Briefing on NCHRP 8-36 (104) — Integrating Performance Measures into a Performance-Based Planning and Programming (PBPP) Process

TPB Technical Committee May 4, 2012

Eric Randall, DTP

NCHRP 8-36 Overview

National Cooperative Highway Research Program (NCHRP) study of the potential for performance based planning and programming (PBPP) of transportation projects.

- Consulting team of Cambridge Systematics, Inc.
- Three pilot sites/themes:
 - Kansas City safety,
 - Pennsylvania pavement and bridge preservation,
 - DC/Maryland multimodal congestion hotspots.

Project Objectives

- Move from conceptual framework to realistic examples for PBPP.
- Examine how state DOTs can work with regional partners to use national performance measures within regional planning processes.
- Identify barriers and obstacles, and strategies for addressing them.

TPB/WMATA/Suburban Maryland pilot

Participants:

- MPO: TPB

Transit Agency: WMATA

State DOT: MDOT/SHA

Local: Prince George's and Montgomery Counties,
 MNCPPC

Objective

 Develop a collaborative methodology for identifying and prioritizing strategies to address congestion at two multimodal hotspots

Pilot Activities

- Identify two multimodal congestion hotspots.
 - Made use of ongoing UPWP Multimodal Coordination / Bus Hot Spots study to select locations
- Compile and assess data in these locations to investigate options for analysis.
 - Transit operations, traffic counts and analysis, INRIX data
- Agency interviews regarding current practices and opportunities for improvement.
- Develop a prioritization framework.
- Review options for communicating results.

Pilot Study - Multimodal Hotspots

Wheaton Triangle (Montgomery County)

Paint Branch Pkwy (Prince George's County

Paint Branch Parkway Data Sample

Counts, Critical Lane Volume (CLV), Volume/Capacity Ratio (V/C), Level of Service (LOS)

Hotspot Forecast Conditions

2011 CLRP SIMULATED RAW AWDT VOLUMES (2007 to 2040)

INRIX Data Analysis

- INRIX data provide:
 - Speeds (including free flow speeds)
 - Travel time (by 15-minute intervals for each day of the week).
- The analysis used data from Tue/Wed/Thu in 2010.
- Performance measures
 - Travel Time Index (TTI)
 - A congestion indicator, calculated as TTI = 50th percentile travel time / free flow travel time.
 - Planning Time Index (PTI)
 - A reliability measure, calculated as PTI = 90th percentile travel time / free flow travel time.

Wheaton Triangle:

Travel
Time
Index
&
Planning
Time
Index

University Blvd (Westbound)

Paint Branch Pkwy:

Travel Time Index & Planning Time Index

Findings of INRIX Data Analysis

- Wheaton Triangle was more congested and less reliable than Paint Branch Parkway.
- Within the 24-hour travel time profile, the most congested and unreliable time periods can be clearly identified.
- INRIX data is complementary to volume counts data.
 - Provides 24/7 speed/travel time profile.
 - Can enhance Benefit/Cost Analysis (by monetizing travel) time and reliability) and Before/After Analysis.
 - With appropriate volume data, can calculate:
 - Vehicle Delay

- Person-Delay
- Vehicle Miles Traveled (VMT)
 Person Miles Traveled (PMT)
- Vehicle Hours Traveled (VHT)
 Person-Hours Traveled (PHT)

Transit Data Challenges and Next Steps

- Bus travel speed, travel time, and passenger counts data exists but is not consistently available or fully accurate.
 - Manual processing required to eliminate outliers and incomplete records.
- WMATA moving to a "datamart" that will consolidate archived Automated Vehicle Location (AVL), Automated Passenger Counting (APC), and other data in a searchable format.
 - Anticipate some automatic post-processing to remove outliers and correct incomplete records.
- Better utilization of historic AVL data to determine scheduling will result in more accurate schedules.
 - Ride On has been doing this for two years and reports more accuracy.
- Better utilization of AVL data for travel time and reliability issues can help inform where to invest in bus priority improvements.

Applying Performance Measures: Veirs Mill/Reedie Hotspot Analysis

For the purposes of this study and discussion, a conceptual analysis was completed as follows:

- 1. Use of the UPWP Multimodal Coordination / Bus Hot Spots Study
 - Wheaton Triangle includes a Bus Hotspot, identified by regional bus speed and volume data analysis.
 - Consulting team conducted a field survey and proposed several options.
- 2. Conducted a Benefit-Cost Analysis (BCA)
 - Based on USDOT TIGER Grant application BCA.
 - Potential model for national performance measures.
 - Used transit and highway data.
 - "Ballpark" costs and benefits.

Multimodal Coordination Bus Hot Spots Study Field Verification Summary - Maryland

Location #1: Wheaton Triangle

	Street(s)	Rankings			Potential for Improvements			
		Daily	AM	PM	Physical	Transit	Signal	Long- Term
	Georgia Ave.	2	4	4	X			X
	River Rd/Paint Branch D.	3	14			X		X
1	Veirs Mill Rd./Reedie Dr.	4	12	8	X		X	X
2	Fenton St.	5	6	7	X			
	East-West Hwy.	6	7	5	X			
	Piney Branch Rd.	7	10	10	X	X		
	Carroll Ave.	11		14	X			
3	Hungerford Dr.	13						
	Annapolis Rd.	15	9	15	X	X		
	Wayne Ave.		1	1				X

x =Some potential for improvements

X = Strong potential for improvements

= Recommended for concept design

Multimodal Coordination Bus Hot Spots Study MD #1 – Veirs Mill/Reedie

Problems Observed

- Focus on Reedie between Veirs Mill Rd. and Georgia Ave.
 - Multiple, non-signalized access points from north create weave conflicts
 - Triangle Lane crosswalk lacks pedestrian signal – random pedestrian crossings
 - Left turn from Reedie onto Veirs Mill has conflicts with pedestrian crossings
- Secondary impacts on Veirs Mill Rd.
 - SB queues at Metrorail station bus loop intersection inhibit bus access

