New Mapping Tools and the TPB Planning Process

Michael Eichler, Don McAuslan

TPB Regional Bus Subcommittee July 24, 2007

Mapping Tools for the CLRP

How can bus transit maps help inform the CLRP planning process?

- Produce visual representations of regional bus service for:
 - Verification of inputs
 - Long-range planning
 - Assessing LOS goals
- Collection of maps published on a regular basis:
 - Schedule proposed for incorporating bus transit mapping into the CLRP cycle

Transit Planning Metrics

Metric	Units	Purpose
Availability	"Eichlers"	Verification of Inputs, Long-Range Planning
Transit Capacity	Transit Seat* Miles per Peak Hour	Assessing LOS Goals
Transit Demand	Transit Passenger Miles per Peak Hour	Assessing LOS Goals

^{*}Actual value may reflect vehicle capacity versus seated capacity.

3

Bus Transit Availability

- Unitless measure of transit presence
- Used for
 - Validation of inputs to regional travel demand model
 - · Availability and routes show bus transit coverage
 - Allows agencies to compare coded bus network to expectations
 - Long-range transit planning
 - · Availability illustrates future bus network coverage
 - Can be compared to growth forecasts to highlight underserved areas

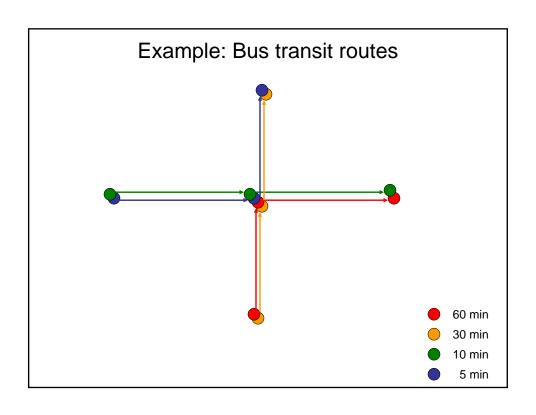
Bus Transit Availability

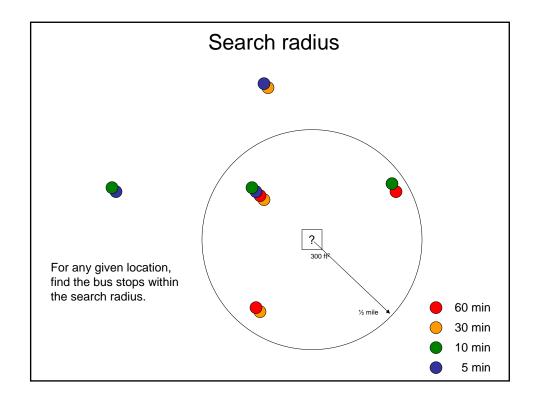
- Transit Availability is a measure of the amount of transit service that is available within a certain radius.
- It is a function of the headways of bus routes which have stops within the radius.
- Uses GIS density calculations to "sum" headways.
- Resulting values represent relative availability of transit.
- Does not factor in directionality.

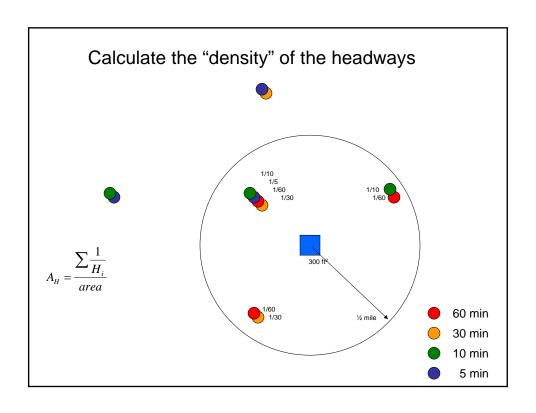
Ę

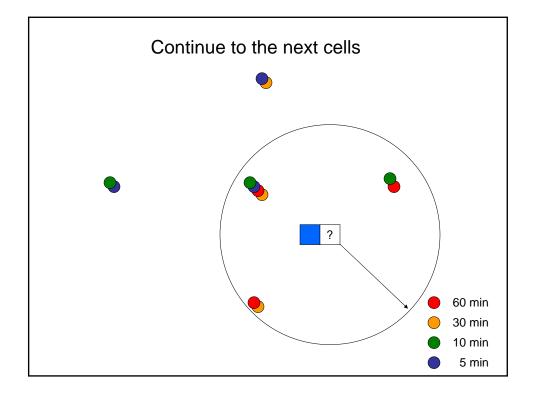
The need for a new measure

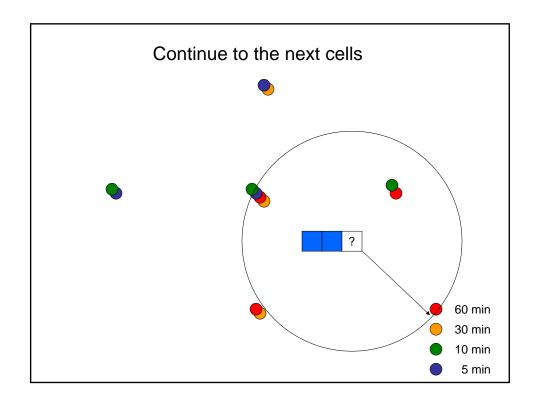
- Simply mapping routes gives no indication of where the stops are.
- Stop density is high, such that showing individual stops results in unreadable maps.
- Overlapping stops and routes are difficult to portray on traditional maps.

