### DRAFT 2022 CONGESTION MANAGEMENT PROCESS (CMP) TECHNICAL REPORT

Andrew Meese TPB Program Director, Systems Performance Planning

TPB Technical Committee June 3, 2022





National Capital Region Transportation Planning Board

### Introduction

- A Congestion Management Process (CMP) is a requirement in metropolitan transportation planning
  - Many generations of federal regulations for metropolitan planning have addressed CMP requirement; no changes in law under IIJA/BIL (regulations pending)
- The official CMP component is wholly integrated into the overall longrange transportation plan (Visualize 2045)
  - The CMP Technical Report is a supporting document developed biennially since 2008
- Draft 2022 CMP Technical Report being made available for review now, for Technical Committee acceptance as final at the July 8 meeting
  - Comments/corrections by June 17 to <u>ameese@mwcog.org</u>



### **Contents – Congestion Summaries**

- Executive Summary
- Chapter 1 Introduction
- Chapter 2 State of Congestion
  - Regional Travel Trends
  - Congestion on Highways; Transit Systems
  - National Comparison of the Washington Region's Congestion
  - Performance Analysis of Visualize 2045



### **Contents – Strategies and Outcomes**

- Chapter 3 Consideration/Implementation of Strategies
  - Demand Management Strategies (esp. Commuter Connections)
  - Operational Management and Integrative/Multi-Modal Strategies
- Chapter 4 Studies of Congestion Management Strategies
- Chapter 5 How Results of the CMP Are Integrated into the Long-Range Plan
- Chapter 6 Conclusions
  - Key Findings (9) of the 2022 CMP Technical Report
  - Recommendations (17)
- Appendices



# **Key Findings**

- 1. Congestion analysis
- 2. Reliability analysis
- 3. Bottlenecks
- 4. Travel demand management continues its importance
- 5. Walking/biking continue to grow
- 6. Variably priced lanes offer travel options
- 7. Regional Transportation Operations Coordination (e.g. MATOC)
- 8. Real-time travel information
- 9. COVID-19 Pandemic Impacts



### **Report Recommendations (1 of 2)**

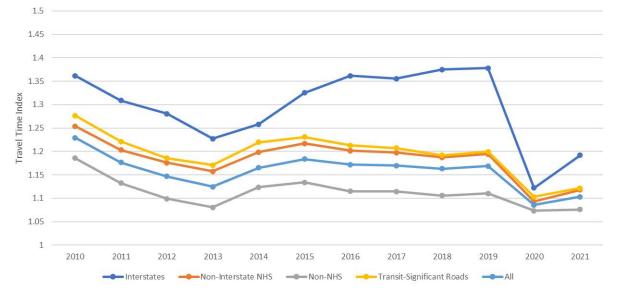
- 1. Continue the Commuter Connections program
- 2. Continue the MATOC program
- 3. Continue to coordinate PBPP with the CMP
- 4. Encourage integration of operations and travel demand management components of congestion management
- 5. Pursue sufficient investment in the existing transportation system
- 6. Consider variable pricing and other management strategies
- 7. Encourage transit and explore transit priority strategies
- 8. Encourage congestion management during major construction projects
- 9. Encourage access to non-auto travel modes



# **Report Recommendations (2 of 2)**

- 10. Continue and enhance traveler information
- 11. Encourage implementation of projects, programs, and processes that support the TPB Aspirational Initiatives
- 12. Encourage connectivity within and between Regional Activity Centers
- 13. Continue and enhance the regional congestion monitoring program with multiple data sources
- 14. Monitor trends in freight, specifically truck travel
- 15. Participate in collaborative planning connected and autonomous vehicle readiness
- 16. Monitor impacts of and interactions with shared mobility services
- 17. Encourage Traffic Incident Management (TIM)




