ConnectGreaterWashington: Can the Region Grow Differently?

Transportation Planning Board (TPB)

Travel Forecasting Subcommittee July 17, 2015

ConnectGreaterWashington:
The 2040 Regional Transit System Plan

Alternatives Overview

- Project Purpose
- Model Basics
- Assumptions and Concepts
- Scenario Review
- What Did We Learn?
- Conclusions

2

Why this study?

By 2040

- \$440M Metrorail operating subsidy
- 15% of Metrorail links over 100 passengers per car in the peak period and peak direction
- 14% increase in daily VMT (21% in the peak) compared to 2010
- 6% decrease in travel speeds in Compact

Why this study?

Because we can't afford this:

ConnectGreaterWashington

New Metrorail lines in the core

Create network of high quality surface transit that connect across barriers

Improve commuter rail/bus frequency and span of service

Better utilize station areas and along corridors with transit

Increase walkability of station areas and neighborhoods

Reduce free and low-cost parking supply

Model Basics

- MWCOG Regional v2.3.52 regional travel demand model
- Trip Generation
- Trip Distribution
- Highway Skimming
- WMATA Post Processor Model
- Transit Skimming
- Mode Choice
- Transit Assignment
- Loop back to MWCOG regional model
- Traffic Assignment

Land Use and Transit Assumptions

- Maintain the draft Round 8.3 regional totals
- Allow TAZ and jurisdictional totals to vary
- Not developing optimal land use
- Only shift development growth forecast for after 2020
- 2040 base transit network = existing transit system + 2013 CLRP + Metro 2025.

Starting Concepts

Starting Concepts

Starting Concepts

Summary of Scenarios

Goal	Efficient Transit System	Reduce Metrorail Operating Subsidy	Maintain 2010 Travel Times (Highway and Transit)
Draft Round 8.3	A Prime	B Prime	C Prime
Maintain Jurisdictional Totals	A1	B1	C1
Maintain Regional Totals	A2	B2	C2

Measures of Effectiveness

Goal 1: Enhance environment and safety

Goal 2: Facilitate transit-oriented, mixed use communities

Goal 3: Maximize transit availability and access

Goal 4: Accommodate/ encourage ridership

Goal 5: Financially viable transit

Change in highway travel times between specific RACs

Jobs/HH within $1 / 2$ mile of high-quality transit Average trip length by mode (distance and time)

Link loads by direction and time of day - peak and off-peak direction

Change in Property Tax Revenues (total and by jurisdiction)
Metrorail Operating Subsidy (total and by state)
Lost growth to congestion
Vehicle miles traveled (VMT)
Transit Utilization - passenger miles per seat mile (all modes)

Mode share for trips that begin or end in RACs

Scenario A: Efficient Transit

Goal: Optimize transit system, limit crowding

Approach

Mixed use

Short trips

Park \& ride

Reverse-peak direction fares

2040 Base Land Use Density

Scenario A1: Efficient Transit

Scenario A2: Efficient Transit

A1 and A2 Key Measures

Measure (Comparison Year)	Comparison Year Data	Scenario A1	Scenario A2
Land Use Shifts	2040 Round 8.3	$\begin{aligned} & 35,000 \mathrm{HH} / \\ & 30,000 \text { jobs } \end{aligned}$	$\begin{aligned} & 322,200 \mathrm{HH} / \\ & 712,300 \text { jobs } \end{aligned}$
Jobs within 45 min of households	1.339M (2040)	1.383 M	2.563 M
Metrorail Operating Subsidy	\$440.6M (2040 C)	\$383.8M	(\$269.3M)
Transit Mode Share	7.7\% (2040 U)	8.4\%	14.5\%
Change in Property Tax Revenues in Compact	-- 2040	\$-12.46M	\$1.56B
Metrorail/Transit Ridership	1.55M / 2.66M (2040U)	1.87M / 3.19M	2.65M / 4.47M
Peak Person Hours Traveled on Congested Metrorail	41,600 (2040U)	47,600	221,100
Peak Person Hours Traveled on Congested Buses	39,150 (2040U)	54,900	78,500
Daily VMT	170.3M (2010)	215.2M	171.4M
Highway Travel Times (13 OD pairs)	552 min (2010	854 min	516 min
Congested Person Miles Traveled Autos * (C) Constrained (U)	$30.1 \mathrm{M}(2040 \mathrm{C})$ Unconstrained Metrorail Capacity	45.8M	21.3M

Scenario A1: Peak Metrorail Usage

2040 Metrorail Peak Period Passenger Loads (Policy Scenario A1)
(1) Metrorail Station Peak Period Passenger Loads

Scenario A2: Peak Metrorail Usage

Other Conclusions

- To realize more robust benefits by 2040
- Need significant policy shifts and/or regional land use changes (B2, A2)
- Simple, easy interventions didn't move the needle much (A')
- Targeting cost of specific driving trips had greater impact than peanut butter approach
- Telework, alternate work hours had a significant (negative) impact on ridership/revenue
- Place types limited ability to better balance jobs and population in the region

Final Thoughts

The region does not need to accept the status quo

Transit expansion was found necessary through most scenarios we tested. But growing smarter provides the resources to make it possible.

