect (p<0.05) of wildfire emissions on downwind
locations up to 1000 km away. We find substantial regional heterogeneity in the impacts
of dry matter emissions on wildfire PM2.5 (Figure 2B). For example, we find that one ton
of dry matter emissions (as estimated in GFED4s fire emissions database) can generate as
much as 3x surface smoke PM2.5 in the Northwest compared to the Southwest and South.
Such regional heterogeneity likely reflects a multitude of factors, such as vegetation type,
vegetation density, and fire intensity (Methods).

3.2 Projected smoke PM2.5 concentration under future climate

As a result of projected rising wildfire emissions, we find increases in annual smoke PM2.5

concentrations throughout the US in 2050 under all future climate scenarios (Figure 3A).
Under our highest warming scenario (SSP3-7.0), we estimate that annual average smoke
PM2.5 concentration could reach 10 µg/m3 in some regions on the west coast, a level that
has only been observed in extreme smoke years such as 2020 (8 ). While the most sub-
stantial changes in smoke PM2.5 happen across the western US, smoke PM2.5 concentra-
tions are also projected to increase in the northeast US, largely due to projected increases
in wildfire emissions in the western US and Canada and subsequent increases in cross-
boundary transport of wildfire smoke from these fires.

We find that the relative contribution of wildfire smoke to total population-weighted PM2.5

increases by 240-320% in 2050. This finding holds even if non-smoke PM2.5 remains con-
stant – a conservative assumption given recent and ongoing declines in non-smoke PM2.5

concentrations (18 ). We estimate that smoke PM2.5 will account for 13-17% of total population-
weighted PM2.5 in the US in 2050, which is 2-3x its contribution of 5.4% during 2011-2020.
Wildfire smoke will account for at least 15% of total population-weighted PM2.5 in 17
states, including states both in the West such as Oregon (with 61% smoke contribution),
Washington (56%), and California (30%), as well as states in the South and Midwest such
as Oklahoma (19%) and Minnesota (16%). Figure 3B shows the smoke contribution in the
top 10 states (see Table S5 for more states).
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Under the SSP3-7.0 scenario, average population-weighted smoke PM2.5 exposure is pro-
jected to reach 1.47 µg/m3, an increase of over 200% relative to the average level between
2011-2020 (Figure 3C), and 1.6x the population-weighted smoke PM2.5 concentration in
the historically extreme year of 2020 (0.90 µg/m3). The differences across the three cli-
mate scenarios are negligible in 2030 and 2040 due to little difference in projections of the
climate variables (Figure S5). However, by the 2050s, population-weighted smoke PM2.5

is meaningfully smaller in the low warming scenarios, at 1.05 µg/m3 under SSP1-2.6 or
1.27 µg/m3 under SSP2-4.5, averaged across GCMs. Some individual GCMs project much
larger or smaller increases (Figure 3D). Also, these estimates represent decadal averages of
annual smoke PM2.5 concentrations, in this case averaged 2046 to 2055. Given interannual
climate variability, projections suggest that average smoke PM2.5 concentrations in individ-
ual years could differ substantially, with the highest projected smoke year having roughly
5-10x the concentration of the lowest year (Figure 3E). Our method likely underestimates
the interannual variability as it does not capture variability in non-climate factors.

3.3 Mortality burden due to smoke PM2.5 exposure

We find that exposure to annual smoke PM2.5 increases all-age mortality rates (Figure
4A), even at low smoke concentrations (<1 µg/m3), consistent with recent evidence from
studies of low levels of all-source PM2.5 (56 ). Compared to a year of zero or minimal smoke
PM2.5 (annual mean concentration <0.1 µg/m3), we find that a year with annual average
smoke PM2.5 of 0.75-1 µg/m3 increases county-level mortality rate by 1.3% (95%CI: 0.6%,
2.0%). Years with extreme ambient wildfire smoke concentrations (>6 µg/m3) increase
annual mortality rates by 5.8% (95%CI: 2.2%, 8.9%). Wildfire smoke increases mortal-
ity rates among both the elderly and the general population (Figure S6). Our estimated
smoke-mortality relationship is similar in shape to the results estimated by (53 ) at the
county-month level. For a given increase in PM2.5 concentration by 1 µg/m3, our observed
effects for smoke PM2.5 exceed a recent meta-analysis estimate for all-source PM2.5 (0.8%
increase in mortality rates per 1 µg/m3 (79 )), although our confidence interval contains
this lower estimate.

Combining our empirically-derived dose-response function and historical smoke PM2.5 con-
centrations, we estimate that smoke PM2.5 caused 15,800 excess deaths (95% CI: 6900,
25300) per year during 2011-2020 (Figure 4B), relative to a counterfactual of no smoke
PM2.5. This number of smoke-related deaths would account for 9.2% of total estimated
deaths due to total (smoke and non-smoke) PM2.5 exposure during the same period (es-
timated using the response function from (79 ) and total PM2.5 estimates from (58 )). As
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shown in Figures 4B and S7, roughly 90% of estimated excess deaths from wildfire smoke
exposure come from relatively low but frequent exposures to annual concentrations below
1 µg/m3.

