Traffic Assignment – Toll Modeling

Mr. Krishna C. Patnam, Senior Consultant

AECOM

May 17, 2013

2013 Task Orders (** today's topic)

- T.O. 7 Meetings and General Support
- T.O. 8 Traffic Assignment
 - 8.1 HOT-lane Modeling **
 - 8.2 HOV Modeling
 - 8.3 Speed Validation (submitted draft research memo)
 - Added tech memo, meetings, and simple HOV model
- T.O. 9 Mode Choice and Transit Modeling
 - 9.1 Network Preparation
 - 9.2 Path Building
 - Added AEMS → ModeChoice example/documentation

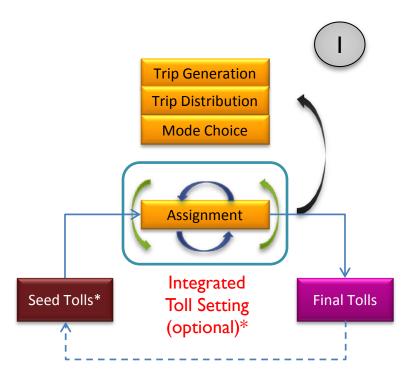
Presentation Outline

- HOT Lane Modeling Goals
- 2. Proposed Toll Modeling Design
 - a) Design Considerations
 - b) Details
 - c) Observations
- 3. Next Steps

HOT Lane Modeling Goals

- Enhance current highway assignment
 - Replace "two-step" with a single, multiclass assignment
 - Utilize proposed HOV modeling
 - Include dynamic toll setting in the standard model
 - Determine HOT lane tolls as part of highway assignment
 - Streamline highway assignment
 - Utilize CUBE cluster efficiently (MDP & IDP)
 - Minimizing repetition of common code
- Improve overall highway assignment runtime

Development Platform


- Version 2.3.48
- 2020
- 8-core CPU (quad core with hyper threading)
- Cube Voyager <u>6.0.2</u>
 - Latest release Cube Voyager 6.1.0 SP1, has changes to Bi-Conjugate Franke Wolfe assignment process

Acknowledgement

 Current toll-setting procedures developed by TPB staff by JC Park were modified and adapted.

Proposed HOT Lane Model

* Fixed tolls or outputs from the toll setting process of the previous global iteration * Two levels of toll setting convergence criteria and search methods

Design Considerations

- User controlled options
 - Disable toll-setting
 - Disable MDP/IDP
 - Specify precision in toll-search
- Computational efficiency
 - Minimize runtime with toll-setting
- Streamline script
- Follow "best practices"
 - Slave/master node format
 - Move FUNCTIONS & LW variables to ADJUST phase

Highway Assignment Script Overview

- Cube Cluster (MDP) (optional)
 - AM & NT
 - PM & MD
- Cube Cluster (IDP) (optional)
 - Toll / Non-Toll skims
 - Assignments
- Bi-Conjugate Franke Wolfe assignment process
 - Relative Gap = 0.001 or 300 Iterations
 - AM ~= 195+ iterations, PM ~= 150+, MD ~=45+, NT ~= 15

Highway Assignment Script Steps

- Step I: Read (seed/revised) toll file
- Step 2: Update tolls on all links
- Step 3: Split trips into Toll and Non-Toll
 - Only done once
 - Write out toll / non-toll skims (distance, toll, time)
- Step 4: Full multiclass assignment
- Step 5: Compute restrained speeds
- Step 6: Copy network
- Step 7: Summarize and adjust tolls
 - Create revised toll file
- Step 8:Toll setting termination check
 - Go to step I if criteria not met

