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Topics for Today

* A Brief Eutrophication Primer

* Nutrient Loads and WQ Trends in the
Potomac (+ and -)

» A Natural "Hot Spot” for Nutrient
Losses...the Diffuse Source Term

* Major Nutrient Loss Terms, Thresholds,
and Restoration Activities

» Some Concluding Thoughts
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GIobaI-ScaIe Spread of Coastal Hypoxia
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» Global distribution of coastal hypoxia

« Hypoxia concentrated near intense human activities

« Global spread of hypoxia related to eutrophication

» Other processes (e.g., climate change) also important



PRODUCTION

POSITIVE EFFECTS

oligotrophic | mesotrophic eutrophic

FERTILIZATION -

* Essential for plant growth. In most
estuaries and the open ocean
microscopic plants provide the
basic food supply.

* Within limits, increased fertilization
increases food supply and production
of other organisms.
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Historical Increases in Bay Nitrogen Loading
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» 7-Fold Increase since John Smith's arrival to Bay Area

+ 50% Increase during first 360 yrs & 50% increase in last 40 yrs
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Average Annual Loads (kg yr'1)

[ Total Nitrogen (TN)
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Average Annual TN Load (kg yr'1)

Potomac River
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N and P Loading Rates for
Estuarine Systems
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- Potomac has high
loads...but not super
high

- Loads tend to be
"N-Rich" relative to
P

- Loads alone do
NOT determine
degree of

.., eutrophication



Potomac River Maryland Nitrogen Sources

(x 10° kg year-!)

Farms wwTP Stormwater Septic Forests
Ubber Runoff Systems
pp Upper 2.1 0.4 0.6 0.3 0.5
Middle 0.4 1.2 0.9 0.1 0.1
Lower 05 0.3 0.4 0.1 0.2
Total 3.0 1.9 1.9 0.5 0.7
Middle
Total
Lower
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TN Mass, g N m™

N Load and Concentration Relationship
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- We can see,
reflected in
concentrations,
the effect of
loads

- Linear across
Chesapeake Bay
systems

- Similar result in
Potomac Time-
Series data
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* Hypoxia in 2007 was
not particularly
severe...but not good

‘Potomac one of the
large hypoxic zones
of the Bay system

‘Note the disconnect
between the Bay and
Potomac low DO
waters...suggesting
that the Potomac
generates its own
hypoxia
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Patuxent River in the context of
Chesapeake Basin and Bay




The upper Patuxent River has multiple
tributaries, is narrow, has “flashy flow", is a
water supply source and is rapidly developing.

77° 00 76° 40"




The mid-Patuxent is tidal and has more
marsh than open water..a key element in the
nutrient economy of this estuary

Jug Bay - University of Maryland



The tidal marshes of the mid-Patuxent are

productive and keeping pace with sea level rise




Nutrient Budget
Conceptual Model

* Basic components include inputs,
internal losses and exports

* Internal storages and selected
recycle processes also included

* Data averaged for multiple
years

- Large number of data sources
including:

USGS river monitoring
Landscape model output
Estuary monitoring data

Atmospheric deposition
monitoring

Field Studies..lots of them
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Denitrification Sequence

Lots of oxygen,

high NH4 No Oxygen, lots of
aerobes, anaerobes, concentrations, NO3, labile organic
temperature, organic temperature matter, temperature
matter C:N
* NH * NO i N2
4 3
Mixed Heterotrophs - chemo-autotrophs  Mixed Heterotrophs

Detailed reaction sequence

NO, =8 NO, =5) NOE)N,O ms) N, =)



Data Collection for
Dem‘rmflca'rlon

—‘i J"NT"'\-..:.

Cores taken by hand from high, .
mid and low marsh. Marsh creek cores taken with a pole corer.



Sediment Cores were used for making
Nutrient Burial Estimates
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Total nitrogen inputs, transport, and losses
in the Mid-Patuxent estuary
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Total nitrogen inputs, transport, and losses
in the Patuxent estuary
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Total nitrogen inputs, transport, and losses
in the Patuxent estuary
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Total nitrogen inputs, transport, and losses
in the Patuxent estuary
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Total nitrogen inputs, transport, and losses
in the Patuxent estuary
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Total nitrogen inputs, transport, stocks and
losses in the Patuxent estuary
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Tidal Marshes: Hotspotin the
Landscape

Patuxent Tidal Marshes

5400 2800
>

2% of basin landscape

Inputs from all
sources removes 48% of N

Inputs to estuary

Export of N to lower
estuary

v N losses via marsh
2600 burial and

denitrification

Units = Kg N/day



Treatment Plants vs. Tidal Marshes
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N Removal via Denitrification

= 0.8 miillion Kg/year

Tidal Marsh N Removal via N
burial and denitrification =

0.9 million Kg/year

* Both important..need to
promote denitrification in the
landscape!
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Nitrogen Losses via Denitrification...
The big N- purging process

* Denitrification removes
biologically active N from
the system (to atmosphere)

* In NON_HYPOXIC
systems about B0% of N
entering estuary leaves as
NZ gas

* Chesapeake systems have
much lower N-removal rate
likely because of so much
hypoxia

+ S0, increase bottom water
DO concentrationslili
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Potomac River
Denitrification Rates
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(Boynton et al. 1995)

Potomac River Estuary Nitrogen Budget
(1985-1986)

Point
Sources

Diffuse
Sources

Atmos
Deposition

}o

Potomac River
Estuary

Upper Portion
of Basin

Tidal Portion
of Basin

Export to
ChesapeakeBay

Atmos
Deposition

Point
Sources
Diffuse

Sources

Removal via
Fisheries

16%

Long-Term
Burial

Denitrification

Total Load = 30-35g m2yr-1



Response of Hypoxia to Nutrient Remediation?