We estimate that smoke PM2.5 will cause 23,800 to 27,800 annual excess deaths by mid-
century across the three climate scenarios – an increase of 51-76% in mortality burden
from smoke relative to 2011-2020. Even under the low warming scenario (SSP1-2.6), we
estimate that smoke PM2.5 will lead to 8,000 more annual excess deaths in the 2050s rel-
ative to today. Over the period of 2025-2055, we estimate that wildfire smokePM2.5 could
lead to cumulative excess deaths of 690,000 (SSP1-2.6) to 720,000 (SSP3-7.0). Although in
the historical period, annual mean wildfire smoke concentrations above 5 µg/m3 were rare
and represented only 3% of the total mortality burden (Figure 4A), we estimate that these
more extreme years will account for between 20-26% of the total excess deaths from smoke
in the 2050s (Figure S7). The climate-induced smoke deaths are distributed across popu-
lous counties in the western US as well as in the Midwest, Northeast, and South (Figure
4C). The top five states that are predicted to experience the largest increases in annual
smoke PM2.5 deaths in 2050s under SSP3-7.0 are California (3300 excess deaths per year),
Washington (900), Texas (680), Oregon (610), and Florida (380). While projected smoke
concentrations are highest in the western US, almost half of the smoke mortality come
from eastern states (east of 95◦ W) due to higher population densities and damages from
low wildfire smoke concentrations (Figure S8 and Table S7). Estimated mortality effects
are largely robust across alternative specifications of the smoke-mortality models includ-
ing alternative functional forms, temporal aggregations, and bin definitions (Figure S9 and
S10).

We contextualize the magnitude of these mortality impacts in two ways. First, we com-
pare our estimates of excess deaths from climate-driven smoke PM2.5 to the direct effects
of extreme temperatures on mortality – an impact which has been the primary focus of
climate change impacts on mortality and is projected to be one of the leading economic
costs of global climate change (31 , 32 , 54 , 80 ). Recent studies find that, by mid-century
in the US, increasing mortality from more frequent extreme heat is likely to be more than
offset by declining mortality due to cold weather with a projected decrease in annual ex-
cess deaths of 15,800 by mid-century (under the SSP2-4.5 scenario) compared to 2001-2010
(54 ). Our projected increase in smoke mortality over the same period represents 62% of
this reduction in direct temperature-related deaths (Figure 4D), significantly offsetting a
potential benefit of future warming in the US. However, as shown in Figure 4E, the size
of this offset differs across the US, with certain states likely to suffer compounded conse-
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quences from increases in both smoke-related and heat-related deaths (e.g., CA, TX, FL),
and other states likely to see minimal smoke-related mortality and a substantial decline in
heat-related deaths (e.g., IL).

As a second comparison, we compare our estimates of climate-induced smoke damages
with two prior estimates of aggregated monetized damage due to climate change. Using a
Value of Statistical Life (VSL) of $10.95 million dollars (year 2019 dollars, as suggested by
EPA (73 )), we find that the projected 12k increase in annual excess deaths due to climate-
driven wildfire smoke would result in annual damages of $244 billion in 2050 (not dis-
counted, in year 2019 dollars, see Methods). Under a similar projected warming level of
SSP3-7.0 scenario, Hsiang et al. (51 ) estimated annual damage of 0.4%-0.8% of US GDP
or $166-332 billion (in year 2019 dollars, using annual projected GDP of $38.5 trillion from
(55 )), which included damages from temperature-related mortality, agriculture, crime,
coastal storms, energy, and labor channels. The Framework for Evaluating Damages and
Impacts (FrEDI), developed by US EPA (55 ), considered more sectors (including esti-
mated wildfire damages from the western US (40 )) and estimated annual damage of $292
billion in 2050s. Our estimates suggest that damages from increase smoke-related mortal-
ity could roughly equal damages from all other estimated causes by mid-century in the US.

4 Discussion

While the effects of climate change on wildfire smoke and human health have become an
emerging research topic, these effects are rarely incorporated into estimates of climate im-
pacts. In this study, we estimate that climate-induced smoke PM2.5 could lead to 12k ad-
ditional excess deaths per year under the SSP3-7.0 scenario in the US, substantially off-
setting the reduction in direct temperature-related deaths expected due to climate change.
These estimated deaths lead to an amount of monetized damage on par with quantified
damages from all other sectors combined. Our results suggest that increasing wildfire smoke
pollution due to climate change could be one of the most important and costly conse-
quences of a warming climate in the US.

We find that aggressive mitigation of global greenhouse gas emissions would limit increases
in smoke-related deaths, but that such deaths are likely to increase substantially even un-
der low-emission scenarios. This finding points to the need to develop adaptation strate-
gies if damages are to be avoided. Adaptation could occur at many points along the wildfire-
smoke-mortality chain. Increased fuel management, such as prescribed burning, could re-
duce the likelihood of extreme wildfire activity during adverse climate conditions, but will
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create smoke of its own; while the reduction in smoke from high-intensity fire is likely to
substantially outweigh the increase from purposeful low-intensity fire, quantifying such
tradeoffs is another critical area for work (81–83 ). Adaptation could also target the re-
lationship between smoke and adverse health outcomes. This could include better inform-
ing individuals of, and protecting them from, smoke that does occur as current reliance on
individuals to self-protect appears highly inadequate and inequitable (84 , 85 ). Improved
indoor filtration, including low-cost portable filters, appears a particularly promising and
scalable solution, and ensuring that such filtration is affordable, accessible, and used is a
potential policy priority (86 ).

