## CAMBRIDGE SYSTEMATICS



## FY 2016 Strategic Plan Implementation Task Orders Status Update

presented to Travel Forecasting Subcommittee presented by Cambridge Systematics, Inc. Jay Evans, P.E. and Feng Liu, Ph.D.

July 22, 2016

## Overview

- Task Order 16.2 Advice and Testing
- Task Order 16.3 Managed Lanes
- Task Order 16.4 Non-Motorized Model Enhancement
- Task Order 16.5– Mode Choice Model Enhancement



# Task Order 16.2 Advice and Testing



## Task Order 16.2 Advice and Testing

## CS, working with COG Staff

- » Version Control and Bug-Tracking Software
- » Speed/Travel Time Validation Improvement
- » Revise Bus Speed Linkage to Highway Speeds
- » Develop Parcel-Level Development Database (Specs)
- » Develop Census and Household Travel Survey Database (Specs)
- » Prepare Non-Motorized GIS Database (Specs)
- COG Staff, with CS Advising



## Version Control and Bug-Tracking Software

- » Recommend starting with GitHub and GitHub for Windows for version control and issue-tracking
- » Test another Git graphical user interface (GUI) tool such as SmartGit if further needs are identified during implementation tests
- » Establish a review process for incorporating new changes
- » Establish a unit testing approach
- » Designate a Git guru/manager
- » Assign a central controller for each project to manage issue resolution



## Speed/Travel Time Validation Improvement (Gallop/CS)

- » Testing modified BPR functions for freeways and expressways and major arterials.
- » Suggested initial values for Alpha and Beta are 0.4 and 8.0, respectively





# Revise Bus Speed Linkage to Highway Speeds

- Recommendation Considerations
  - » Good baseline bus run time/speed
  - » Future bus run time/speeds are based on relative changes in highway time/speeds
  - » Segmentation by area types/facility types



# Implementation of Public Transport Scripts (Gallop)

- Implemented a set of PT scripts for transit skim and assignment processes
- PT generated skim files are in the same format as the TB generated skim files
- Refined the PT process to consider station escalator/walk time at Metrorail stations and "shadow price" of Metrorail PnR stations
- Validated the PT generated skim data
  - » Reasonableness of various non-transit links/legs
  - » Reasonableness of PT generated skim data
  - » Comparison of PT and TB generated skim data



# Develop Parcel-Level Development Database

- » MdProperty View and DC GIS OpenData serves as the base data for jurisdictions in Maryland and DC, with efforts to improve quality
- » Parcel point/polygon data from local jurisdictions in Virginia should be compiled, processed, and standardized in a consistent georeferenced system
- » The new consolidated database should include key attributes such as coordinates, standardized property use/land use code, and a size variable such as square footage, at a minimum



# Develop Census and Household Travel Survey Database

- » Household Travel Survey 2007/8 and Transit On-Board Survey processing to support short- and longterm model improvement implementation
  - Geocoding to the block level
  - Developing micro-level variables in conjunction with other GIS database including non-motorized GIS database



# Prepare Non-Motorized GIS Database

- » Local non-motorized GIS data such as sidewalk, bike facilities and trail should be used where available
- » OpenStreetMap data provide an option for those jurisdictions where local non-motorized GIS data are currently unavailable
- » When compiling and collecting local data, standardization is needed to classify non-motorized facilities such as bike treatments of roadways



# Task Order 16.3 Managed Lane Modeling



# **Recommended Approach**

- 1. Estimate/transfer VOT distributions
- 2. Define a set of VOT ranges
- 3. Obtain skims for each VOT level
- Apply mode choice model separately for each segment, using the skims pertaining to that segment's VOT
- 5. Segment highway assignment by VOT level



## Task Order 16.4 Non-Motorized Model Enhancement



#### More recent trends

- » more accurate measurements of factors influencing non-motorized travel
- » more analytical capabilities, which enable evaluation and prioritization of infrastructure investments on active transportation modes



#### Recommendation Considerations

In the short-term, improve the trip-based model by enhancing the binary modal splits at the trip generation stage with use of disaggregate model estimation using 2007/8 household travel survey data and the existing database of information related to built-environment and non-motorized facilities.



#### Recommendation Considerations

» In the longer-term (i.e., development of an activitybased model), incorporate non-motorized travel as part of the mode choice model nest structure, with full use of disaggregate model estimation and a new, integrated parcel-level database and a nonmotorized facility database.



### Short Term Implementation

- » A refined geographic unit of analysis is preferred
  - Sub-TAZ structure which can be developed with a combination of TAZ structures used in the existing countylevel models in the region, e.g., Fairfax, Montgomery, Prince George's, and Loudoun.
  - Census Block geography
  - Parcel-level or parcel-point-buffer



### Mode Estimation

- » Household Travel Survey 2007/8
- » Census and employment data at the block level
- » Non-motorized facility database



# Task Order 16.5 Mode Choice Model Enhancement



# **Transit Technology Choice**

- Transit Technologies: CRT, LRT, BRT, Subway, Express Bus, Local Bus
- MPO models consider transit technology choice in different places:
  - » Mode choice
  - » Transit assignment
    - Simpler specification
    - Avoids labeling issues

Recommendation: transit assignment



# **Access to Transit Measures**

- » Accessibility measures as replacement to density variables in mode choice
  - Measure linkage between transit and activity centers
- » Road network connectivity measures
  - Connectivity important to transit access
- » Land use mix variables
  - Mixed use typical of transit-oriented-development (TOD)



# Transit Attributes in Mode Choice

- » IVT discounts on premium transit service
  - Relates to superior attributes of these services
- » Consider non-traditional transit attributes
  - e.g., reliability, branding, station amenities, etc.
  - Reliance on transit attributes rather than model constants
- » Incorporate crowding effects
  - Limit to Metrorail service for initial deployment
  - Cube software includes this capability



# Transit Path-Building & Assignment

- » Update path-building & assignment to use Cube-PT's crowding capabilities
- » Include non-traditional transit attributes in pathbuilder and assignment processes
- » Implement transit skim feedback
  - Similar to highway congestion feedback
  - Ensures crowding effects on demand & supply side equilibrate



## Data Needs

- Local street-level data
- Detailed Metrorail information
  - » Effective capacities by time of day & route
  - » Observed demand by time of day, route, station
  - » Other qualitative or quantitative information
- Transit on-time performance by operator or on specific routes
- Classification of transit attributes by transit technology



# Model Estimation, Calibration, Validation

- » Use existing survey data to estimate new mode choice models
- » Model validation should compare model along more localized measures (e.g., corridor level)
- » Calibration & validation of mode choice & transit assignment should be handled jointly
- » Sensitivity tests should be developed

