

Gen3 Model Development Project Travel Forecasting Subcommittee Meeting

September 23, 2022

IN PARTNERSHIP WITH

BASELINE M=BILITY

Discussion Topics

- Phase 2 model estimation update
- Phase 2 implementation update
 - PT skim updates
 - Vehicle type model implementation
 - GitHub issue updates
 - Other updates
- Phase 2 calibration and schedule update

Models Estimated and Calibrated in Phase 1

Models Estimated in Phase 2

New in Phase 2

- Transit subsidy
 model
- Transit pass ownership model
- AV ownership model
- Vehicle type choice model
- Vehicle availability model

Status Update on Model Estimation (MWCOG)

- Auto ownership model
 - Model estimation complete, implemented
 - Documentation is underway
- Coordinated Daily Activity Pattern Model
 - Model estimation in progress
 - Problem in estimation mode discovered, subset of coefficients (interaction terms for 3, 4, and 5 person households) cannot be estimated until fixed; will transfer existing coefficients for now
- Mandatory Tour Frequency Model
 - Model estimation mostly complete
- Non-Mandatory Tour Frequency Model
 - Problem in estimation mode discovered, cannot be estimated until fixed
 - We will continue to use MTC/ARC version in Gen3 Phase 2

Status Update on Model Estimation (RSG)

- Telecommute Frequency Model
 - Model estimation complete
 - Documentation is underway
- Transit Subsidy Model
 - Model estimation complete
 - Documentation is underway
- Trip Mode Choice Model
 - Model estimation complete
 - Documentation underway
 - Mostly reasonable IVT coefficients, but a significant number of out-ofvehicle time coefficients had to be held to similar ratios as estimated in tour mode choice models
- Transit Pass Ownership Model
 - Investigating potential use of 2019 State of the Commute Survey for model estimation

Trip Mode Choice Model Estimation

Coefficients

Variable	Work	University	School	Maintenance	Discretionary
Tour IVT	-0.025	-0.01	-0.01	-0.0213	-0.0213
In-vehicle time	-0.0426	-0.0516	-0.017	-0.0359	-0.0399
Cost	-0.00063	-0.00516	-0.00154	-0.00039	-0.00199
First wait	-0.0634	-0.0769	-0.0253	-0.0539	-0.0644
Transfer wait	-0.0651	-0.0789	-0.026	-0.0632	-0.0877
Walk time	-0.0779	-0.0385	-0.0311	-0.0625	-0.0695
Walk mode time	-0.0779	-0.0385	-0.0311	-0.0822	-0.0914
Transfer walk time	-0.0852	-0.0944	-0.026	-0.0718	-0.0798
Bike mode time	-0.0625	-0.0759	-0.025	-0.088	-0.0978
Drive-transit time	-0.129	-0.0939	-0.0309	-0.0718	0

Trip Mode Choice Model Estimation

Relationships

	Wc	ork	Unive	rsity	So	chool	Ma	intenance	Discr	etionary
Trip IVT/Tour IVT		1.7		5.2		1.7		1.7		1.9
Value of time	\$	40.77	\$	6.00	\$	6.62	\$	55.52	\$	12.03
First wait/IVT		1.5		1.5		1.5		1.5		1.6
Transfer wait/IVT		1.5		1.5		1.5		1.8		2.2
Walk time/IVT		1.8		0.7		1.8		1.7		1.7
Walk mode time/IVT		1.8		0.7		1.8		2.3		2.3
Transfer walk time/IVT		2.0		1.8		1.5		2.0		2.0
Bike mode time/IVT		1.5		1.5		1.5		2.5		2.5
Drive-transit time/IVT		3.0		1.8		1.8		2.0		0.0

Switching to PT Multipathing

- COG staff replaced the PT best-pathing processes with PT multipathing in the Gen3 Model.
 - PT is designed as a multi-path builder.
 - Switching to PT multipathing significantly reduces model runtime.
- COG staff found a hyperpath issue in PT multipathing:
 - The multiple "hyperpaths" created by the multi-path builder for certain transit mode(s) do not always use the mode(s) of interest.
- COG staff proposed a partial solution.
 - Hyperpath issue for commuter rail path building: Completely fixed
 - Hyperpath issue for Bus + Metrorail path building: Partially fixed
- Bentley acknowledged that there is currently no perfect solution to the hyperpath issue in PT.
 - Bentley will explore a long-term solution in the PT algorithm.
 - Bentley agreed our decision to move forward with the partial solution.
- RSG will use the PT skims from the current PT multipathing implementation in the subsequent work.