Multimodal Coordination Bus Hot Spots Study MD #1 – Veirs Mill/Reedie

- Potential physical improvements
 - Extension of left turn lane from Veirs Mill Rd. into Wheaton station bus loop
- Potential signal improvements
 - Assess signal timing along Veirs Mill Rd.
 - Consider protected left turn phasing at Veirs Mill/Reedie intersection
 - Install pedestrian signal at midblock crosswalk on Reedie

Benefit Cost Analysis (BCA) – TIGER Model

TIGER Grant applications require a detailed BCA, with benefits & costs quantified across multiple Project Selection Criteria:

Primary Selection Criteria	Benefit-Cost Analysis Measures
State of Good Repair	 Reduced Operating & Maintenance Costs
Economic Competitiveness	Travel and User cost savings (users)Land Use productivity
Livability	 Accessibility Congestion savings (non-users) Indirect benefits from changing travel patterns and mode choices Public Health benefits
Environmental Sustainability	• Emission reductions
Safety	 Accident reductions (from reduced VMT and improved Access)

BCA – Veirs Mill/Reedie Location

Inputs:

- Current travel volumes for both modes,
- Hypothetical capital cost of \$500K (e.g., traffic signal optimization)
- Reduced WMATA operating costs (~ \$55K annually)

Sensitivity Analysis

- ❖ 5% improvement in bus travel time
 - -> increased transit ridership and pedestrian travel
- ❖ Scenario #1 = 2% more auto congestion
- ❖ Scenario #2 = 1% more auto congestion
- Very sensitive to auto congestion impact.
- Also sensitive to competing safety impacts auto accidents down, pedestrian accidents up.

BCA – Veirs Mill/Reedie Location

Scenario #1 = 2% more auto congestion

Costs	\$519
Capital	\$485
Operating	(\$878)
Construction Impacts	\$0
Accident	\$911
Benefits	(\$1,185)
Net Travel Time Savings	\$17
Net Travel Cost Savings	\$1,255
Increased Access	\$634
Congestion Reduction	(\$3,863)
Emissions Reduction	\$369
Health Benefits	\$0
Accident Reduction	\$402
Net Present Value	(\$1,704)
Rate of Return	#DIV/0!
Benefit-Cost Ratio	-2.285

Scenario #2 = 1% more auto congestion

Costs	\$519
Capital	\$485
Operating	(\$878)
Construction Impacts	\$0
Accident	\$911
Benefits	\$746
Net Travel Time Savings	\$17
Net Travel Cost Savings	\$1,255
Increased Access	\$634
Congestion Reduction	(\$1,932)
Emissions Reduction	\$369
Health Benefits	\$0
Accident Reduction	\$402
Net Present Value	\$228
Rate of Return	5.075%
Benefit-Cost Ratio	1.439

BCA Conclusions

- All modes are interested in the same "real estate" roadway, signal cycle time.
 - Requires multi-modal comparison of trade-offs.
 - Can be measured in:
 - 1. Simple modal terms: AADT, LOS, CLV, Bus Trips;
 - Person throughput: Auto and Bus occupancy;
 - 3. Broader range of areas: User cost and time, Accessibility, Livability.
- Benefit-Cost Analysis is sensitive to projected assumptions.
 - Sensitivity analysis can provide some range of comfort to account for project uncertainties, but not an exact science.
 - Requires effort to collect data and analyze.

Overall NCHRP Pilot Study Findings (1)

Within the Washington Metropolitan Region:

- Significant work is being done already in performance measurement and analysis, however there are opportunities to improve.
 - New and better data as technology improves (e.g., INRIX, Transit AVL).
 - Improved use and input into the planning process.
- Separate modal planning reflects history and responsibilities of each agency:
 - There is an opportunity to move towards a multi-modal planning approach, with person-based, mode neutral measures.

Pilot Study Findings (2)

- Biggest challenge is moving from collaborative prioritization and selection of a preferred strategy to agency-specific implementation.
 - Involves an implementing agency programming, funding, and building the preferred strategy.
 - Preferred strategy must compete with other priorities and needs of the implementing agency.
 - Added complexity if multiple implementing agencies are involved.
 - Public involvement is a critical part of the decision-making process.

Pilot Study Recommendations (1)

- Improve presentation of performance measures to public and decision-makers.
 - Investigate communication techniques for presenting performance measurements and analysis.
- Maximize use of current information and "traditional" project justification reports.
 - Identify key pieces of information included.
 - Develop a template that reflects best practices.

Pilot Study Recommendations (2)

- Within each agency:
 - Identify steps for framing discussions around the total user experience perspective.
 - Maintain a list of priorities and potential strategies and look for opportunities to attach improvements to large mode-specific projects.
 - Create line item programs for addressing multi-modal issues.
 - Example: Maryland SHA's competitive Fund 87 Program for capacity improvements at failing intersections.
 - Improve inter-agency coordination
 - Performance data: share transit AVL and ridership data
 - Implementation: coordinate as in TIGER Grant project.

Briefing on NCHRP 8-36 (104) — Integrating Performance Measures into a Performance-Based Planning and Programming (PBPP) Process

Questions?