'Pool Rewards'

Description

The 'Pool Rewards program project by Commuter Connections to encourage current drive alone commuters to try carpooling in the Washington region. If eligible participants can earn \$2 per day (\$1 each way) for each day they carpool to work. The program began as a three month pilot in FY 2010 and is budgeted in the Commuter Connections work program for FY 2011.

Summary of Impacts (Pilot Program FY10)

Daily VT Reduction:	VT
Daily VMT Reduction:	VMT
Daily NOx Reductions:	tons/day
Daily VOC Reductions:	tons/day
Annual PM2.5 Reductions:	tons/year
Annual precursor NOx Reductions:	tons/year
Annual CO2 Reductions	tons/year
Cost Effectiveness (NOx)	\$/ton
Cost Effectiveness (VOC)	\$/ton
Cost Effectiveness (PM2.5)	\$/ton
Cost Effectiveness (precursor-NOx)	\$/ton
Cost Effectiveness (CO2)	\$/ton

Summary of Potential Impacts (FY11)

Daily VT Reduction:	298	VT
Daily VMT Reduction:	9,296	VMT
Daily NOx Reductions:	0.0041	tons/day
Daily VOC Reductions:	0.0022	tons/day
Annual PM2.5 Reductions:	0.0300	tons/year
Annual precursor NOx Reductions:	1.0302	tons/year
Annual CO2 Reductions	1,183	tons/year
Cost Effectiveness (NOx)	185,556	\$/ton
Cost Effectiveness (VOC)	352,183	\$/ton
Cost Effectiveness (PM2.5)	6,339,373	\$/ton
Cost Effectiveness (precursor-NOx)	184,435	\$/ton
Cost Effectiveness (CO2)	161	\$/ton

Assumptions

Pilot Program (FY10)

- Sketch planning is used as an analysis tool
- 90-day pilot program (64 weekdays)
- Each trip recorded as a "passenger trip" is a vehicle-trip and VMT reduced because of the program
- Cost effectiveness is calculated based on the actual FY 2010 costs.
- The trip length is the actual trip length for participants based on their home and office locations

Potential Impacts (FY11)

- Sketch planning is used as an analysis tool
- Analysis assumes that all of the money budgeted for incentives is distributed (ie 130,000 one-way trips taken)
- The percentage of passenger trips (trips reduced) is based on the data from the pilot program (57%).
- The average trip length is based on the pilot program (31.1 miles)

Emission Analysis (2010)

Pilot Program (FY10)

Decrease in daily auto trips due to Pool Rewards (logged "passenger" trips): 79 trips/day Daily VMT reduction (based on participants' home and work locations): 2217 miles/day

Potential Impacts (FY11)

Decrease in daily auto trips due to Pool Rewards (based on logged "passenger" trips percentage from the pilot program): 298 trips/day

Daily VMT reduction (based on participants' home and work locations): 9296 miles/day

Potential FY11 Daily Emissions Reductions

NOx Estimation

Cold Start 298 x
$$\frac{0.5811 \text{ grams}}{1 \text{ trip}}$$
 x $\frac{1 \text{ ton}}{907,185 \text{ grams}}$ = 0.0002 tons

Running 9296 x
$$\frac{0.3811 \text{ grams}}{1 \text{ mile}}$$
 x $\frac{1 \text{ ton}}{907185 \text{ grams}}$ = 0.0039 tons
Total 0.0041 tons

VOC Estimation

Cold Start 298 x 0.9599 grams x 1 ton = 0.00)3 tons
--	---------

			1 trip		907,185 grams				
Running	(9296	$x \frac{0.1617 \text{ grams}}{1 \text{ mile}}$	X	1 ton 907185 grams		=	0.0017	tons
Hot Soak		298	$\mathbf{x} = \frac{0.5661 \text{ grams}}{1 \text{ trip}}$	X	1 ton 907185 grams Total		=	0.0002	tons
Potential FY	11 Annua	ll Emis	sions Reductions		1000			0.0022	tono
PM2.5 Estima	ation								
Running	9296	x	0.0117 grams 1 mile	x	1 ton 907185 grams Total	x 250	=	0.0300	tons
Precursor NC	Dx Estimat	tion			TOtal			0.0300	tons
Cold Start	298	X	0.6132 grams 1 trip	- x	1 ton 907,185 grams	x 250	=	0.0503	tons
Running	9296	x	0.3825 grams 1 mile	X	1 ton 907185 grams	x 250	=	0.9798	tons
<u>CO2 Estimati</u>	ion				Total			1.0302	tons
Running	9296	x	461.7 grams 1 mile	x	1 ton 907185 grams	x 250	=	1,183	tons
					Total			1,183	tons

Cost Assumptions

Each carpool trip taken (either as a driver or passenger) receives \$1, or \$2 per person per day for each trip correctly logged.

The total amount expended for the 'Pool Rewards project in FY 2010 was \$94,899 and \$6,509 of that was for the incentive payments. The rest was for marketing and advertising (\$65,772) and administrative costs (\$22,618). The amount of payment incentives is less than the total trips because not all of the trips were properly logged.

The total amount budgeted for 'Pool Rewards project in FY 2011 is \$190,000 with \$130,000 of that for incentive payments. The cost effectiveness assumes that the maximum number of one-way trips equals the total amount budgeted for incentives.

Cost Effectiveness

Pilot Program -FY 2010

Cost effectiveness	\$94,899	=	1,502,475.11	\$/ton
NOx	0.0632			
Cost effectiveness	\$94,899	_	2 700 702 20	¢ /+= .=
VOC	0.0340		2,/88,/82.28	\$/ton
Cost effectiveness	\$94,899	_	E1 (02 02((2	¢ /+= -=
PM2.5	0.0018		51,023,230.03	⊅/ton
Cost effectiveness	\$94,899	_	1 402 000 26	¢ /+==
Precursor NOx	0.0636		1,492,988.20	\$/ton
Cost effectiveness	\$94,899	_	1 200 10	¢ /+= .=
CO2	72.54		1,308.19	₽/ton

Potential Impacts - FY 2011

Cost effectiveness			\$190,000	=	185,556	\$/ton
NOx	250	х	0.0041	-		
Cost effectiveness			\$190,000	_	252 192	¢ /top
VOC	250	Х	0.0022		552,165	\$/ton
Cost effectiveness			\$190,000	_	(220 272	¢ /ton
PM2.5			0.0300	_	0,339,373	\$/ ton
Cost effectiveness			\$190,000	_	101 125	¢ /ton
Precursor NOx			1.0302		164,435	\$/ton
Cost effectiveness			\$190,000	_	171	¢ /ton
CO2			1,183		101	ø/ ton