Using georeferenced data on deaths and ambient wildfire smoke concentrations, we show
that increasing annual exposures to smoke PM2.5 are associated with higher county-level
annual mortality rates across the contiguous US. Our work contributes to a large litera-
ture documenting the impacts of annual exposures to total PM2.5 on mortality, which has
shaped decades of policy to improve ambient air quality in the US. Due to our annual level
projections of wildfire smoke, impacts of wildfire smoke on mortality were necessarily con-
ducted at the annual level. However, wildfires are episodic and typically generate short-
term spikes in ambient air pollution, which our measure of exposure may partly obscure
(87 ). As such, our results are a complement to other studies on the health effects of short-
term (e.g., daily) wildfire smoke exposures (12 ).

We find that elevated long-term average smoke PM2.5 concentrations increase mortality
rates at both low and high concentrations. These increases lead to two important impli-
cations. First, we project large mortality burden not only in regions where large fires oc-
cur but also in populous regions with low smoke concentrations (e.g., the eastern US) that
have historically received less focus in wildfire studies. We find that 67% of the estimated
historical smoke mortality and 42% of the projected future mortality come from the east-
ern US, as a result of increases in low-level smoke concentrations, consistent with previ-
ous historical estimates from (77 ). Second, despite larger differences in projected smoke
PM2.5 concentration across the three climate scenarios, we estimate substantial mortality
increases even in the low warming scenario (SSP1-2.6), again because this scenario gener-
ates low-level annual concentration increases that we estimate can have substantial mor-
tality impacts. Our projected mortality impacts are in the uncertainty band of one prior
study that applied a range of dose-response functions of total PM2.5 exposure (39 ), while
substantially higher than the other estimate which only focuses on the western US (40 ), in
part due to the mortality impacts we find at low exposure levels.
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Our approach can isolate the “direct” impacts of climate change on wildfire air pollution,
but does not account for potential “indirect” effects of climate on wildfire through channels
such as climate’s influence on vegetation growth or lightning-related ignitions. Existing
evidence has suggested that vegetation overall would increase under higher warming lev-
els, which could lead to higher wildfire emissions and smoke (29 ). Furthermore, we did not
attempt to model the many non-climate factors that contribute to wildfire activity, includ-
ing the location of energy infrastructure, distance to road, housing development, and fire
suppression efforts. Instead, we sought a model that could isolate the influence of climate
while holding these other factors fixed. If these factors change dramatically in the future,
then our estimates could understate or overstate future emissions, smoke, and mortality.
For example, if expansions of houses near wildland vegetation continue (22 ), the effects of
a warming climate on wildfire emissions could be larger given more human ignitions, par-
ticularly as population growth in the wildland-urban interface has been most rapid in ar-
eas where the vegetation is most vulnerable to wildfire (88 ). Alternatively, large increases
in wildfire activity could be self-limiting as fires regulate the amount and availability of
fuel load for future combustion. Existing studies suggest that this feedback is likely mod-
est (28 ), but constraining this feedback empirically is a critical area for future work.

Our projection analysis quantifies the key uncertainties in climate-wildfire-smoke-mortality
estimations (Figure S11). Addressing these uncertainties could further improve under-
standing of the climate influences on wildfire pollution and health, and thus inform rele-
vant policies. One of the largest uncertainties is how climate change will influence wild-
fire emissions and smoke PM2.5. The statistical models we train can predict the emis-
sions well given observational data, but we know little about their ability to predict wild-
fire levels under unprecedented climate conditions. Also, we could only robustly estab-
lish the climate-wildfire relationship when evaluated at aggregated spatial and temporal
scales; predicting wildfire ignitions and growth at local scales remains very challenging.
In the future, combining statistical models that can leverage the observational constraints
with process-based climate-vegetation-fire models could likely generate a useful framework
for understanding climate impacts on wildfire pollution. Another critical uncertainty is
the health effects of smoke PM2.5 exposure. Quantifying health impacts of smoke PM2.5

at both low and high concentrations in the context of the unique chemical composition
of smoke PM2.5 and fire influence on human behaviors remains an important area of fu-
ture research. Furthermore, our estimated health cost is likely only a subset of the over-
all health burden due to possible morbidity effects of smoke, or health costs from other
wildfire-driven pollutants.
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Our projections of smoke PM2.5 and mortality effects can support climate science, health,
and policy research to better understand drivers and consequences of smoke PM2.5 under
climate change, and help inform policy priorities to address their negative impacts. Our
estimates suggest that health costs due to climate-induced smoke PM2.5 could be among
the most damaging consequences of climate change in the US. Based on our results, de-
signing and implementing policies to reduce wildfire smoke and protect vulnerable com-
munities has the potential to deliver substantial health benefits now and in the coming
decades.
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Figure 1: Projected wildfire emissions under future climate change scenarios.
Panel A: Performance of the statistical and machine learning ensemble models. We build
separate models to predict wildfire Dry Matter (DM) emissions for five regions respec-
tively: Western US, Southeast US, Northeast US, Canada-Alaska, and Mexico. The plot
shows the 10-year moving average of predicted emissions (y-axis) against the observed
emissions (x-axis), aggregated at the regional level. Panel B: Projected wildfire emissions
(unit: Million Tons, MT) under the historical scenarios and three future climate scenar-
ios (SSP1-2.6, SSP2-4.5, and SSP3-7.0). The plot shows the 10-year moving average of the
wildfire emission projections. The dashed line represents the average observed emissions
over 2001-2021 for each region. For presentation purpose, we aggregate predictions from
northeast US and southeast US to calculate the total for eastern US. Panel C: Observed
DM emissions at the native resolution (0.25 degree) in 2001-2021 from GFED4s, and pro-
jected annual emissions averaged between 2046-2055 under SSP1-2.6 and SSP3-7.0 scenar-
ios (down-scaled from aggregated projections).
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Effect of wildfire emissions on smoke by distance and wind directions