Linear Recovery Threshold Recovery
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Trend in Bay Summer Hypoxia Volume (1950-2004)
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« Exponential increase, w/ strongest change since 1980
* Interannual variability driven by high and low river flow




Focusing on Years of Intermediate River Flow
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* To reduce inter-annual variance,
we analyzed only years with
intermediate flow (mean * SE).

* From 1960-2006, both NO,-Load
and Hypoxia increase steadily

* Hypoxia increases more rapidly
than NO,-Loading

* Hypoxia volume per NO,-Load
relatively constant until 1980.

« Shifts-up in mid-1980°’s and
remains high through early
2000s



Bay Hypoxia Response Trajectories for
Changes in Nitrogen Loading

12
(Moderate-Flow Years) e I
- _ -~ early2000s M
- & «‘/( ]
10 .~ Upper - J
- Regime -~
P4 ; ﬁ late 1980s
v +” 19905 A w—
-D Ll SN
i)
>
8
oy 6
-
4
7 |
15 20 25 30
Nitrogen Load

‘Visualize response trajectories and regime shifts
Shift-up to new Upper Regime in 1980 with more Hypoxia per N-Load
*‘Recent apparent down-shift to Lower Regime (initial recovery?)



Potential Explanations for Observed Shift in
Relationship between Hypoxia & N-Loading

* Loss of oyster grazing on phytoplankton
 Loss of seagrass & marsh “nutrient trapping”
 Climate-induced changes (temperature, circulation)

* Enhanced nutrient recycling efficiency under low O,



Conceptual Model of O, Interactions with N-Cycle

Normoxic Conditions Hypoxic Conditions
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Decadal Change in July Distribution of [NH,*]
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Hypoxia Enhancement of Benthic
Nutrient (NH,*) Recycling Efficiency

NH, Flux (% of Total N, + NH,)

=
o

NH , Recycling “Efficiency”

(=]

* DIN ‘Recycling Efficiency’ (NRE)
is flux ratio (DIN/(DIN + N,)

w
e

* NRE increases w/ decreasing O,
® because of nitrification inhibition

,_,.
=

.
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- * Thus, DIN recycling higher
under hypoxic conditions.

1
s
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(J. Cornwell data from Kemp et al. 2003)



Bay Watershed Population and
Impervious Surface

Millions of Acres of

Impervious Surface Millions of People
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Data and Methods: www.chesapeakebay.net/status_population.aspx



Development and Land Use Change
Still Going Strong
TS D < ST







Conservation Practices Deliver Water Quality Benefits

Average Nitrate-N concentrations in shallow groundwater under two field watersheds planted continuously with corn at 140 Ibs. N/acre, 1986-1997.
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SOURCE: STAVER AWND BRINSFHELD. J. SOIL AND VWATER CONS. 53: 230-240, 1998,



Storm Water Management:
Wet Pond Example

Pollutant Removal Efficiencies:

TSS: 46%
TP: 46%
TN: 32%

There have been many of these
constructed in the Patuxent

Basin..HOW or IF they work is
largely unknown.

We need effective SWM
systems..the new Federal
administration (ECOLOGICAL)
infra-structure initiative



Some Ideas from Paleoecologists

(From Brush 2008)

* Pre-colonial landscape covered with forests and
MANY WETLANDS

* In past 300 years (especially last 50 years)
nutrient loads have diversified and INCREASED
about 6-8 fold.

* Pre-colonial N cycle maintained by balance of
N-fixation and denitrification..for >1000 years.

- Deforestation and wetland loss led to loss of
landscape sites for denitrification

- BEAVERS were important for denitrification
sites...likely 5 million of these busy rodents in
pre-colonial watershed (~1940 human population)

- Restore the pre-colonial wet and marshy
condition..mimic the beavers coupled with other
more conventional approaches...

- This is a huge effort and results will take time
because of lags in groundwater transport.



Concluding Thoughts

* Restoration in the face of high growth rates is
tough...it has largely not worked for diffuse
sources or just managed to "hold the line"...total
loads have remained high

» The Potomac is a typical "OVER-ENRICHED"
estuary...too much of a good thing

- Diffuse sources dominate, need serious attention
and will likely be expensive...creativity is heeded up
in the basin.

+ There is a need to focus on basin “hot spots” both
for preservation (tidal marshes and other
wetlands) and restoration (adding “ecological
plumbing") to urban and suburban areas