Github Issues Addressed

- Updated input scripts to remove hard-coded values
- Test Run with updated version of ActivitySim (v1.1)
- Fixed issue in batch file that caused ABM visualizer and LineSum to Fail
- Performance warning in ActivitySim

Visualizer Issues Addressed

- The base map was replaced
- The NT1 and NT2 time periods were combined as NT

Vehicle Type and Vehicle Allocation Model Flow with AV Extension

AV ownership model

- Determine whether household owns 0 or 1+ AVs
- Asserted model, calibrated for different AV penetration scenarios

Auto ownership model

- Choose number of vehicles
 owned by household
- Estimated model
- Constants used to reduce autos owned for households that own an AV

Vehicle Type Model

- Choose a vehicle type for every auto in the household
- Combination of fuel type, body type, age, and AV status choices

Vehicle Allocation Model

 Match vehicles with tour modes

 Alternatives consist of household vehicles + nonhousehold vehicle option

Mode choice Models

 Apply vehicle-dependent auto operating costs

Vehicle Type Model: Vehicle Type Data

	А	В	С	D	E	F	G	Н	I
1	body_type	fuel_type	vehicle_year	NumMakes	NumModels	MPG	Range	NewPrice	auto_operating_cost
2	Car	Gas	2017	39	738	24	0	32926.61346	0.13
3	Car	Gas	2016	39	734	23.7	0	33383.61537	0.13
4	Car	Gas	2015	39	740	23.4	0	33369.12233	0.13
5	Car	Gas	2014	41	717	23.2	0	32571.33539	0.13
6	Car	Gas	2013	40	702	23.1	0	32976.62731	0.13
7	Car	Gas	2012	42	668	22.4	0	32959.56219	0.13
8	Car	Gas	2011	42	617	21.7	0	34409.88113	0.14
9	Car	Gas	2010	44	641	21.5	0	35279.71318	0.14
10	Car	Gas	2009	45	637	21	0	35638.52401	0.14
11	Car	Gas	2008	46	649	20.5	0	35745.78309	0.15
12	Car	Gas	2007	43	594	20.3	0	37613.76774	0.15
13	Car	Gas	2006	43	595	20.2	0	38581.65596	0.15
14	Car	Gas	2005	41	661	20.4	0	37537.36453	0.15
15	Car	Gas	2004	43	628	20.6	0	37988.14511	0.15
16	Car	Gas	2003	42	573	20.5	0	37597.37624	0.15
17	Car	Gas	2002	42	543	20.8	0	37380.8733	0.14
18	Car	Gas	2001	39	505	21	0	37361.09207	0.14

- Model was estimated using data from 2017 NHTS
- Supplemented with U.S. Environmental Protection Agency's (EPA's) fuel economy testing database
 - Fuel economy rating, electric vehicle range, number of makes and models of vehicles available for sale in the US in each vehicle type category