Heterogeneity in effects by region 

Figure 2: Wildfire emissions increase the observed smoke PM2.5 concentration
in the neighboring and downwind areas. Panel A: The empirically estimated effects
of wildfire emissions on smoke PM2.5 by distance from emissions and wind directions. “Up-
wind” means the fire is upwind of the location at which PM2.5 is measured. Wildfire emis-
sions are estimated to have larger impacts on smoke PM2.5 when smoke location is closer
to fire (distance to emissions is shown on the x-axis), and when wildfire emissions hap-
pen upwind of the smoke locations (wind patterns shown in colors). Separate models are
estimated for the 9 climatic regions in the US determined by National Centers for En-
vironmental Information (as shown in Panel B). Panel A shows the results in the North-
ern Rockies region. Panel B: Regional heterogeneity in emission impacts on smoke PM2.5.
Panel B shows the estimated effects of upwind emissions in the <50 km and 500-100 km
bins, across the nine regions in the US.
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Figure 3: Population exposure to wildfire smoke PM2.5 increases by 2- to 3-fold
under future climate change scenarios. Panel A: The annual mean smoke PM2.5 con-
centration in the historical data (2011-2020), and projected annual mean smoke PM2.5

concentration under the three climate scenarios in 2046-2055. Panel B: the contribu-
tion of smoke PM2.5 to total population-weighted PM2.5 at the state level. Non-smoke
PM2.5 is calculated as the difference between total PM2.5 (derived from (58 )) and smoke
PM2.5 in 2016-2020, and is assumed to be constant in future. The panel only lists the top
ten states with the highest smoke contribution under SSP3-7.0 scenario in 2050. Panel
C: population-weighted smoke PM2.5 over the US in different decades. Panel D: uncer-
tainty in the population-weighted smoke PM2.5 across the 28 GCMs used in the projec-
tion. Panel E: for each GCM, we calculate the ratio between the highest and lowest pro-
jected population-weighted smoke PM2.5 during 2046-2055. The panel shows the quantiles
of these ratios across the 28 GCMs.
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Figure 4: Mortality impacts of wildfire smoke PM2.5 and estimated mortality
due to smoke PM2.5 under future climate scenarios. Panel A: empirically estimated
effects of annual smoke PM2.5 concentration on county-level all-age annual mortality rates.
The figure shows the effects of exposure to different annual mean concentration of smoke
PM2.5 (shown in the x-axis) relative to a year with smoke concentration <0.1 µg/m3, es-
timated using a Poisson model at the county and annual level and data from 2006-2019.
The error bars show the 95% confidence interval estimated using bootstrap. The bottom
part of panel A shows the percentage of county-years in each smoke concentration bin over
the historical period (2011-2020) as well as future climate scenarios (2046-2055). Panel
B: estimated annual excess deaths due to smoke PM2.5, and contribution to total smoke
excess deaths from different smoke concentration bins. The error bars show the 95% boot-
strapped confidence intervals. Panel C: county-level projected increases in annual excess
deaths due to smoke PM2.5 in 2050; increases are calculated as the differences between the
average deaths under SSP2-4.5 scenario over 2046-2055 and the 2011-2020 average. Panel
D shows US-wide total estimated annual smoke deaths and direct temperature-related
deaths in 2050, with increasing smoke deaths offsetting 62% of the reduction in temper-
ature deaths. Panel E: projected increase in smoke deaths offsets projected reductions in
direct temperature-related deaths by 2050s, the latter as estimated in a recent study (54 ).
The x-axis shows the changes in deaths due to smoke PM2.5 in 2050s (note the log-scale),
and the y-axis shows the changes in deaths due to temperature change, where only the 25
states with > 75 smoke related deaths per year are visualized.31



5 Supplementary tables and figures

Table S1: Estimated dry matter (DM) emissions by land-use type in historical period and
future scenarios. For the historical period, the table shows the annual mean DM emissions
from each land-use type in each region from 2001-2021, directly derived from GFED4s.
For the future scenario, the table shows the annual mean DM emissions from each land-
use type in each region under SSP3-7.0 from 2046-2055. Landuse types are derived from
GFED4s inventory. “Forest” includes emissions from both temperate forests and boreal
forests.

