Version 2.5 travel demand model development

A Status Report

Ron Milone Travel Forecasting and Emissions Analysis Program Director, COG/TPB staff

TPB Travel Forecasting Subcommittee November 17, 2017

National Capital Region
Transportation Planning Board

Models, Models, Models

V2.3.66 – TPB Travel Model supporting the last (2016 CLRP) Air Quality Conformity Cycle

V2.3.70- Currently adopted travel demand model supporting the currently adopted Plan (2016 CLRP "out-of-cycle" Amendments)

- Adopted on October 18
- Includes mostly minor updates to the 66 model
- Will be available by end of the year

V2.5 – Developmental trip-based model developed with assistance from Cambridge Systematics during FY 2017. Currently under evaluation

Version 2.5 Refinements:

- 1. Updated transit network/path-building software
 - Public Transport (PT)
- 2. Improved non-motorized model
- 3. Simplified mode choice model
 - Transit choice set reduced from 11 to 3 modes
- 4. Highway & transit assignment enhancements
 - Highway assignment: VOT stratification
 - Transit assignment: Transit sub-mode choice

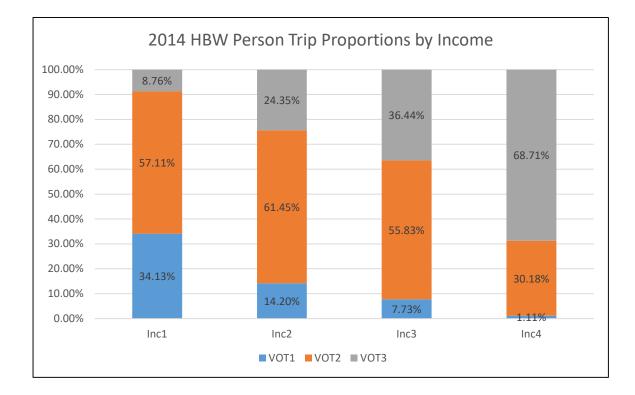
Recent V2.5 staff activities

- 1. Significant network development work:
 - Working toward "production" network process for PT networks with QC/QA checks
 - Using a single network input file to support highway and transit network processing
 - previous development work used separate network inputs for highway and transit network building
 - Updated network database
- 2. Executed V2.5 for years 2014 and 2020 using most recent (cleaned) network inputs

4

V2.5 staff activities, cont.

3. Developed customized summary scripting for reporting V2.5 for mode choice model outputs


- V2.5 MC model trips are dimensioned by:
 - Purpose (5);
 - Mode (6);
 - Income level (4); and
 - VOT groups (3) [...that's 360 segments!]
- Regional trip summaries provide segment-level summaries for the region
- Jurisdictional trips by purpose and mode
- 4. Explored a possible way to reduce running times
 - Examined speed-feedback convergence behavior of the Version 2.3.66 model for insights

Relationship between income and VOT groups: Example: HBW Trips

There is a direct relationship between income levels and VOT groups:

Higher Incomes are associated with higher time valuations

6

Regional trips by purpose & mode: 2007/08 HTS vs. 2014 V2.5 model

2007/08 Merged HTS File				Version 2.5: Year 2014				Ratio: V2.5-2014/HTS 2007/08			
	Purpose					Purpose				Purpose	
Mode	HBW	Non-HBW	ALL	Mode	HBW	Non-HBW	ALL	Mode	HBW	Non-HBW	ALL
Auto_Person	2,894,400	13,151,300	16,045,700	Auto_Person	3,283,400	14,991,200	18,274,600	Auto_Person	1.13	1.14	1.14
Auto_Driver	2,724,800	8,843,100	11,567,900	Auto_Driver	3,017,300	10,221,200	13,238,500	Auto_Driver	1.11	1.16	1.14
Transit	773,700	404,600	1,178,300	Transit	657,300	387,200	1,044,500	Transit	0.85	0.96	0.89
Total_Person	3,668,100	13,555,900	17,224,000	Total_Person	3,940,700	15,378,400	19,319,100	Total_Person	1.07	1.13	1.12
Transit Pct.	21.1%	3.0%	6.8%	Transit Pct.	16.7%	2.5%	5.4%	Transit Pct.	0.79	0.84	0.79
Auto Occ.	1.06	1.49	1.39	Auto Occ.	1.09	1.47	1.38	Auto Occ.	1.02	0.99	1.00

- Person trip change appears as expected (12% increase in person travel)