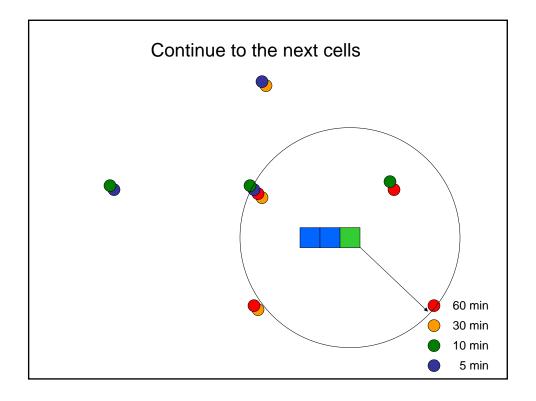

Transit Availability Calculation

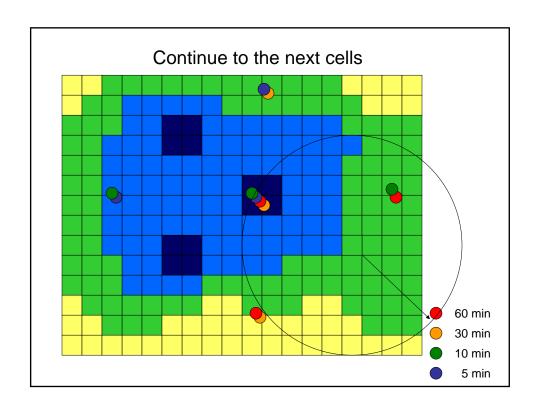

 An effective headway is calculated by summing the inverse of the headways:

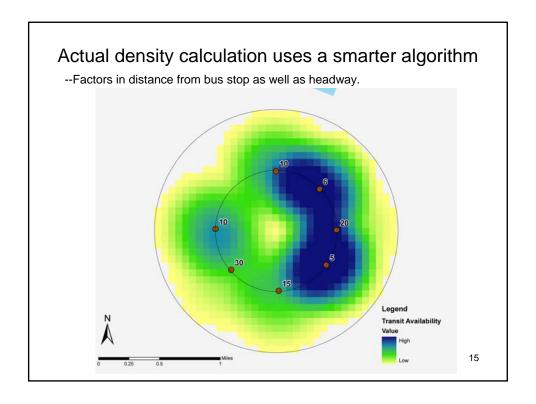

$$H_E = \frac{1}{\sum \frac{1}{H_i}}$$

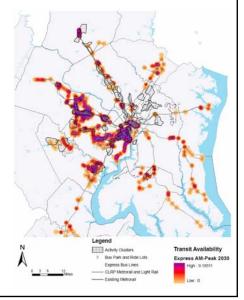

Transit Availability is calculated in a similar fashion:


$$A_{H} = \frac{\sum \frac{1}{H_{i}}}{area}$$









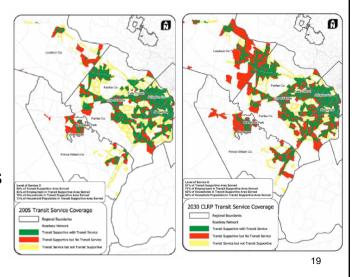
Example: Bus Transit Availability

- Maps show areas of dense bus service.
- Illustrate relationships between transit service and land use:
 - Activity Centers/Clusters
 - Land Use Projections

Many factors to map

- 2010 vs. 2030 vs. Difference
- Peak vs. Off Peak
- Local vs. Express
- Activity Clusters vs. Household Density vs. Change in Households

17


Transit Capacity/Demand

- Transit Capacity
 - Can be calculated by regional travel demand model, but only if transit assignment is performed
 - Could be supplied by transit agencies
- Transit Demand
 - Can use regional LOS standards based on household and employment densities
 - Density sufficient to support fixed route transit: 3 households per acre or 4 jobs per acre.*
- Transit Demand/Capacity
 - Unitless metric (percentage) which identifies whether LOS goals are being met

^{*} From the WMATA Regional Bus Study, September 2003, also used by the NVTA TransAction 2030, April 2006

Example: Assessing LOS Goals

- Example maps from TransAction 2030 use simple LOS D threshold
- Could provide richer regional LOS standards based on land-use...

Transit-Supportive Densities

 Subcommittee to establish regional LOS goals for household and employment density ranges

Density Level	Service or Benefit	
4-6 units / acre	Minimal bus service (subsidized)	1 hour headway
6 units /acre	Neighborhood Convenience Store (2400 households w/in 1/4 mile radius)	In walking distance
6-7 units / acre	Vehicular Use Walking Transit use (For a comparison of how these uses change at higher densities see 50 units/acre below)	5.0 daily trips/household 0.6 daily trips/household 0.2 – 0.3 daily trips/household
7-8 units / acre	Intermediate bus service	30 minute headway
9-10 units / acre	Light Rail	5 min peak headway 25 – 100 sq. mile corridor
12 units / acre	Rapid Transit	5 min. peak headway 100 – 150 sq. mile corridor
	Shopping Center w/Supermarket (4800 households w/in 1/4 mile radius)	In walking distance
15 units/ acre	Frequent bus service High multi-modal potential	120 buses / day
50 units / acre	Vehicular Use Walking Transit use	1.2 daily trips/household 1.5 daily trips/household 1.3 daily trips / household

Source: Lincoln Land Institute: http://www.lincolninst.edu/subcenters/VD/goodthings/threshold@pdf

Proposed Schedule *

- Step 1: New Projects and Inputs
 - Assemble schedules
 - Long-Range Planning (Plan Inputs): Transit Availability Maps including Land Use
- Step 2: Review of Inputs
 - Verification of Inputs: Transit Availability Maps
- Step 3: Conformity Run
- Step 4: Analysis of Model Outputs
 - Assess LOS Goals: Transit Supply/Demand Maps
 - Assessment of Plan Performance

*TPB is considering changing the CLRP cycle, moving plan approval from October to July. 21