Region Type 2001 - 2021 2050 SSP3-7.0
emissions (MT) percent emissions (MT)

Western US forest 25.8 68% 184.7
savanna 10.7 28% 76.5
agriculture 1.7 4% 12.3
landuse change 0.0 0% 0.0
peatland 0.0 0% 0.0

Southeastern US forest 4.2 28% 4.4
savanna 5.3 35% 5.8
agriculture 5.6 37% 5.6
landuse change 0.0 0% 0.0
peatland 0.0 0% 0.0

Northeastern US forest 0.6 29% 0.6
savanna 0.2 11% 0.2
agriculture 1.2 60% 1.1
landuse change 0.0 0% 0.0
peatland 0.0 0% 0.0

Canada-Alaska forest 152.6 94% 240.8
savanna 0.2 0% 0.4
agriculture 1.7 1% 2.7
landuse change 0.0 0% 0.0
peatland 8.2 5% 13.0

Mexico forest 1.2 3% 1.7
savanna 19.4 47% 29.0
agriculture 6.4 16% 9.5
landuse change 14.1 34% 17.1
peatland 0.0 0% 0.0
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Table S2: Performance of the individual statistical and machine learning models. For each
region, we train six algorithms {Linear, LASSO, Neural Net} × {level, log of the out-
come}. The table shows the optimal spatial resolution and three evaluation metrics for
each algorithm. The three evaluation metrics are correlation coefficient (R), bias in pre-
dicting the highest-emitting 10-year (Bias), and Root Mean Square Error over the mean of
the outcome (RMSE/Mean). Bias is calculated as (Prediction - Observation) / Observa-
tion for the 10-year period with the highest emissions. Models selected in the final model
ensembles are bolded and labeled “Y” in the “Selected” column. The selection is based on
RMSE + |Bias| to consider both metrics. In our main analysis, for each region, only the
algorithms with “RMSE + |Bias|” within 5% of the best algorithm are selected.

Region Algorithm Optimal
resolution R Bias RMSE/

Mean
RMSE +
|Bias| Diff Selected

Western US Linear, level regional 0.98 -10% 20% 29% 0% Y
Western US Linear, log eco2 0.91 -16% 22% 37% 8% N
Western US LASSO, level regional 0.99 -14% 28% 43% 13% N
Western US LASSO, log regional 0.89 -3% 31% 33% 4% Y
Western US Neural Net, level eco2 0.73 0% 90% 91% 61% N
Western US Neural Net, log eco3 0.98 -20% 19% 39% 9% N
Southeastern US Linear, level eco3 0.51 -1% 6% 7% 0% Y
Southeastern US Linear, log eco2 0.36 -18% 14% 32% 25% N
Southeastern US LASSO, level eco2 0.58 -12% 9% 21% 14% N
Southeastern US LASSO, log eco2 0.02 -16% 14% 30% 23% N
Southeastern US Neural Net, level grid 0.11 5% 11% 16% 9% N
Southeastern US Neural Net, log eco2 0.30 -12% 12% 24% 17% N
Northeastern US Linear, level grid 0.05 -2% 11% 13% 0% Y
Northeastern US Linear, log regional 0.06 -11% 9% 20% 7% N
Northeastern US LASSO, log eco2 0.19 -26% 19% 45% 32% N
Northeastern US Neural Net, level eco2 0.07 2% 14% 15% 2% Y
Northeastern US Neural Net, log eco3 0.29 -20% 12% 32% 20% N
Canada-Alaska Linear, level regional 0.91 4% 15% 19% 0% Y
Canada-Alaska Linear, log eco2 0.70 43% 35% 78% 59% N
Canada-Alaska LASSO, level eco2 0.94 -15% 19% 34% 15% N
Canada-Alaska LASSO, log regional 0.73 -13% 16% 29% 10% N
Canada-Alaska Neural Net, level eco3 0.20 -9% 27% 36% 17% N
Canada-Alaska Neural Net, log regional 0.71 -30% 15% 45% 26% N
Mexico Linear, level eco2 0.88 0% 4% 4% 0% Y
Mexico Linear, log eco2 0.85 -2% 14% 16% 12% N
Mexico LASSO, level eco3 0.86 0% 5% 5% 1% Y
Mexico LASSO, log eco2 0.71 -13% 14% 27% 23% N
Mexico Neural Net, level eco2 0.72 0% 10% 10% 6% N
Mexico Neural Net, log regional 0.82 -7% 7% 14% 9% N
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Table S3: Estimated coefficients from the selected linear regression models that use cli-
mate features to predict wildfire emissions. The table only shows the coefficients from the
final selected models in each region with the corresponding optimal spatial resolution. Sta-
tistically significant coefficients (p < 0.1) are bolded.

Western US Southeastern US Northeastern US Canada-Alaska Mexico
coef p-value coef p-value coef p-value coef p-value coef p-value

temperature 2.0E-02 0.25 -9.9E-04 0.15 2.1E-04 0.30 -3.0E-02 0.08 -1.2E-02 0.00

precipitation -3.3E-02 0.27 -4.9E-03 0.00 -2.5E-04 0.63 -3.6E-02 0.43 8.8E-03 0.00

RH 5.6E-03 0.26 2.4E-04 0.55 -1.2E-04 0.36 2.3E-02 0.23 4.8E-03 0.00

wind speed 7.3E-02 0.12 9.6E-03 0.00 -1.6E-03 0.09 4.6E-02 0.79 -1.1E-03 0.92
VPD -2.3E-02 0.94 3.3E-03 0.74 -2.5E-03 0.55 2.4E+00 0.02 2.6E-01 0.00

runoff 1.2E-02 0.24 5.5E-04 0.83 5.1E-04 0.49 1.2E-01 0.13 -9.1E-03 0.26
soil moisture -2.6E-02 0.01 -3.8E-03 0.00 -2.8E-04 0.51

Table S4: Estimated coefficients from the selected LASSO models that use climate features
to predict wildfire emissions. As LASSO models are only selected in the western US and
Mexico, the table shows the coefficients from these two final selected models with the cor-
responding optimal spatial resolution.