### **Highlights of the Report**

- § 2.2.1 The Eastern Transportation Coalition Vehicle Probe Project Traffic Monitoring
- § 2.2.1.6 Top Bottlenecks
- § 2.5 National Comparison of the Washington Region's Congestion
- Appendix A 2021 Peak Hour TTI for the Region and Sub-regions
- Appendix B 2021 Peak Hour PTI for the Region and Sub-regions
- Appendix C 2010 and 2019-2021 Travel Times along Major Freeway Commute Corridors



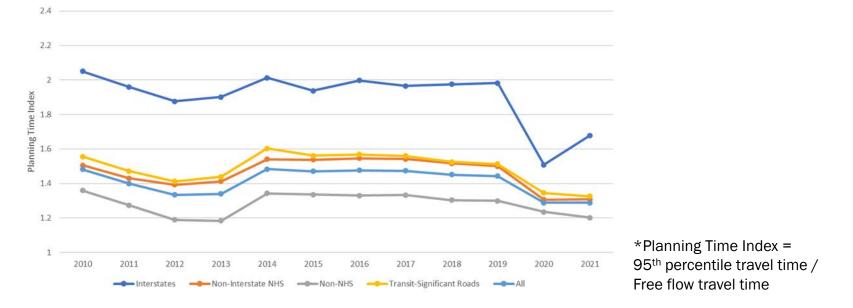
### **Peak Period Congestion**

- Measured by Travel Time Index (TTI)\*
- Impact of COVID-19 pandemic measures on congestion
- Even with COVID-19 impacts, Interstates remained the most congested highway category, followed by Transit-Significant roads\*\*, non-Interstate NHS, and non-NHS.



\*Travel Time Index = Actual travel time / Free flow travel time.

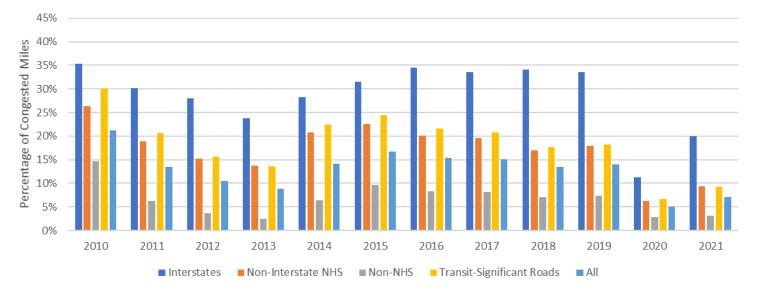
\*\* Transit-Significant Roads: Directional road segments with at least 6 buses running in the AM peak hour.


9



National Capital Region Transportation Planning Board

### **Peak Period Travel Time Reliability**

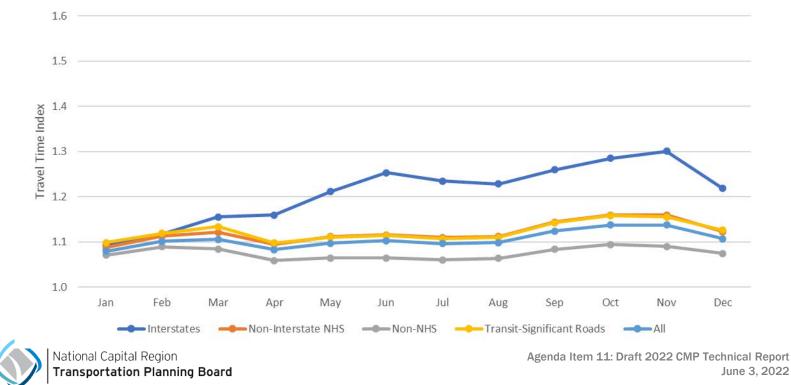

- Measured by Planning Time Index (PTI)\*
- Impact of COVID-19 pandemic measures on reliability
- Most unreliable category is Interstates, followed by Transit-Significant Roads, non-Interstate NHS, and non-NHS.





