COG/TPB Travel Forecasting Subcommittee

Modeling Public Transport in the Arlington Co. Tour-based Travel Model

Filippo Contiero, Senior Technical Support Engineer, Bentley Systems 28 January 2022 [9:35 AM – 10:10 AM]

© 2022 Bentley Systems, Incorporated

"In this presentation, we highlight the key steps, methods, and assumptions that went into the creation of the transit skims and the transit assignment process."

Bentleu

- Introduction to PT in CUBE: key concepts
- Approach for the Arlington PT Model
- Coding of the Arlington PT System
- PT Skimming and Assignment
- Calibration
- Potential Future Improvements
 - Note on PT Crowding Auxiliary Process

Introduction to PT in CUBE: Trnbuild vs Public Transport

Trnbuild

- Simplified approach based on best-path
- Not supported* by Bentley in future releases

Public Transport

- Algorithm based on multi-routing
- Capability to capture the complexity of the PT system and passengers' behavior
- Requires a different approach being a different program
- Supported* by Bentley

*Software support = help/technical-support, maintenance, active development

Introduction to PT in CUBE: Algorithm

- Heuristic Algorithm: feasible solution close to an "optimal solution" by using a sequence of rules
- Probabilistic Algorithm (route evaluation): probabilities at each decision point along the route and conditional probability for the entire route

Bentley

Introduction to PT in CUBE: Alternative Approaches

- Headway/frequency-based vs timetable/schedule-based
- Multi-user class vs single-user class
- Multi-routing (vs best-path)
- Uncongested assignment vs crowding
- Fares vs no-fares
- Frequency and generalized cost to destination (service-frequency-and-cost) vs frequency only (service-frequency)
- Alternative approaches for level of network coding detail for:
 - NT-Legs generation
 - Coding of PnR, KnR/TNCnR
- Alternative approaches for coding transit travel times

Introduction to PT in CUBE: Multi-Routing Example

REval Route(s) from Origin 1950 to Destination 13

Introduction to PT in CUBE: Multi-Routing Example

REval Route(s) from Origin 1950 to Destination 13

Introduction to PT in CUBE: Multi-Routing - Low-Spread Balance

Why multi-routing?

- ✤ Time aggregation: not simulating every single departure time but simulation period of one or more hours → proportions based on frequency
- Zoning system aggregation: path creation between zones not single buildings (aggregating spatial locations)
- ◆ User behavior aggregation: choices depending on user classes not single individuals
 Why low-spread → closer to best-path?
- ✤ ↓ Runtime (increases with spread due to many route-variations)
- \clubsuit \downarrow File sizes
- Simplification of the PT system: consolidation of modes/lines/vehicles already including multiple sub-routes
- Multiple user classes to simulate different preferences, rather than higher spread
- ✤ The more we disaggregate, the more we reduce spread → closer to single best-path (obtained with 0-spread in PT)

Benfleu

Approach for the Arlington PT Model

<u>Working</u> catalog: "Cat_Arlington_PT_v08.cat" Documentation: "PT_Arlington_Ref_Guide_v08.02.docx"

Coding of the Arlington PT System: Non-Transit

- ♦ Single Master Network → supporting infrastructures for HW, Transit and Non-Transit modes
- Non-Transit Legs are "infrastructural", i.e., do not dependent on services' operations
- ✤ <u>Non-motorized</u>: walk (bike, scooter, e-bike, e-scooter) → network with dedicated links
 - Access from origin to stop nodes
 - Egress from stop nodes to destination
- ♦ <u>Walk</u> transfers between stop nodes \rightarrow network with dedicated links

			1
Area Type		Circuity Factor	
/	Walk time = ((Distand	ce / Walk speed) * 60	0) / Circuity factor
1		1.20	
2		1.10	
3		1.05	
4		1.00	
5		1.00	
6		1.00	
		No. No.	1

Non-motorized only links: PEDEST=1 and AM, PM and OPLIMIT=9

Bentleu

- ☆ Motorized: PnR, KnR/TNCnR → extra links not needed but Stations.DBF → time + extra time
 - Access from PnR lot or KnR/TNCnR area to stop node
 - Egress from stop node to PnR lot or KnR/TNCnR area