Western US Mexico

Selected variables coef Selected variables coef

soil moisture -1.2E+00 VPD*grass 4.1E-01
temperature 1.1E+00 VPD*precipitation 9.0E-03
VPD*precipitation -2.8E+00 VPD*RH 1.3E-03
VPD*runoff 2.5E+00
RH^2 -1.5E-04
runoff^2 -1.6E-01
runoff*wind speed 1.3E-02
temperature^2 4.6E-05
wind speed^2 4.1E-01
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Table S5: Estimated population-weighted average smoke PM2.5, total PM2.5, and smoke
PM2.5 contribution at the state level. Total PM2.5 are calculated as the sum of smoke and
non-smoke PM2.5 concentrations. Non-smoke PM2.5 are assumed to be the same as the
average non-smoke PM2.5 between 2016-2020, calculated as the difference between total
PM2.5 from (58 ) and smoke PM2.5 from (8 ). Only states with >10% smoke contributions
under SSP3-7.0 scenario are listed.

State Smoke PM2.5 Total PM2.5 Smoke State Smoke PM2.5 Total PM2.5 Smoke Scenario
µg/m3 µg/m3 percent µg/m3 µg/m3 percent

Oregon 1.3 6.6 20% Kansas 0.7 7.3 9% 2011-2020
5.0 9.7 51% 1.5 7.7 19% SSP1-2.6
6.2 11.0 57% 1.7 7.9 21% SSP2-4.5
7.5 12.3 61% 1.8 8.1 22% SSP3-7.0

Montana 1.3 6.4 20% Nebraska 0.7 7.4 9% 2011-2020
4.7 9.7 48% 1.2 7.4 16% SSP1-2.6
5.7 10.7 53% 1.3 7.5 18% SSP2-4.5
6.9 11.9 58% 1.5 7.6 19% SSP3-7.0

Washington 0.9 6.0 16% Oklahoma 0.6 7.8 8% 2011-2020
3.8 8.3 46% 1.2 8.0 15% SSP1-2.6
4.6 9.0 51% 1.4 8.2 17% SSP2-4.5
5.6 10.0 56% 1.5 8.3 19% SSP3-7.0

Idaho 1.3 7.1 18% Minnesota 0.6 6.6 9% 2011-2020
4.4 10.0 44% 0.9 6.5 14% SSP1-2.6
5.4 11.0 49% 1.0 6.7 15% SSP2-4.5
6.4 12.0 54% 1.1 6.8 16% SSP3-7.0

Wyoming 0.7 5.4 13% Arkansas 0.6 8.2 7% 2011-2020
2.6 7.1 37% 1.1 8.0 14% SSP1-2.6
3.2 7.7 42% 1.2 8.2 15% SSP2-4.5
3.9 8.4 47% 1.3 8.2 16% SSP3-7.0

Nevada 0.5 7.0 7% Texas 0.5 8.3 6% 2011-2020
3.1 9.6 32% 1.1 8.5 12% SSP1-2.6
3.9 10.4 38% 1.2 8.6 14% SSP2-4.5
4.6 11.1 42% 1.3 8.7 15% SSP3-7.0

North Dakota 0.7 5.3 14% Arizona 0.2 8.2 2% 2011-2020
1.7 6.1 28% 0.9 8.7 11% SSP1-2.6
2.0 6.3 31% 1.1 8.9 13% SSP2-4.5
2.2 6.5 33% 1.3 9.1 14% SSP3-7.0

California 0.6 10.5 6% Iowa 0.6 7.8 8% 2011-2020
2.8 12.2 23% 0.8 7.5 11% SSP1-2.6
3.5 12.9 27% 0.9 7.6 12% SSP2-4.5
4.1 13.5 30% 1.0 7.7 13% SSP3-7.0

Colorado 0.5 6.1 9% Wisconsin 0.5 7.4 7% 2011-2020
1.7 7.2 24% 0.8 7.1 11% SSP1-2.6
2.0 7.5 27% 0.9 7.3 12% SSP2-4.5
2.3 7.8 30% 1.0 7.3 13% SSP3-7.0

Utah 0.5 6.9 7% Louisiana 0.4 8.5 5% 2011-2020
1.7 7.7 22% 0.8 8.5 10% SSP1-2.6
2.0 8.0 26% 1.0 8.6 11% SSP2-4.5
2.4 8.4 29% 1.0 8.6 12% SSP3-7.0

South Dakota 0.7 6.1 11% Mississippi 0.4 8.3 5% 2011-2020
1.4 6.3 22% 0.7 8.0 9% SSP1-2.6
1.5 6.5 24% 0.9 8.1 11% SSP2-4.5
1.7 6.7 26% 0.9 8.2 11% SSP3-7.0

New Mexico 0.3 5.4 6% Michigan 0.4 8.0 5% 2011-2020
1.2 6.0 20% 0.6 7.6 8% SSP1-2.6
1.4 6.2 23% 0.7 7.7 9% SSP2-4.5
1.6 6.4 25% 0.8 7.7 10% SSP3-7.0
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Table S6: Climate models used in this study for future projections. We use projections
from 28 global climate models with available output under the historical and three climate
scenarios from the CMIP6 model ensembles. The spatial resolution of each model is shown
in latitude × longitude (unit: degree). Resolutions are approximated for models with vary-
ing latitudes. Data is downloaded in February, 2023.