#### **Peak Period Congestion – Percent of Congested Miles**

- To capture the spatial extent of congestion\*
- On average, this region observed about 7% of all monitored roads congested during peak periods in 2021, and that was a slight increase from 5% in 2020




\*Congestion is considered when Travel Time Index > 1.30.



### Monthly Variation of Congestion in 2021

- Monthly variations of congestion were most noticeable on the Interstate System, followed by the Transit-Significant Roads, the Non-Interstate NHS, and the Non-NHS
- The monthly patterns with COVID-19 in 2020 and 2021 were different from those in pre-COVID-19 years

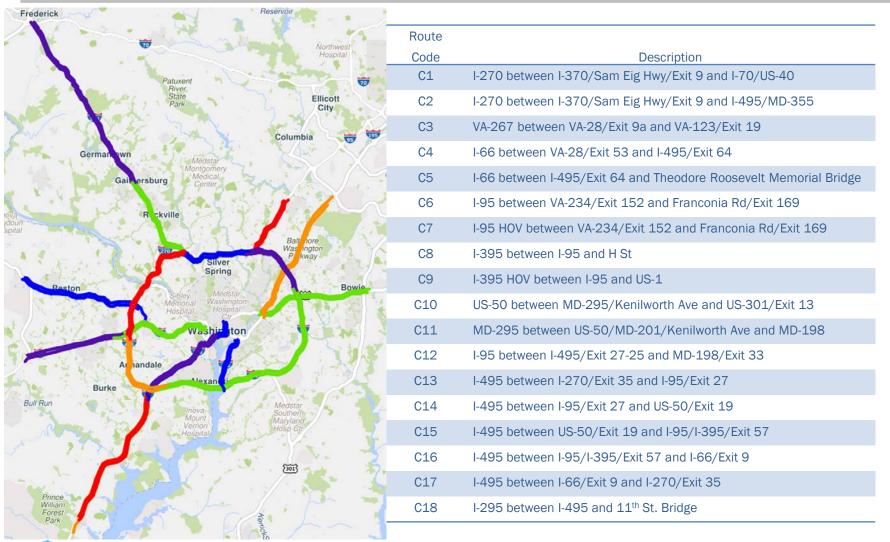


### **Top 10 Bottlenecks in 2021**

| Location                                 | Average duration | Average<br>max<br>length<br>(miles) | Total duration  | Impact<br>factor |
|------------------------------------------|------------------|-------------------------------------|-----------------|------------------|
| I-95 S @ VA-123/EXIT 160                 | 8 h 9 m          | 4.01                                | 124 d 4 h 5 m   | 530,457          |
| I-95 N @ VA-123/EXIT 160                 | 4 h 11 m         | 4.45                                | 63 d 19 h 32 m  | 386,481          |
| DC-295 S @ CAPITOL ST                    | 9 h 4 m          | 1.51                                | 137 d 22 h 41 m | 278,813          |
| MD-295 N @ POWDER MILL RD                | 5 h 11 m         | 2.92                                | 78 d 19 h 59 m  | 255,314          |
| I-95 N @ VA-617/BACKLICK RD/EXIT 167     | 2 h 33 m         | 4.02                                | 38 d 22 h 50 m  | 216,574          |
| US-301 S @ MCKENDREE<br>RD/CEDARVILLE RD | 3 h 51 m         | 2.45                                | 58 d 14 h 43 m  | 196,300          |
| I-495 CW @ I-270-SPUR                    | 1 h 21 m         | 5.92                                | 20 d 17 h 56 m  | 176,892          |
| I-66 W @ VA-234/VA-234-BR/EXIT 47        | 1 h 15 m         | 6.21                                | 19 d 3 h 24 m   | 159,189          |
| I-270 S @ MD-109/EXIT 22                 | 1 h 54 m         | 3.89                                | 29 d 2 h 53 m   | 153,541          |
| I-270 N @ MD-109/EXIT 22                 | 1 h 30 m         | 4.73                                | 22 d 23 h 44 m  | 146,933          |