Coding of the Arlington PT System: Non-Transit

Mode	Name	Long-name	MinDist [miles]	MaxDist [miles]	Slack [miles]	Max n. NTLegs	
		Active NT modes access (wal	k, bicycle, etc.)				
101	BWalkAccS	Bus Walk Access - Short	-	1	-	8	
102	BWalkAccL	Bus Walk Access - Long	1	3	1	2	
103	MRWalkAccS	Metrorail Walk Access - Short	-	1.5	-	4	
104	MRWalkAccL	Metrorail Walk Access - Long	1.5	3	1	2	GENERATE
105	CRWalkAccS	Comm Rail Walk Access - Short	-	1.5	-	8	
106	CRWalkAccL	Comm Rail Walk Access - Long	1.5	3	1	2	
107	LRWalkAccS	Light Rail BRT/LRT Walk Access - Short	-	1	-	5	
108	LRWalkAccL	Light Rail BRT/LRT Walk Access – Long	1	2	1	2	
		Park and Ride or Kiss and	Ride access				
151	PnRBusAcc	PnR Bus Access	-	-	-	1	
153	PnRMRailAcc	PnR MetroRail Access	-	-	-	1	– Tahle
154	PnRCRailAcc	PnR Commuter Rail Access	-	-	-	1	TUDIC
155	PnRLRAcc	PnR Light Rail BRT/LRT Access	-	-	-	1	
		Active NT modes egress (wal	k, bicycle, etc.)				
201	BWalkEgrS	Bus Walk Egress - Short	-	1	-	8	
202	BWalkEgrL	Bus Walk Egress - Long	1	3	1	2	
203	MRWalkEgrS	Metrorail Walk Egress - Short	-	1.5	-	4	
204	MRWalkEgrL	Metrorail Walk Egress - Long	1.5	3	1	2	GENERATE
205	CRWalkEgrS	Comm Rail Walk Egress - Short	-	1.5	-	8	
206	CRWalkEgrL	Comm Rail Walk Egress - Long	1.5	3	1	2	
207	LRWalkEgrS	Light Rail BRT/LRT Walk Egress - Short	-	1	-	5	
208	LRWalkEgrL	Light Rail BRT/LRT Walk Egress – Long	1	2	1	2	
		Park and Ride or Kiss and	Ride egress				
251	PnRBusEgr	PnR Bus Egress	-	-	-	1	
253	PnRMRailEgr	PnR MetroRail Egress	-	-	-	1	Tabla
254	PnRCRailEgr	PnR Commuter Rail Egress	-	-	-	1	
255	PnRLREgr	PnR Light Rail BRT/LRT Egress	-	-	-	1	
		Transfers NT mod	des				_
300	WalkXfr	Walk Transfers	-	0.5	0.1	2	_⊢ GENERATE
351	PnRXfr	Transfers at PnR/KnR stations	-	-	-	1	_⊢ Table

Coding of the Arlington PT System: Transit (1)

<u>Actual</u> TRANTIME (buses) = calculated speed based on link and sub-mode * Factor_1 * Factor_2 + Dwell Time

- Factor_1 = depending on the transit mode
- Factor_2 = depending on the link area type and facility type

<u>Actual</u> TRANTIME (reserved) = [calculated speed based on link attribute + Dwell Time] \rightarrow RUNTIME