Model Ensemble variant Resolution
ACCESS-CM2 r1i1p1f1 1.25 x 1.88
ACCESS-ESM1-5 r1i1p1f1 1.25 x 1.88
BCC-CSM2-MR r1i1p1f1 1.12 x 1.12
CanESM5 r1i1p1f1 2.79 x 2.81
CAS-ESM2-0 r1i1p1f1 1.42 x 1.41
CESM2-WACCM r1i1p1f1 0.94 x 1.25
CMCC-CM2-SR5 r1i1p1f1 0.94 x 1.25
CMCC-ESM2 r1i1p1f1 0.94 x 1.25
CNRM-CM6-1 r1i1p1f2 1.4 x 1.41
CNRM-CM6-1-HR r1i1p1f2 0.5 x 0.5
CNRM-ESM2-1 r1i1p1f2 1.4 x 1.41
EC-Earth3 r1i1p1f1 0.7 x 0.7
EC-Earth3-Veg r1i1p1f1 0.7 x 0.7
EC-Earth3-Veg-LR r1i1p1f1 1.12 x 1.12
FGOALS-f3-L r1i1p1f1 0.94 x 1.25
FGOALS-g3 r1i1p1f1 2.03 x 2
GFDL-ESM4 r1i1p1f1 1 x 1.25
GISS-E2-1-G r1i1p1f2 2 x 2.5
GISS-E2-1-H r1i1p1f2 2 x 2.5
IPSL-CM6A-LR r1i1p1f1 1.27 x 2.5
KACE-1-0-G r1i1p1f1 1.25 x 1.88
MIROC-ES2L r1i1p1f2 2.79 x 2.81
MIROC6 r1i1p1f1 1.4 x 1.41
MRI-ESM2-0 r1i1p1f1 1.12 x 1.12
NorESM2-LM r1i1p1f1 1.89 x 2.5
NorESM2-MM r1i1p1f1 0.94 x 1.25
TaiESM1 r1i1p1f1 0.94 x 1.25
UKESM1-0-LL r1i1p1f2 1.25 x 1.88
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Table S7: Estimated annual excess deaths due to wildfire smoke at the state level. For
historical period, the table shows average annual excess deaths due to smoke PM2.5 expo-
sure during 2011-2020. For future climate scenarios, the table shows average annual excess
deaths due to smoke PM2.5 exposure during 2046-2055 (median across 28 GCMs).

State Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 State Historical SSP1-2.6 SSP2-4.5 SSP3-7.0

California 1381 4164 4657 5700 South Carolina 266 327 353 380
Texas 1276 1974 1958 1999 Tennessee 360 283 358 373
Washington 360 1108 1266 1530 Massachusetts 283 257 330 359
Florida 821 1119 1198 1295 Montana 87 219 253 318
Oregon 411 858 1020 1245 Mississippi 184 295 302 306
New York 800 749 924 979 Arkansas 244 323 305 302
Michigan 610 807 819 825 Kentucky 256 238 285 291
Ohio 651 701 845 821 Iowa 243 277 283 286
Pennsylvania 633 617 759 820 Kansas 224 265 260 269
Illinois 779 746 862 817 Utah 92 186 245 259
North Carolina 442 575 612 667 Maryland 236 168 213 232
Georgia 447 567 606 643 New Mexico 82 175 188 212
Arizona 184 511 558 574 Connecticut 162 150 193 201
Nevada 117 421 463 560 Nebraska 147 168 167 180
Colorado 225 398 497 540 West Virginia 94 69 101 109
Virginia 288 431 467 497 Wyoming 31 72 81 99
Wisconsin 366 461 464 471 South Dakota 63 81 85 91
Missouri 476 406 453 462 Maine 62 59 79 87
Indiana 392 394 464 452 New Hampshire 54 59 74 79
Louisiana 274 440 438 441 North Dakota 53 63 67 77
New Jersey 394 328 406 437 Rhode Island 49 43 55 61
Idaho 100 296 348 431 Delaware 44 24 33 37
Minnesota 340 399 405 418 Vermont 26 25 32 35
Alabama 306 358 391 409 D.C. 29 25 32 33
Oklahoma 320 415 394 404
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Figure S1: Predictive performance of our model and two other approaches used in previous
research to predict wildfire emissions using climate variables. For comparison purposes,
this figure only shows the results in western US. Panel A compares the predictive perfor-
mance between our ensemble statistical and machine learning model (“Our model”), a re-
gression method that uses fire-season VPD to predict the logged fire emissions (“log(fire)-
VPD”) as used in (2 ), and a XGBOOST model that predicts the fire emissions at the grid
cell level as used in (43 ). The table shows the correlation coefficient (R), RMSE/mean,
and bias of the highest-emitting 10-year period. Panels B and C show the out-of-sample
prediction from the log(fire)-VPD regressions, with the same underlying data shown in
level scale (B) and log scale (C). This demonstrates that while log(fire)-VPD regression
achieves reasonable performance in the log scale (as reported by previous papers), its per-
formance is inferior to our models in predicting the absolute levels of fire emissions. Pan-
els D and E show the out-of-sample predictions from XGBOOST model under tempo-
ral LOOCV (D) and random CV (E) using the underlying dataset from (43 ). Random
CV randomly partitions data to training and test sets with the same grid cell from dif-
ferent years possibly existing in both training and test sets. Panels D and E suggest the
XGBOOST model trained at the grid cell has an inflated performance under random CV
which grid cells can contribute data to both training and test sets.
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U.S. Climate regions

