Attainment Modeling Status Report

Metropolitan Washington Air Quality Committee (MWAQC)

Technical Advisory Committee Meeting

March 10, 2006

Presented by: VA Department of Environmental Quality

Outline of Modeling Process

- Purpose of attainment modeling
- Attainment modeling steps

Overview of Modeling Methodology

- Modeling platform
- Selection of episodes

Review of 2009 Modeling Results

- Ozone Transport Commission (OTC) 2009 future base case
- Two VADEQ "adjusted" future base cases simulations

Presentation Topics (continued...)

Next Steps

- Sensitivity analyses
- Future control case modeling
- Supplemental analyses & Weight of Evidence (WOE)

Other Related Modeling Efforts

- Comparison of OTC & Association for Southeastern Integrated Planning (ASIP) modeling results
- Modeling Schedule

- Meet EPA requirements & guidance
- Predict future air quality conditions
- Develop & test potential control strategies
- Translate emission reductions into air quality benefit
- Demonstrate desired air quality outcome

Attainment Modeling Steps

Historical Base Case Modeling

- Select representative high ozone events/ozone season
- Develop event specific model data input
- Run event simulation(s)
- Compare model results to actual concentrations (model validation)

Future Base Case Modeling

- Develop future year emissions
- Include known existing/future control measures
- Run simulation(s)
- Evaluate results
- Perform sensitivity analyses as needed

Attainment Modeling Steps (continued...)

Future Control Case Modeling

- Develop potential control measures
- Estimate emissions reductions
- Test control strategies (iterative process)
- Perform attainment test
- Develop/document supporting analyses (Weight of Evidence)
- Document results for inclusion in SIP

Modeling Platform

- All DC attainment analyses conducted using Ozone Transport Commission (OTC) modeling platform
 - Community Multi-scale Air Quality (CMAQ)
 Modeling System
 - 12-km horizontal grid resolution
 - University of Maryland 2002 MM5 Meteorology

- OTC modeling conducted for entire ozone season
 - May 1 September 30
 - Encompasses full weather cycle associated with high ozone
 - NYSDEC responsible for conducting OTC 2009 future base case modeling for ozone season months

Selection of Ozone Episodes (continued...)

- Shorter Ozone Episode Period for VADEQ "Adjusted" Future Base Cases
 - Needed to reduce model run times & limit model output storage requirements
 - June 6 August 16
 - Includes all 5 high ozone weather patterns in OTR
 - Model run from "cold start" (clean boundary conditions)
 - 15 days added to front of episode (May 22-June 5) to account for model "spin up" time

- EPA/RPO (IPM) Utility Projections for CAIR
 - Emissions & controls
- Does not include all Virginia CAIR controls
- Does not include OTC VOC controls in NOVA

- Represents 2002 utility emissions levels & current controls with growth to 2009
- Does not include the MD Clean Power Rule
- Does not include Virginia CAIR controls
- Comparison to the OTC Base Case shows benefits of the of CAIR

VADEQ Adjusted Base Case #2 Assumptions

- Uses MD CPR & VA/DC CAIR emission reduction estimates
- Includes SIP Call Phase II reductions in VA
- Includes OTC VOC controls in NOVA
 - Rule 4-42, OTC Portable Fuel Containers
 - Rule 4-47, OTC Solvent Metal Cleaning
 - Rule 4-48, OTC Mobile Equipment Repair/Refinishing
 - Rule 4-49, OTC AIM
 - Rule 4-50, OTC Consumer Products

Design Value Calculations

- Current DV calculations for modeling based on EPA ozone guidance
 - 2002 DV is the average of three design values centered on 2002
 - Uses 85 ppb as the cutoff point when calculating DVs
 - 3 X 3 grid cell array around each monitor for RRF calculation

Location of Ozone Monitors

Comparison of 2009 Future Design Values Full Ozone Season versus 6/6 - 8/16 Modeling Episode

Monitors

Design Values for Future Base Case Scenarios

Monitors

Perform sensitivity analyses

- What's more effective to further reduce ozone?
- Pollutants & source categories?
- Need to develop DC specific list
- ASIP sensitivities may provide additional information

Attainment Modeling Next Steps (continued...)

Perform sensitivity analyses (continued...)

- Georgia Tech performed emission sensitivities for ASIP to examine the impact of emission reductions on 8-hour ozone concentrations
- Examples of Sensitivity Analyses include:
 - 30% Reduction in anthropogenic VOCs for entire modeling domain
 - 30% Reduction in ground-level NOx for D.C. area nonattainment counties
 - 30% Reduction in Point Source NOx for Virginia as well as MANE-VU Regional Planning Organization
- Model simulation from June 1 July 10
- 2002 Meteorological Data

O₃ Response at Arlington County, VA to 30% Domain-Wide Reduction in Anthropogenic VOC (AVOC) Emissions

Future Control Case Modeling

- Identify & Quantify additional control emissions
 - Control Measure Workgroup, OTC Workgroups
- Run control case model to test these control strategies
- Perform attainment test (using Relative Reduction Factors)
- Repeat process as needed to demonstrates attainment
- Perform Supplemental analyses & Weight of Evidence (WOE)
- Document results for inclusion in SIP

- Corroboratory information that accompanies attainment demonstration
- Describes analyses performed, databases used, key assumptions and outcomes
- Supports conclusion that area will attain NAAQS despite model predicted future DV (or conversely, demonstrate that reaching attainment is not likely despite passing the model attainment test)

- OTC has developed a matrix of WOE techniques
 - Air quality and emissions trends
 - Meteorology analysis
 - Other modeling analyses
- Need to develop D.C. specific list

Other Related Modeling Efforts

- Ozone Transport Commission (NY, NJ, MD, VA & NESCAUM)
 - On a similar schedule for completion
 - Should be consistent with DC modeling since same platform
- Association for Southeastern Integrated Planning (ASIP)
 - Based on VISTAS modeling platform (emissions, met. data)
 - Preliminary 2009 base case results available
 - Have conducted series of sensitivity runs

Comparison of OTC & ASIP 2009 Future Design Values (Full Ozone Season)

Monitors

2009 Future Design Value Difference Plot (OTC minus ASIP)

Monitors

2000-2004 Observed 5-yr DV Washington, D.C. Area ■2009 Projected DV 36km (2000-2004) **ASIP 2009 Projected PM2.5 Design Values** ■2009 Projected DV 12km (2000-2004) 20 ■2009 Projected DV CAIR SMAT (1999-2003) 18 16 14 PM2.5 (µg/m3) 12 8 6 4 2 0 Arlington-0020 Fairfax-0030 Loudoun-1005 Washington-0009 Montgomery-3001 Fairfax-5001

Site

Attainment Modeling Schedule