- Modeled 2014 transit trips and transit shares are lower than 2007/08 HTS

Regional trips by purpose & mode: Year 2014 V2.5 model vs. V2.3 model

Version 2.5: Year 2014				Version2.3: Y	Version2.3: Year 2014				Ratio: V2.5/V2.3			
	Purpose				Purpose				Purpose			
Mode	HBW	Non-HBW	ALL	Mode	нвw	Non-HBW	ALL	Mode	HBW	Non-HBW	ALL	
Auto_Person	3,283,400	14,991,200	18,274,600	Auto_Person	3,108,000	14,882,400	17,990,400	Auto_Person	1.06	1.01	1.02	
Auto_Driver	3,017,300	10,221,200	13,238,500	Auto_Driver	2,855,300	9,977,000	12,832,300	Auto_Driver	1.06	1.02	1.03	
Transit	657,300	387,200	1,044,500	Transit	819,700	324,900	1,144,600	Transit	0.80	1.19	0.91	
Total_Person	3,940,700	15,378,400	19,319,100	Total_Person	3,927,700	15,207,300	19,135,000	Total_Person	1.00	1.01	1.01	
Transit Pct.	16.7%	2.5%	5.4%	Transit Pct.	20.9%	2.1%	6.0%	Transit Pct.	0.80	1.18	0.90	
Auto Occ.	1.09	1.47	1.38	Auto Occ.	1.09	1.49	1.40	Auto Occ.	1.00	0.98	0.98	

- Similar pattern emerges for 2014 "model vs. model" comparison
- Person trip change is extremely close, as expected
- Modeled 2014 transit trips and transit shares are lower than those of the V2.3 model

Regional trips by purpose & mode: Year 2020 V2.5 model vs. V2.3 model

Version 2.5: Year 2020			Version2.3: Y	Version2.3: Year 2020				Ratio: V2.5/V2.3			
	Purpose				Purpose					Purpose	
Mode	HBW	Non-HBW	ALL	Mode	нвw	Non-HBW	ALL	Mode	HBW	Non-HBW	ALL
Auto_Person	3,482,200	15,916,000	19,398,200	Auto_Person	3,304,100	15,760,600	19,064,700	Auto_Perso	n 1.05	1.01	1.02
Auto_Driver	3,203,900	10,840,900	14,044,800	Auto_Driver	3,032,800	10,528,900	13,561,700	Auto_Drive	· 1.06	1.03	1.04
Transit	748,700	458,300	1,207,000	Transit	905,700	358,600	1,264,300	Transit	0.83	1.28	0.95
Total_Person	4,230,900	16,374,300	20,605,200	Total_Person	4,209,800	16,119,200	20,329,000	Total_Perso	n 1.01	1.02	1.01
Transit Pct.	17.7%	2.8%	5.9%	Transit Pct.	21.5%	2.2%	6.2%	Transit Pct.	0.82	1.26	0.94
Auto Occ.	1.09	1.47	1.38	Auto Occ.	1.09	1.50	1.41	Auto Occ.	1.00	0.98	0.98

- And... the same pattern emerges for 2020
- Person trip change appears as expected
- Modeled 2020 transit trips and transit shares are lower than those of V2.3 model

VMT Comparison: V2.3.66 vs. V2.5 Years 2014 and 2020

Model	Year	Ratio	
	2014	2020	'20/'14
V2.3.66	163,114,000	174,333,000	1.07
V2.5 (current)	175,145,000	187,370,000	1.07

Observed VMT:	159,420,000
Ratio V2.3/Obs.	1.02
Ratio V2.5/Obs.	1.10

Reducing V2.5 Running times

- Issue: V2.5 running time is almost double that of V2.3.66
- Possible ways of addressing running time:
 - Advanced hardware (more cores)
 - Faster assignment algorithms
 - Additional exploitation of distributed processing
 - Reducing speed-feedback iterations

Speed feedback

• What is it?

- Rerunning the 4-Step model iteratively to ensure that input speeds to distribution are consistent with output speeds from the highway assignment

• Why bother?

- I/O speed inconsistencies can impact the travel model results- particularly for out-year forecasts;

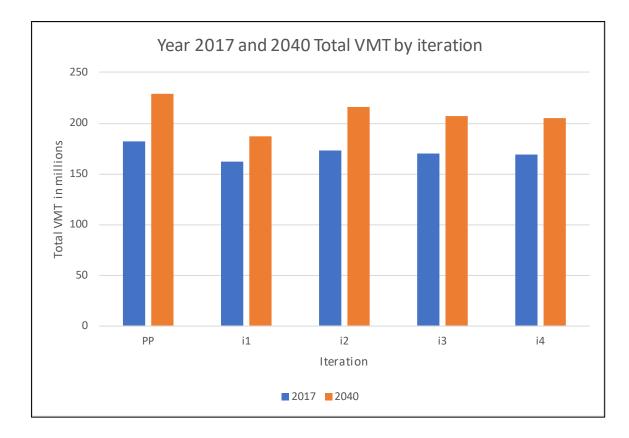
- It's also a AQC requirement

How does speed-feedback work in the TPB model?