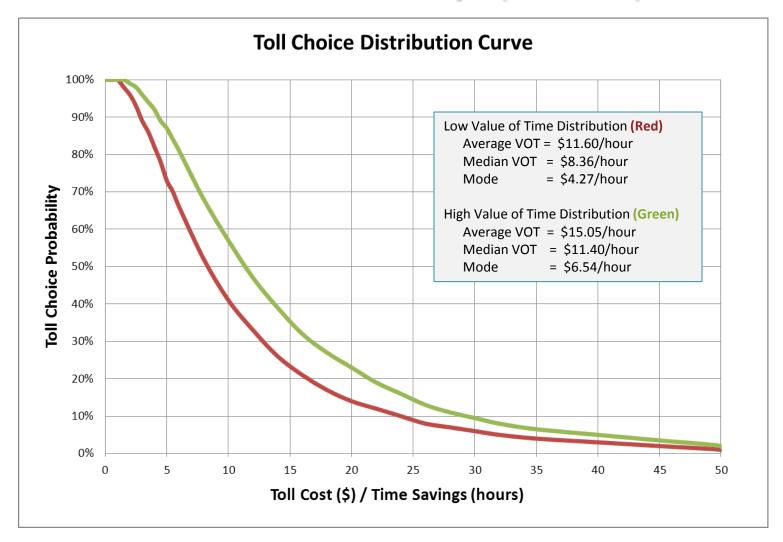
Toll Setting Overview

- Step I: Compute toll-group (id > 2) average v/c (no rounding)
- Step 2: For each toll-group, set new tolls (lower or higher)
 - Default flags
 - Helps avoids infinite loops
 - Non-linear function to raise tolls if rounded V/C < threshold
 - New Toll = Old Toll + {constant * LN ((abs(V/C difference)) + constant2) }
 - Helps reduce number of toll loops
 - Linear function to lower tolls if rounded V/C > threshold
 - Dampens any potential oscillations
 - Round tolls
 - Helps reduce number of toll loops
 - Check if new tolls are different
 - Check against toll cap/floor
- Step 3: Save toll file
 - Flag = 'I' if no-more trials required; Flag = '0' if more loops required

Toll Setting Termination Criteria

- Stop if all toll-groups have flags = 'l'
 - Tolls are not effectively changing
- Maximum number of tries (default = 100)

Changes from a User's Perspective

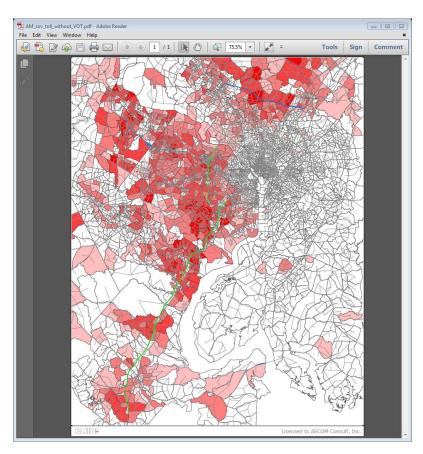

- Batch files
 - Wrapper batch file
 - Both 'AMsubnode' and 'MDsubnode' start from I
 - Model steps batch file
 - Enable/Disable Toll Setting
 - Enable/Disable VOT Distribution
- Highway_Assignment_Parallel.s partitioned
 - Broken into six files to avoid code repetition
 - Common code is loaded with 'READ FILE' statements
- Seed tolls
 - Seed tolls are read from inputs
- Value of Time distributions (Toll Choice Probability)
 - Are coded in the highway assignment script as lookups

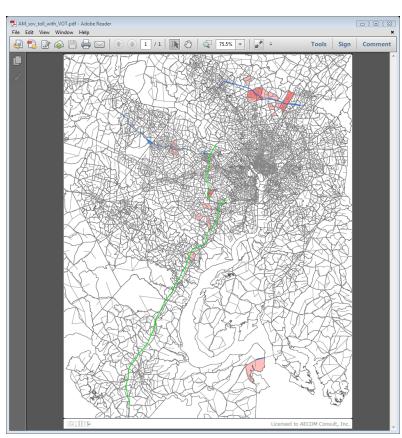
Toll File Format

- Contains cents-per-mile toll rates
- Posted on links as per-link toll in cents

TOLLGROUP	TOLLGROUP	TYPE	OLD TOLL	NEW TOLL	SPEED	V/C	VMT	DIFF	FLAG
3	3	0	0	0	0	0	0	-1.01	1
4	4	0	0	0	0	0	0	-1.01	1
5	5	0	0	0	0	0	0	-1.01	1
6	6	1	35.916	35.916	28.3924	1.0127	1942.74	0.0027	1
7	7	1	20	20	51.3802	0.8853	1443.63	-0.1247	1
8	8	1	35.916	35.916	28.3924	1.0127	5002.55	0.0027	1
9	9	1	20	20	60.2045	0.6919	5575.11	-0.3181	1
10	10	1	20	20	62.7329	0.5063	3399.79	-0.5037	1
11	11	1	20	20	53.907	0.8455	24087.33	-0.1645	1
12	12	1	20	20	62.7329	0.5063	874.23	-0.5037	1
13	13	1	23.1327	23.1327	29.5429	1.0088	11224.5	-0.0012	1
14	14	1	20	20	63.6907	0.3618	1977.94	-0.6482	1