Figure S2: Performance of the fire-smoke regression models. The black dots show the full
adjusted R2 of the regression model. The color bars show the within R2 after partialing
out the month-of-year and grid cell fixed effects. The within R2 thus quantify the model
predictive performance within each grid cell and month-of-year. Each bar shows the per-
formance of a fire-smoke model in one of the nine US climate regions.
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Figure S3: Predictive performance of models trained at different spatial resolutions (West-
ern US). The plot shows the 10-year moving average of predicted emissions (y-axis)
against the observed emissions (x-axis) from models trained at different spatial resolu-
tions. For each algorithm (row), results are presented for models trained using grid cell
data (“grid”), data aggregated at the level-3 ecoregion (“eco3”), data aggregated at the
level-2 ecoregion (“eco2”), and data aggregated at the regional level (“regional”). Despite
the different spatial resolutions of training data, the evaluation is at the regional level: we
first aggregate the out-of-sample prediction to the regional level and compare the aggre-
gated predictions against the aggregated observations. Dashed lines are 1-1 lines.
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Figure S4: Predictive performance of models evaluated at different temporal scales (West-
ern US). The plot shows the 10-year moving average of predicted emissions (y-axis)
against the observed emissions (x-axis) from the same set of model but evaluated at dif-
ferent temporal scales. For each algorithm (row), the results show the out-of-sample pre-
diction aggregated at different temporal scales ranging from no-aggregation (i.e. 1 year),
to aggregation at the 10-year intervals. Dashed lines are 1-1 lines.
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Figure S5: Projections of the climatic variables used in our statistical and machine learn-
ing models. Colour line indicates the median across 28 GCMs, and the shade area shows
the 25th and 75th percentile across GCMs. The plot shows the 10-year moving average
of the anomalies of each variable relative to the average values under historical scenario
during 2001-2014. Soil moisture is not shown in Canada-Alaska and Mexico, as historical
observations of soil moisture from NLDAS-2 are not available for these two regions.
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Figure S6: Impacts of smoke PM2.5 concentration on mortality rates estimated by age
group. The figure shows the effects of exposure to different annual mean concentration
of smoke PM2.5 (x-axis) relative to a no-smoke year (defined as a year with smoke PM2.5

concentration less than 0.1 µg/m3), estimated using a Poisson model at the county and
annual level. The error bars show the 95% confidence interval estimated using bootstrap.
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Figure S7: Percentage of estimated death contributions from each smoke concentration
bin. The plot shows the contribution to total smoke-related deaths from county-years with
annual mean smoke concentrations that fall in different smoke concentration bins under
each scenario.
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Figure S8: Estimated annual excess deaths due to smoke PM2.5 under the historical, SSP1-
2.6, and SSP3-7.0 scenarios. The top panels show estimates at the county level. The bot-
tom panels show estimates at the state level.
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Figure S9: Estimated annual excess deaths due to smoke PM2.5 across alternative dose-
response functions. Our main analysis uses the “Poisson bin” specification. The error bars
show the 95% confidence interval estimated using bootstrap.
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Figure S10: Estimated annual excess deaths due to smoke PM2.5 (2011-2020) across alter-
native specifications of the Poisson model. In addition to our main model (grey bar), we
estimate a model which uses alternative bin definitions, a model which includes year 2020,
a model which calculates the number of months or the number of days in a year that fall
in different smoke bins to represent different temporal aggregations, and a model which is
estimated at the county-month level. The error bars show the 95% confidence interval esti-
mated using bootstrap.
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Figure S11: Uncertainty in estimated annual excess deaths due to wildfire smoke PM2.5

under SSP3-7.0 scenario. The figure shows the uncertainty of the mortality estimates due
to climate projections, climate-fire model, and the dose-response function between smoke
and mortality. The red dashed line shows the main estimate reported in the paper (i.e.
27,800 excess deaths per year). The solid bar shows the 10th and 90th percentile, and the
black line shows the 2.5th and 97.5th percentile. Uncertainty from “climate projection”
is calculated using the percentiles of the estimated mortality from the 28 GCMs. Uncer-
tainty from “climate-fire model” is calculated using bootstrap procedures performed on the
individual fire-climate models from each region. More specifically, we first construct boot-
strapped samples of the fire-climate panel dataset (sample with replacement) and then fit
fire-climate model from each bootstrapped sample, and use these models to project smoke
deaths. Uncertainty from “dose-response function” is calculated using bootstrap procedures
performed on the health response functions. More specifically, we construct bootstrapped
samples of the smoke-death dataset and estimate one dose-response function from each
sample.
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Figure S12: Impacts of smoke PM2.5 concentration on mortality rates estimated using
three alternative dose-response functions. The three colour lines show the estimated re-
sults from three non-binned models with poisson, linear, and quadratic specifications. For
comparison, the black dots show the estimated coefficients from our main model (Poisson
bin model). The shaded areas and the error bars represent the 95% confidence interval es-
timated using bootstrap procedure.
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