# Microbial Source Tracking Data

#### Michael Powell<sup>1</sup>, Martin Chandler<sup>2</sup>, Charles Hagedorn<sup>3</sup> 16 November 2015

<sup>1</sup>EA Engineering, Science, and Technology, Inc., PBC <sup>2</sup>Washington Suburban Sanitary Commission <sup>3</sup>Virginia Tech



Washington Suburban Sanitary Commission





# Background

- Sanitary Sewer Overflow Consent Decree
- Negotiated over several years, entered in Court December 2005
- Water Quality Monitoring Plan
  - Total bacteria
  - Bacterial source tracking : an emerging technology
- WSSC commissioned "White Paper" to identify state-of-the-art BST technologies

# **Consent Decree**

### • No guidance or rationale for:

- Selection of sampling points
- Stream flow conditions
- Analytical methods
- Criterion for expected reduction in human source bacteria following collection system repair, rehabilitation, or replacement

# WQM Plan

#### • Monitoring scope:

- 26 sewer basins (annual sampling)
- Semi-annual sampling (20 sewer basins)
- Prepared by EA Engineering:
  - Selected BOX-PCR for MST analyses
  - Identified sampling stations, stream flow criterion
- Quarterly reporting format:
  - Alphabetical by sewer basin name
  - Data in columns for BST and total bacteria values

# **WQM Implementation**

#### • Underway since March 2007

- Voluntary quarterly sampling in selected Anacostia River sewer basins 2007–2011 (→ not statistically different)
- Added MST "toolbox" tests: fluorescence, human bacteroides HF183
- Nine years of data (thru March 2015):
  - No mandate to evaluate findings or trends
  - EA Engineering prepared two data reports
  - Sewer system rehab. completed in 2 basins, still underway in others

### **Strong Seasonality**



Average Percent Source Contributions of Fecal Bacteria in Surface Waters of Prince George's County and Montgomery County



### Human Detections – Montgomery County



### Human Detections – Prince George's County





### **Average Seasonal Source Allocations**



# MDE's BST Study in Anacostia River, Watershed

- MDE conducted surface water sampling at 6 stations in 2002/2003
  - WSSC collects data at same locations
- Samples collected monthly for period of 1 year
  - Mix of low flow and high flow conditions
- BST conducted using Antibiotic Resistance Analysis (ARA) by Salisbury University
- BST results used for TMDL Allocations

# MDE's BST in Anacostia River Watershed

### Source Categories:

- Human
- Domestic Animal = dog
- Livestock = horse, pig, goat, sheep, chicken, cow
- Wildlife = goose, deer, rabbit, fox
- Unknown







# MDE's BST in Anacostia River Watershed

#### **Average Percent Allocations in MDE's Study**

| Station ID | Human | Domestic | Livestock | Wildlife | Unknown |
|------------|-------|----------|-----------|----------|---------|
| BED0001    | 9.1   | 27.7     | 5.6       | 19.7     | 38      |
| INC0030    | 17.3  | 22.5     | 9.9       | 24.4     | 25.9    |
| NEB0002    | 6.6   | 17.3     | 20.1      | 26.7     | 29.3    |
| NWA0002    | 10.4  | 19.4     | 4.8       | 27.3     | 38.1    |
| NWA0135    | 36.4  | 18.8     | 3.7       | 7.7      | 33.3    |
| PNT0001    | 16.3  | 20.4     | 5.3       | 29       | 29      |

### Comparison to MDE's BST in Anacostia<sub>14</sub> River Watershed: Beaverdam Creek

#### WSSC Station UBD001

**MDE Station BED0001** 



### Comparison to MDE's BST in Anacostia River Watershed: Indian Creek



**MDE Station INC0030** 



### Comparison to MDE's BST in Anacostia River Watershed: Paint Branch



### Comparison to MDE's BST in Anacostia River Watershed: Northeast Branch

WSSC Station NEB002

**MDE Station NEB0002** 



## Comparison to MDE's BST in Anacostia River Watershed: Northwest Branch Upstream



### Comparison to MDE's BST in Anacostia River Watershed: Northwest Branch Downstream



# Source Contributions used for TMDL<sub>20</sub> Allocations

| Allocation<br>Category | Human | Domestic<br>Animals | Livestock | Wildlife |
|------------------------|-------|---------------------|-----------|----------|
| WWTP                   | Х     |                     | $X^1$     |          |
| MS-4                   |       | Х                   |           | Х        |
| LA                     | Х     |                     | Х         | Х        |

1. Special condition for USDA treatment plant

# **TMDL Reduction Targets**

#### **Maximum Practicable Reduction Targets**

| Human | Domestic | Livestock | Wildlife |
|-------|----------|-----------|----------|
| 95%   | 75%      | 75%       | 0%       |

#### **TMDL Reduction Targets**

| Station    | %<br>Domestic<br>Animals | %<br>Human | %<br>Livestock | %<br>Wildlife    | %<br>Target<br>Reduction |
|------------|--------------------------|------------|----------------|------------------|--------------------------|
| BED0001    | 98%                      | 98%        | 98%            | 81%              | 91%                      |
| INC0030    | 98%                      | 98%        | 98%            | <mark>66%</mark> | 88%                      |
| PNT0001    | 98%                      | 98%        | 98%            | 72%              | 87%                      |
| NEB0002sub | 98%                      | 95%        | 98%            | 49%              | 79%                      |
| NWA0135    | 98%                      | 98%        | 98%            | 14%              | 88%                      |
| NWA0002sub | 98%                      | 98%        | 98%            | 53%              | 78%                      |

# Conclusions

- Often unreasonable to reduce non-human microbial loads by 90% as required in some MS4 permits
  - Stormwater BMPs have limited/contradictory data on bacterial reduction
- The ARA Method used by MDE to develop load allocations likely underestimates wildlife contributions
- Genetic-based MST methods have replaced ARA, and have become reasonably inexpensive
- Counties with fecal bacteria TMDLs could benefit from MST by better characterizing human versus non-human sources

### **Questions?**

#### .3.2: DC Final Average Bacteria Source Distribution for Anacostia Wat am of the NWB and NEB Confluence and Upstream of the Maryland/D

| Source<br>ategory | Domestic<br>Animals | Human | Livestock | Wildlife | Total |
|-------------------|---------------------|-------|-----------|----------|-------|
| %                 | 21.1%               | 22.2% | 0.3%      | 56.5%    | 100.0 |