### Location of Top 10 Bottlenecks in 2021


| Location                                 | Impact<br>factor* | Frederick 5360                                |
|------------------------------------------|-------------------|-----------------------------------------------|
| I-95 S @ VA-123/EXIT 160                 | 530,457           | 9 10 Balti                                    |
| I-95 N @ VA-123/EXIT 160                 | 386,481           | Germa own Columbia                            |
| DC-295 S @ CAPITOL ST                    | 278,813           | Gaith sburg Washin Med<br>Ro ville Medical Cl |
| MD-295 N @ POWDER MILL RD                | 255,314           | T thesda                                      |
| I-95 N @ VA-617/BACKLICK RD/EXIT 167     | 216,574           | Stonesprings<br>Hospital<br>Center            |
| US-301 S @ MCKENDREE<br>RD/CEDARVILLE RD | 196,300           | Washing n<br>3<br>Burke Alexandria            |
| I-495 CW @ I-270-SPUR                    | 176,892           |                                               |
| I-66 W @ VA-234/VA-234-BR/EXIT 47        | 159,189           | Cedar Sen A<br>Run Vir nia 2<br>ed 2          |
| I-270 S @ MD-109/EXIT 22                 | 153,541           | Me Ce                                         |
| I-270 N @ MD-109/EXIT 22                 | 146,933           |                                               |
| *Base impact - the sum of queu           | 2013              |                                               |

lengths over the duration



Potomac River

### **Major Freeway Commute Routes**





### §2.5 National Comparison

| Texas A&M Transportation<br>Institute (2020 data) |       | INRIX Traffic Scorecard (2021 data) |                  |       | TomTom Traffic Index<br>(2021 data)                   |                  |       |      |
|---------------------------------------------------|-------|-------------------------------------|------------------|-------|-------------------------------------------------------|------------------|-------|------|
| Annual Person-Hours of Delay<br>per Auto Commuter |       | Hours Lost in Congestion            |                  |       | Extra Travel Time compared to Free<br>Flow Conditions |                  |       |      |
| Metro Area                                        | Value | Rank                                | Metro Area       | Value | Rank                                                  | Metro Area       | Value | Rank |
| New York                                          | 56    | 1                                   | Chicago          | 104   | 1                                                     | New York         | 35%   | 1    |
| Boston                                            | 50    | 2                                   | New York         | 102   | 2                                                     | Los Angeles      | 33%   | 2    |
| Houston                                           | 49    | 3                                   | Philadelphia     | 90    | 3                                                     | Miami            | 28%   | 3    |
| Los Angeles                                       | 46    | 4                                   | Boston           | 78    | 4                                                     | Baton Rouge      | 27%   | 4    |
| San<br>Francisco                                  | 46    | 4                                   | Miami            | 66    | 5                                                     | San<br>Francisco | 26%   | 5    |
| Washington                                        | 42    | 5                                   | San<br>Francisco | 64    | 6                                                     | Chicago          | 24%   | 6    |
| Dallas                                            | 40    | 6                                   | New Orleans      | 63    | 7                                                     | Honolulu         | 23%   | 7    |
| Chicago                                           | 39    | 7                                   | Los Angeles      | 62    | 8                                                     | Seattle          | 23%   | 7    |
| Atlanta                                           | 37    | 8                                   | Houston          | 58    | 9                                                     | Riverside        | 23%   | 7    |
| Philadelphia                                      | 37    | 8                                   | Washington       | 44    | 13                                                    | Washington       | 21%   | 8    |



### **Selected Congestion Management Strategies**



#### **Andrew Meese**

TPB Program Director, Systems Performance Planning (202) 962-3789 <u>ameese@mwcog.org</u>

#### mwcog.org/tpb

Metropolitan Washington Council of Governments 777 North Capitol Street NE, Suite 300 Washington, DC 20002