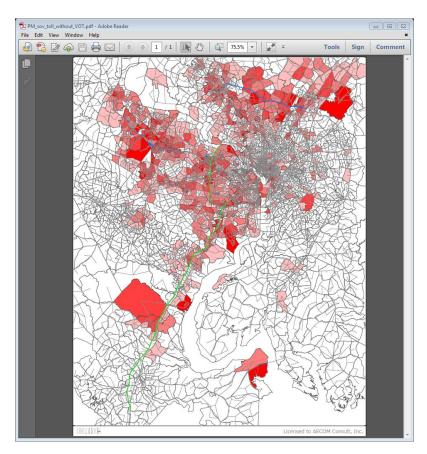
Toll Choice Probability (=VOT)

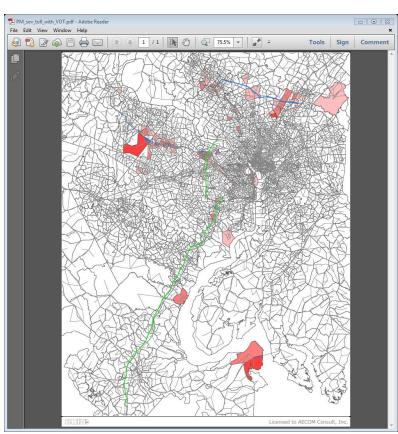



Observations

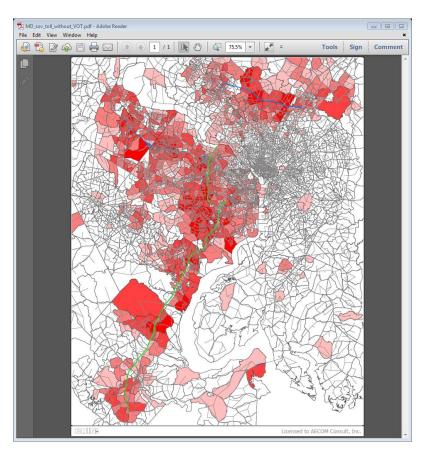
- Toll-setting is most efficient when provided with good seed tolls
- Assignments are very sensitive to input value of time distributions as seen in following images

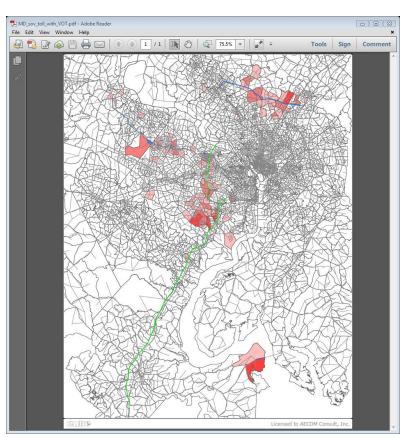
Distribution of SOV Toll-based Time Savings: AM


All SOV trips with time-savings

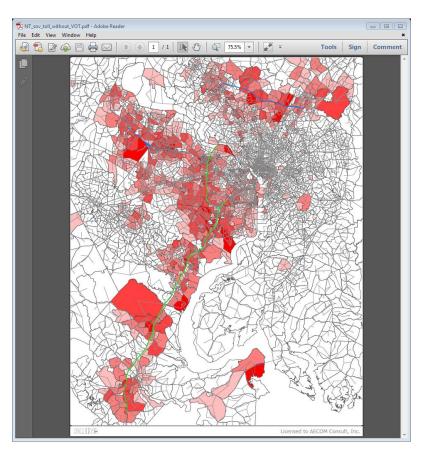

After Toll Choice Probability

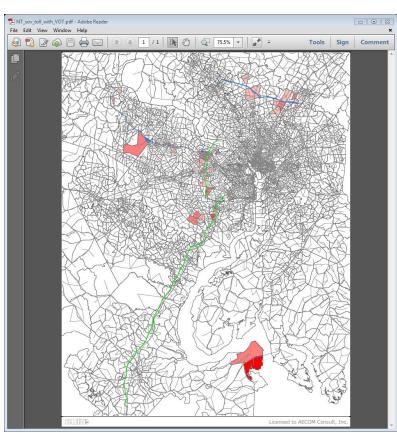
Distribution of SOV Toll-based Time Savings: PM


All SOV trips with time-savings


After Toll Choice Probability

Distribution of SOV Toll-based Time Savings: MD


All SOV trips with time-savings


After Toll Choice Probability

Distribution of SOV Toll-based Time Savings: NT

All SOV trips with time-savings

After Toll Choice Probability

Next Steps

- HOT lanes model
 - Complete full performance tests with
 - Latest release: Cube Voyager 6.1.0 SPI
 - Reduced Toll Groups
 - "Progressive" Convergence