- 5 four-step iterations are undertaken in a given application:
 - An initial ("PP") iteration
 - Peak, off-peak "lookup" link speeds used in distribution
 - Pre-existing zonal mode choice percentages are used in place of the mode choice model to estimate auto trips
 - 4 "feedback" iterations are undertaken
 - AM, Off-peak speeds from each successive traffic assignment are skimmed and fed back into trip transit network (auto access links) and into trip distribution
 - Link speeds "fed back" are based on MSA averaged volumes:
 - Final i1 link volume = PP volume *0.50 + i1 link volume *0.50
 - Final i2 link volume = Final i1 volume *0.66 + i2 link volume *0.33
 - Final i3 link volume = Final i2 volume *0.75 + i3 link volume *0.25
 - Final i4 link volume = Final i3 volume *0.80 + i4 link volume *0.20

Issues around speed-feedback

- How "should" it be done?
 - Averaging link volumes
 - Averaging highway skims
 - Average both of the above
- What is definition of optimum speed-feedback equilibrium condition?
- Speed-feedback affected by convergence of components within the 4-step step
 - traffic assignment
 - trip distribution



TPB's staff's speed-feedback convergence evaluation

- Version 2.3.66 travel model
- Examined differences (RMSEs) of I/O variables between iterations:
 - Link level volumes
 - Link level speeds
 - Highway O-D skims
 - Highway O-D trips
- By year:
 - 2017
 - 2040

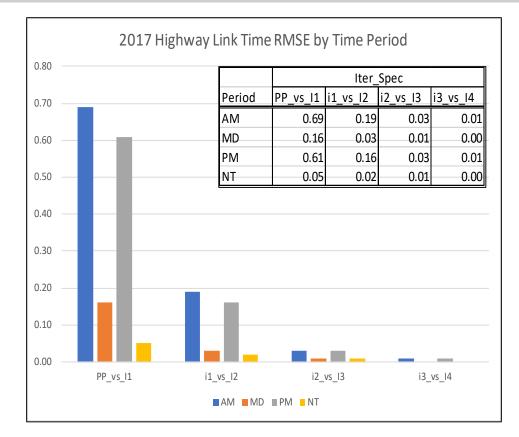
Base and future year VMT by iteration

Base and future year VMT by iteration

Regional VMT convergence does occur between iterations;

Convergence is not as tight in 2040, compared to 2017

2016 CLR	P/Version2.3	8.66 Daily VI	MT by iterat	ion	
Year	PP	i1	i2	i3	i4
2017	181,982,600	161,765,100	173,385,600	169,782,700	169,105,800
2040	228,915,500	187,478,600	215,827,600	206,959,200	205,221,400
Increment	al VMT Diffe	rence Betwee	n Successive	Iterations	
Year	Difference	I1-PP	12-11	_13-12	14-13
2017	Absolute	-20,217,500	11,620,500	-3,602,900	-676,900
	Percentage	-11.1%	7.2%	-2.1%	-0.4%
2040	Absolute	-41,436,900	28,349,000	-8,868,400	-1,737,800
	Percentage	-18.1%	15.1%	-4.1%	-0.8%

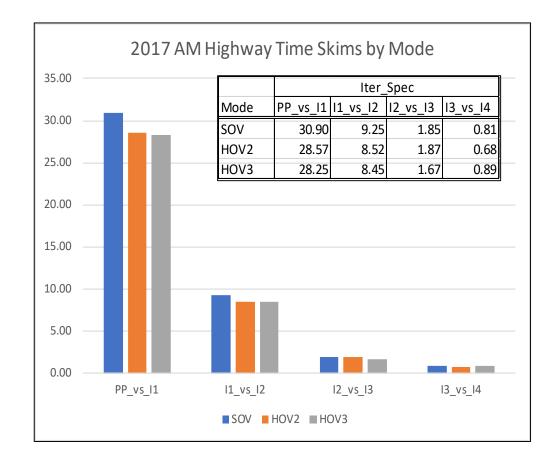


% RMSE between network link times from successive feedback loops (year 2017)

RMSE convergence is evident using MSA averaging

Incremental RMSE's diminish at a non-linear rate

Initial RMSEs are very large


% RMSE between AM time skims from successive feedback loops (years 2017 & 2040)

Similar findings are made, examining highway skims:

RMSE convergence is evident

Incremental RMSE's diminish at a non-linear rate

Initial RMSEs are relatively large

Speed-feedback findings

- I/O speeds appear to be converging well by the final iteration of the model
- Convergence appears to be looser from in-years (2017) to out-years (2040). This is expected. Nonetheless out-year convergence appears reasonable
- The convergence plots suggest that improving the initial (PP) speeds might result in a faster convergence, which may obviate the need for a fourth (i4) iteration
- We will consider using pre-existing network link speeds for the initial (PP) iteration as an alternative to using table look-up speeds

Final thoughts:

- Version V2.5 model is continuing
- We expect V2.5 will not be used in the next AQC cycle (Visualize 2045) Plan update, but it will be tested
- Special thanks to: Meseret Seifu, Ray Ngo, Jim Yin

Ron Milone

Travel Forecasting and Emissions Analysis Program Director (202) 962-3283 rmilone@mwcog.org

mwcog.org/TPB

Metropolitan Washington Council of Governments 777 North Capitol Street NE, Suite 300 Washington, DC 20002

