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Padowski, J.C., Gorelick, S.M., Thompson, B.H., Rozelle, S., Fendorf, S. (2015) “Assessment of human-natural
system characteristics influencing global freshwater supply vulnerability” Environ. Res. Letters, 10(10), 204014.
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Grant et al., (2012) “Taking the ‘waste’ out of ‘wastewater’ for human water security and ecosystem
system sustainability” Science 337 681, doi:10.1126/science.1216852
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OWML Monitoring at Chain Bridge
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Leverage the dataset!
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Occoquan Reservoir Today




Sodium Concentration in the Fairfax

Water Intake is Rising Fast
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Is the Na+ from the Watershed or Sewershed?
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Plan of Attack

Set-up weekly meetings with the key stakeholders
(OWML, UOSA, Fairfax Water, Fairfax County)

Combine the OWML’s historical monitoring data with
data from UOSA and Fairfax Water

Work closely with stakeholders every step of the way,
from data curation to analysis to interpretation
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Sodium in UOSA effluent is from the sewershed

Sodium at ST45 is from: (a) UOSA effluent + (b) non-point
sources in the Bull Run drainage

Sodium at ST10 is from: non-point sources in the Occoquan
River drainage



Leverage the data! Create hourly time series of
sodium load and concentration at ST45, ST10, and
UOSA* (gIlmulti, R Software)

Aggregate the hourly sodium time series at ST10
and ST45 to daily timeseries and propagate errors
(loadflex, USGS)

Technical

details (in
short!)

From mass and flow balance, compute the daily
sodium load and concentration from the Bull Run
drainage

Compare the relative contributions of Bull Run,
UOSA, and Occoquan River to sodium load and
concentration to reservoir under different flow
conditions (Copula analysis, MvCAT)

*Sodium concentration and load at UOSA was daily, not hourly
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First Result:
% of Daily Sodium

Loading to the

Occoguan Reservoir
from (1) Bull Run, (2)
Occoquan River, (3)
UOSA
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Second Result:
Daily Sodium
Concentrations In

Flow from (1) Bull

Run, (2) Occoquan
River, and (3) UOSA
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Third Result:
Daily Sodium
Concentration

Results—but this time
diluted with “DI
Water” from other
sources
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Where do we take it from here...?

* First and foremost...keep monitoring!

* The “copula approach” outlined above (for
identifying the contribution of specific sources by
their conditional PDFs) can be replicated for
other analytes (e.g., chloride, nitrate, bromide,...)
and other locales

* The analysis can also be extended to multiple
analytes, to quantify sources relative to their
“biogeochemical fingerprints”, “taste
fingerprints”, and “pathogen fingerprints”



“Biogeochemical
Fingerprints”:
stable isotope and
biogeochemical
signals in
freshwaters

Erin Hotchkiss, Assistant Professor
School of Biological Sciences

Virginia Tech




“Biogeochemical
Fingerprints”
For example,
isotope values of
NO; and SO,*
(5180’ 615N, 6345)
can reflect

different sources of
N, S in freshwaters
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“Taste
Fingerprints”:
forget sodium,

let’s quantify the
sources of “bad
taste”

Megan Rippy, Assistant Professor

Civil and Environmental Engineering

Virginia Tech, OWML




Many minerals contribute to overall water flavor
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@ Pecople prefer water with
calcium, magnesium,
sulfate and moderately low
pH (8), which reduces
metallic taste

@ Water with high sodium,
chloride, silicon and nitrate
is least preferred

Estimated from data by Platikanov et al., 2013



“Pathogen
Fingerprints”:
library
independent
Microbial

Source Tracking
(MST)

Brian Badgley, Associate Professor

School of Plant and Environmental Sci.

Virginia Tech, Blacksburg




Microbial Source Tracking Approaches

“Library-independent” approaches
use qPCR to count genetic sequences
specific to bacteria from particular
animal hosts (e.g., HF183)

Most promising in terms of scientific M@
validation of accuracy and agency

support MD@q
iy

Not yet straightforward to link to R

TMDL or epidemiology data, but \

work is progressing in this area o

cccccc



Vision: make the OWML a nexus of
stakeholder needs and cutting-edge
water quality research

Tech

Stakeholder- Research
driven grade
questions answers

OWML
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National Science Foundation Engineering
Research Center (NSF ERC)

NSF’s “Grand Prize” for Engineering (program
started in 1985)

S50M from NSF over 10 years, + matching funds
from university & industrial partners

VT had one in Power Electronics (1998 to 2008),
but none since (a priority for the university)

The upcoming “Gen-4” NSF ERC competition cycle
focuses on:

— Convergent Engineering

— Societal Grand Challenge



“Convergent Engineering”

“Integrates knowledge, tools, and ways of
thinking across disciplinary boundaries...to
form a synthetic framework for tackling
scientific and societal challenges” also
requires significant “stakeholder involvement”

National Research Council, “Convergence: Facilitating Transdisciplinary Integration of
Life Science, Physical Sciences, Engineering, and Beyond” (2014). doi:
10.17226/18722



NSF ERC Planning Workshop

* | received S100K from NSF to develop the ERC

0id

* First workshop will take place at Fairfax
Water’s Griffith Auditorium in Loudoun, VA on

January 14t (reception the evening before at
the OWML)

 Two components: (a) a workshop in the
morning; (b) panel discussion in the afternoon

 Please Join us!!



Professor Stanley B. Grant
Dept. of Civil and Environmental Engineering

Qu EStlonS? stanleyg@vt.ed

949-677-9478

The OWML has a new website: https://www.owml.cee.vt.ed
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