Mode	Long-name	TRANSIT SPEED			FACTORS by MODE (Factor_1)		Dwell Time [minutes]	
		Skin	nming	Assignment by period	Peak periods	Off-Peak	Peak periods	Off-Peak
		Peak	Off-Peak	AM, PM = Peak periods		periods		periods
				MD, NT = Off-Peak periods				
1	Local Metrobus	PKSPEED = f(area	75% FFSPEED + 25%	Congested speed for mixed	0.90	0.95	0.30	0.25
-		type, link type)	PEAKSPEED	traffic from HW assignment	0.50	0.55	0.50	0.25
2	Express Metrohus	PKSPEED = <i>f(area</i>	75% FFSPEED + 25%	Congested speed for mixed	1 00	1 00	1.00	0.75
-		type, link type)	PEAKSPEED	traffic from HW assignment	1.00	1.00	1.00	0.75
3	Metrorail	RAILSPEED attribute	RAILSPEED attribute	RAILSPEED attribute	-	-	2.00	1.50
4	Commuter Rail	RAILSPEED attribute	RAILSPEED attribute	RAILSPEED attribute	-	-	4.00	3.00
5	Light Rail Transit	RAILSPEED attribute	RAILSPEED attribute	RAILSPEED attribute	_	_	1.00	0.75
-								
6	Other Local Bus in WMATA Service Area	PKSPEED = <i>f</i> (area	75% FFSPEED + 25%	Congested speed for mixed	0.90	0.95	0.35	0.25
-		type, link type)	PEAKSPEED	traffic from HW assignment				
7	Other Express Bus in WMATA Service Area	PKSPEED = f(area	75% FFSPEED + 25%	Congested speed for mixed	0.90	0.95	0.80	0.70
		type, link type)	PEAKSPEED	traffic from HW assignment				
8	Other Local Bus beyond WMATA Service	PKSPEED = f(area	75% FFSPEED + 25%	Congested speed for mixed	0.90	0.95	0.30	0.20
	Area	type, link type)	PEAKSPEED	traffic from HW assignment				
9	Other Express Bus beyond WMATA Service	PKSPEED = f(area	75% FFSPEED + 25%	Congested speed for mixed	0.95	0.95	0.40	0.30
-	Area	type, link type)	PEAKSPEED	traffic from HW assignment				
10	Bus Rapid Transit and Streetcar	"RAILSPEED"	"RAILSPEED" attribute	"RAILSPEED" attribute	-	_	1.00	0.75
		attribute						Dentil

Denney

Coding of the Arlington PT System: Transit (2)

<u>Actual</u> TRANTIME (buses) = calculated speed based on link and sub-mode * Factor_1 * Factor_2 + Dwell Time

- Factor_1 = depending on the transit mode
- Factor_2 = depending on the link area type and facility type

<u>Actual</u> TRANTIME (reserved) = [calculated speed based on link attribute + Dwell Time] \rightarrow RUNTIME

Facility Type	Area Type 1	Area Type 2	Area Type 3	Area Type 4	Area Type 5	Area Type 6
Peak periods Factor_2						
0 (centr conn)	1	1	1	1	1	1
1 (freeway)	0.8	0.8	0.8	0.8	0.8	0.8
2 (maj art)	0.9	0.8	0.8	0.8	0.8	0.8
3 (min art)	1	1	0.9	0.9	0.8	0.8
4 (collector)	1	1	1	0.9	0.8	0.8
5 (expressway)	0.9	0.8	0.8	0.8	0.8	0.8
6 (ramp)	0.8	0.8	0.8	0.8	0.8	0.8
7 (local)	1	1	1	1	1	1
		0	ff-Peak periods Factor_2			
0 (centr conn)	1	1	1	1	1	1
1 (freeway)	0.8	0.8	0.8	0.8	0.8	0.8
2 (maj art)	1	1	0.9	0.8	0.9	0.8
3 (min art)	1	1	0.9	0.9	0.9	0.8
4 (collector)	1	1	1	0.9	0.9	0.8
5 (expressway)	1	1	0.9	0.8	0.8	0.8
6 (ramp)	0.8	0.8	0.8	0.8	0.8	0.8
7 (local)	1	1	1	1	1	1

Coding of the Arlington PT System: Wait Curves

Wait curves applied by stop-node \rightarrow wait time = f(cumulative frequency of the services available at the stop node)

- o MIX MIX Buses PT modes 1, 2, 6, 7, 8, 9
- MRail MetroRail PT mode 3
- o CRail CommuterRail PT mode 4
- o LRT LRT and BRT PT modes 5, 10

Initial wait curves

Transfer wait curves

PT Skimming and Assignment: Factor File

Route Enumeration

SPREAD = MAX(GCost(MinRoute)* SPREADFACT, GCost(MinRoute) + SPREADCONST)

Parameter	UC 1	UC 2	UC 3
SPREADFUNC	1	1	1
SPREADFACT	1.10	1.05	1.05
SPREADCONST [min]	2	1	1

Parameter	UC 1	UC 2	UC 3
AONMAXFERS	5	3	3
MAXFERS	3	2	2
EXTRAXFERS1	1	1	1
EXTRAXFERS2	1	1	1

Route Enumeration & Evaluation

Perception Factors:

- Waitfactors
- Boarding Penalties
- Runfactors

Route Evaluation

Perception Factors:

- XFERPEN * XFERFACTOR + XFERCONST
- Values of Time

PT Skimming and Assignment: Elapsed Time

Skimming (times rounded to closest minute)	РК	OP
Route Enumeration	3 minutes	2 minutes
Route Evaluation and Skimming	11 minutes	10 minutes
Total	14 minutes	12 minutes

Running in parallel with CUBE Cluster, so around 14 minutes total

Assignment (times rounded to closest minute)	AM	MD	PM	NT
Route Enumeration	3 minutes	2 minutes	3 minutes	2 minutes
Route Evaluation and Loading	14 minutes	12 minutes	12 minutes	12 minutes
Total	17 minutes	14 minutes	15 minutes	14 minutes

Running in parallel with CUBE Cluster, so around 17 minutes total

Terminology: Estimation vs Calibration vs Validation

Estimation: implies statistical analysis and testing

- Finding functional forms
- Finding significant parameters to be included in the model specification
- Finding values of parameters making observed data more likely to be reproduced under the model specification
- Calibration: implies modeler expertise and refinement procedures
 - Implies assumption of some parameters from literature/experience
 - Choosing/adjusting parameter values to optimize Goodness of Fit measures
 - Can imply usage of additional adjustment factors/parameters
- Validation: implies checking what defined in estimation/calibration
 - Same reference year but different dataset (rates, different aggregation, data partition) or "Dynamic Validation" / Back-Casting using data from different periods
 - Still underlines the main concept of Goodness of Fit measures
 - Tests and quantifies the ability of the model to predict future scenarios

common dataset

different dataset

Bentleu

Ridership and Goodness of Fit for groups of operators

OPERATORA	AGGROP	Observed	Model	% diff
1	WMATA bus	365,600	359,841	-2%
2	WMATA rail	655,953	613,034	-7%
3	MARC	40,700	31,082	-24%
4	VRE	19,300	14,326	-26%
5	ART	10,900	11,419	5%
6	DASH	14,300	9,596	-33%
7	Fairfax City Bu	2,000	3,391	70%
8	Fairfax Connect	27,800	51,187	84%
9	Loudoun Transit	6,000	6,949	16%
10	PRTC/Omniride	8,400	11,860	41%
11	RideOn	71,000	55,520	-22%
12	PG TheBus	10,000	9,332	-7%
13	RTA Central Mar	3,200	7,214	125%
14	Fredericksburg	1,000	2,392	139%
15	Calvert County	400	922	131%
16	Carroll County	500	680	36%
17	St Mary's STS	1,200	1,460	22%
18	MARTZ	400	140	-65%
-	Total	1,238,653	1,190,345	-4%
%RMSE = 18%				
R ² = 0.99				

Ridership and Goodness of Fit for groups of ART lines

ROUTE_ID	OPERDESCR	Observed	Model	% diff	
41	ART	2,233	1,275	-43%	
42	ART	1,127	1,067	-5%	
43	ART	750	377	-50%	
45	ART	1,250	904	-28%	
51	ART	317	208	-34%	
52	ART	315	337	7%	
53	ART	162	584	260%	
55	ART	1,653	2,542	54%	
61	ART	117	56	-52%	
62	ART	83	223	169%	
72	ART	576	1,864	224%	
74	ART	69	40	-42%	
75	ART	602	529	-12%	
77	ART	704	628	-11%	
84	ART	239	151	-37%	
87	ART	678	632	-7%	
-	Total	10,875	11,417	5%	
%RMSE =72%					
R ² = 0.50					

Ridership and Goodness of Fit for groups of DASH lines

ROUTE_ID	OPERDESCR	Observed	Model	% diff		
AT1	DASH	1,500	1,108	-26%		
AT2	DASH	1,450	1,779	23%		
AT2X	DASH	120	266	122%		
AT3	DASH	650	128	-80%		
AT4	DASH	510	348	-32%		
AT3-4	DASH	50	12	-76%		
AT5	DASH	1,400	1,609	15%		
AT6	DASH	800	601	-25%		
AT7	DASH	600	135	-78%		
AT8	DASH	2,600	2,500	-4%		
AT9	DASH	510	677	33%		
AT10	DASH	450	254	-44%		
Trolley	DASH	1,900	54	-97%		
-	Total	12,540	9,471	-24%		
%RMSE =60%						
R ² = 0.55						

