

A Tour of ELToD4 Model

TPB Travel Forecasting Subcommittee

Lihe Wang, P.E.

May 15, 2020

What is ELToD4?

- ELToD4 stands for Express Lanes Time of Day Model version 4
- It is a Dynamic Traffic Assignment (DTA)
 model to forecast traffic and revenue for
 complex express lane networks in large
 metropolitan area
- It can be a standalone tool for express lanes studies
- It can provide dynamic toll rate inputs to regional model
- It is open source programmed in C++

Trip Generation Trip Distribution Mode Choice Traffic Assignment ELTOD4 Model

Activity-Based Model

Express Lanes Network in Greater Washington Area

Virgina Department of Paragortation	ExpressLanes INSIDE THE BELTWAY	5:30AM – 9:30AM Eastbound 3:00PM – 7:00PM Westbound Freeway other time	HOV2 Free	No Trucks
<u></u> Transurban	95 ExpressLanes	2:30AM – 11:00AM Northbound 1:00PM – 12:00AM Southbound Closed other time 24 hours	HOV3 Free	No Trucks
Cintra	OUTSIDE the Solvage VICAT SPREN Multimodal Solutions -495 to Haymarket	24 hours	HOV3 Free	Allow Trucks

A = COM

Under Planning

3

Observed Traffic and Toll Rate

Model Type	Resolution
Regional Time of Day	 4 Time Periods
ELToD2 Corridor	 Hourly
ELToD4	 15 minutes

Source: Florida I-95 Phase 1 southbound 2017 average weekday

4

Time and Effort Requirement

Time Dependent Shortest Path (TDSP)

Time Interval	Link 1	Link 2	Link 3	
7:00	10	11	10	
7:15	12	16	12	=33 min
7:30	14	15	20	=48 min
Average	12	14	14	=40 min

- Static Shortest Path uses average link travel time of a time period (several hours)
- TDSP uses the travel time when the vehicle is going through the link

En-route Toll Choice Making

To simulate driver's behavior:

- Generalized cost models assign all trips to one shortest time path
 - Toll converted to time penalty
- ELToD4 splits the trips at each decision node using an en-route toll choice model
 - Reflect heterogeneity in the population
 - Drivers only know the toll when they are at the entrances and exits

Toll Policy Curves

 $Toll = Min + (Max - Min) \times (VC\ Ratio - Offset)^{Exp}$

- Adjust toll rate based on V/C Ratio at 15 minutes interval
- Flexible to be applied by facilities and time of day
- A toll policy example:

 Dynamic toll during peak hours and static toll rates during off-peak hours

Mixed Multinomial Logit Toll Choice Model

Toll Share =
$$\frac{1}{1+e^{(Utility)}}$$

where

$$Utility = -1 * (\beta_Constant + \beta_Time * Time + \beta_Toll * Toll + \beta_Reliability * Reliability)$$

$$Reliability = \gamma_r \times (Time_{Congested} - Time_{FreeFlow}) \times (Distance)^{-\eta_r}$$

$$VOT = \frac{60 * \beta_Time}{\beta_Toll}$$

$$VOR = \frac{60 * \beta_{\text{Reliability}}}{\beta_{\text{Toll}}}$$

*Reliability formula is base on TRB SHRP2 Report S2-L04-RR-1, Incorporating Reliability Measures into Operation and Planning Model Tools, 2014, page 37

Distributed Value of Time (VOT)

Work Trip

Choice Model Toll Sensitivity

Express Lanes Traffic Distribution by VOT Group

90%

70%

60%

50% 40%

30% 20%

10%

0%

\$-

\$1.00

Time savings = 1 minute; Distance = 4 miles; Income = \$85,000

AECOM

TOLL

\$3.00

\$4.00

\$5.00

\$2.00

Model Result Example

Toll

General Purpose Lanes Volume

Express Lanes Volume Share

Florida I-95 express lanes segment 1 Southbound AECOM

Summary

- Free software continuously supported by the Florida's Turnpike Enterprise
- Practical model that has been successfully used for multiple express lane projects in Florida
- Necessary utilities included: select link; subarea extraction; ODME
- CAV impacts module for autonomous vehicles analysis
- Future improvements:
 - Application on regular static toll roads
 - Integrated subarea simulation (hybrid model)

Any questions?

AECOM

Contact us

Lihe Wang, P.E.
Consulting Manager
D 703-340-3030
lihe.wang@aecom.com

David B. Roden, P.E.
Senior Consulting Manager
D 703-340-3069
david.roden@aecom.com