Ridership and Goodness of Fit for groups of DASH lines

N	Metrorail Station	Observed	Model	% diff
8046	Van Dorn Street	2,265	2,685	19%
8047	Franconia-Springfield	5,172	7,951	54%
8048	Huntington	5,832	5,748	-1%
8049	Eisenhower Avenue	1,585	722	-54%
8050	King Street	5,679	5,034	-11%
8051	Braddock Road	3,826	2,982	-22%
8052	Reagan Washington National Airport	5,715	791	-86%
8053	Crystal City	10,847	6,904	-36%
8054	Pentagon City	12,133	3,713	-69%
8055	Pentagon	13,785	16,159	17%
8056	Arlington Cemetery	1,086	16	-99%
8057	Vienna	8,686	9,286	7%
8058	Dunn Loring	3,720	2,627	-29%
8059	West Falls Church	2,463	3,107	26%
8060	East Falls Church	3,813	6,021	58%
8061	Ballston	9,232	7,157	-22%
8062	Virginia Square-GMU	3,793	3,658	-4%
8063	Clarendon	4,478	4,186	-7%
8064	Court House	6,349	6,331	0%
8065	Rosslyn	13,059	10,033	-23%
8087	McLean	2,081	3,871	86%
8088	Tysons Corner	3,507	2,443	-30%
8089	Spring Hill	1,139	1,066	-6%
8090	Greensboro	1,415	1,166	-18%
8091	Wiehle	7,650	9,162	20%
-	Total	139,310	122,819	-12%
%RMSE =45%				
$R^2 = 0.62$				

Volumes crossing Potomac River using the Metrorail sub-mode

Period	Observed	Model	% diff
AM	72,148	47,189	-35%
MD	31,194	20,495	-34%
PM	77,214	43,250	-44%
NT	18,781	21,874	16%
Daily	199,337	132,808	-33%

Bentley

Daily percentage for the number of transfers (average)

XFERS	Target	Model
0	65.0%	63.5%
1	30.0%	31.2%
2	4.5%	5.0%
3+	0.5%	0.4%

Frequency TLD of access walk time for uc1 (AM)

CATINDX = 1 minute interval

Metrorail Rosslyn Daily Boardings

Metrorail Court House and Rosslyn Daily On Vs Off

N	Metrorail Station	Observed	Model
8064	Court House	6,349	6,331
8065	Rosslyn	13,059	10,033

Metrorail Rider Bandwidth Plot

Potential Future Improvements

- Improvement of PT Lines coding:
 - files' schema and ART line coding
 - time periods' frequencies (PM, NT)
- Further analysis of the PT crowding external/auxiliary process and inclusion in the tour-based model feedback-loop
 - Further analysis and inclusion of the walk-index calculation for NT-Legs generation
 - Future refinement of the model can investigate the inclusion of additional user classes based on:
 - Type of active mode, e.g., bike, e-scooters, etc.
 - Income category
- Phase 2 Solumes crossing Potomac River using Metrorail sub-mode show an underestimation, this could be part of future analysis and refinement

Bentleu

Phase 2 Analysis for stations showing major inconsistencies between observed vs modelled ridership has been undertaken (document "PT_Arlington_MetroRail_Station_Analysis_v08.01.docx") for future reference for model refinement

Phase 2

Note on PT Crowding Auxiliary Process

PT crowding could be affecting the following levels of decision, from lower to higher level (note: other choice behaviors exist but are not mentioned below for simplicity):

- Line Choice behaviours
- Route Choice behaviours
- PT Sub-Mode Choice behaviours
- Time-of-Day Choice / Peak-Spreading behaviours
- Mode Choice behaviours
- Destination Choice behaviours

External / auxiliary process

Note on PT Crowding Auxiliary Process

- Avoid complexity and increased runtime of iterative PT crowding assignment
- Overcome the needs for more detailed PT crowding data
- Still being able to evaluate effects of the system capacity within the overall model.

For more information...

- Christine Sherman Baker, AICP
 - Transportation Engr & Ops, County Dept. of Environmental Services
 - <u>csbaker@arlingtonva.us</u>
 - (703) 228-3780
- ✤ Bill Allen, PE
 - Senior Project Manager, Bentley Systems
 - Bill.Allen@bentley.com
 - (803) 270-7114
- Filippo Contiero
 - Senior Technical Support Engineer, Bentley Systems
 - Filippo.Contiero@bentley.com
 - +49 620 129 081 04