Vehicle Type Model: Utility Expressions Subset

Snippet of some terms in the utility expression file

	Α	В	C	D
1	Label	Description	Expression	Coefficient
2	util_In_nmods	number of models available	@np.log(1 + df.NumModels)	coef_In_nmods
3	util_In_nmakes	number of makes available	@np.log(1+df.NumMakes)	coef_In_nmakes
4	util_mpg	miles per gallon (or equivalent)	@df.MPG	coef_mpg
5	util_crange	Range for BEV (mi)	@df.Range	coef_crange
6	util_crangeltwk	range less than average round trip distance to work	<pre>@np.where((df.Range < df.avg_hh_dist_to_work * 2) & (df.fuel_type=='BEV'), 1, 0)</pre>	coef_crangeltwk
7	util_In_chpc_ev	In(1+number of chargers per capita in MSA/state)	@np.log(1+CHARGERS_PER_CAP)	coef_In_chpc_ev
8	util_cprice0	New Purchase Price (2017\$) Segmented by Income	((income < 25000) & (income > -1)) * NewPrice	coef_cprice0
9	util_cprice25	New Purchase Price (2017\$) Segmented by Income	((income < 50000) & (income >= 25000)) * NewPrice	coef_cprice25
10	util_cprice50	New Purchase Price (2017\$) Segmented by Income	((income < 100000) & (income >=50000)) * NewPrice	coef_cprice50
11	util_van_van	Household already owns a Van Van	(num_hh_Van > 0) & (body_type == 'Van')	coef_van_van
12	util_van_suv	Household already owns a Van SUV	(num_hh_Van > 0) & (body_type == 'SUV')	coef_van_suv
13	util_van_pu	Household already owns a Van Pickup	(num_hh_Van > 0) & (body_type == 'Pickup')	coef_van_pu
14	util_van_mc	Household already owns a Van Motorcycle	(num_hh_Van > 0) & (body_type == 'Motorcycle')	coef_van_mc
15	util_van_suv	Household already owns an SUV Van (symmetrical with above)	(num_hh_SUV > 0) & (body_type == 'Van')	coef_van_suv
16	util_van	Van ASC	(body_type == 'Van')	coef_van
17	util_suv	SUV ASC	(body_type == 'SUV')	coef_suv
18	util_sfo_van	SF and San Jose - Van	@(CBSA == 'SFO') * (df.body_type == 'Van')	coef_sfo_van
19	util_sfo_suv	SF and San Jose - SUV	@(CBSA == 'SFO') * (df.body_type == 'SUV')	coef_sfo_suv
20	util_sfo_pu	SF and San Jose - Pickup	@(CBSA == 'SFO') * (df.body_type == 'Pickup')	coef_sfo_pu
	1			

Vehicle type model variables include household attributes, person attributes, vehicle attributes (body type, age, fuel type) charging infrastructure, vehicle costs

Vehicle Type Model: Output

	Α	В	С	D	E	F	G	
1	vehicle_id	household_id	vehicle_num	vehicle_type	auto_operating_cost	Range	MPG	
2	9828751	982875	1	Car_12_Gas	0.15	0	20.2	
3	13120521	1312052	1	Car_2_Gas	0.13	0	23.7	
4	13120522	1312052	2	Car_20_Gas	0.14	0	21.3	
5	17402091	1740209	1	Van_4_PEV	0.1	0	0	
6	17402092	1740209	2	SUV_14_Gas	0.18	0	16.6	
7	13190021	1319002	1	SUV_20_Gas	0.17	0	17.4	
8	13190022	1319002	2	Pickup_2_Gas	0.16	0	18.5	
9	15274261	1527426	1	Car_3_Hybrid	0.08	0	35.5	
10	15274262	1527426	2	Car_20_Gas	0.14	0	21.3	
11	15274263	1527426	3	Car_11_Gas	0.15	0	20.3	
12	7134881	713488	1	SUV_20_Gas	0.17	0	17.4	
13	7134882	713488	2	Car_19_Gas	0.14	0	21.2	
14	23169201	2316920	1	Car_19_Gas	0.14	0	21.2	
15	23169202	2316920	2	Car_1_Gas	0.13	0	24	
16	23169203	2316920	3	Car_13_Gas	0.15	0	20.4	
17	9213581	921358	1	Car_13_Gas	0.15	0	20.4	
18	9213582	921358	2	Car_8_Gas	0.14	0	21.5	
19	19624501	1962450	1	Car_5_Gas	0.13	0	23.1	
20	19624502	1962450	2	SUV_4_Gas	0.15	0	20.3	
21	19624503	1962450	3	Van 13 Gas	0.18	0	16.4	

final_vehicles.csv

A vehicle table with one record for each vehicle owned by every household in the synthetic population

Vehicle Type Model: Output Distributions

Vehicle Allocation Model

Want to select a vehicle that will be used for each tour and auto mode (DA, S2, S3+)

Runs before tour mode choice.

- Setup the example to have 5 alternatives:
 - 4 possible household vehicles (max from auto ownership model)
 - 1 for a non-household vehicle (for non-auto owning households and for ride-hail modes)
- Need to run the model once for each occupancy level
- Tour file is output with one vehicle allocated for each occupancy level

Vehicle Allocation Model: Utility Expressions Subset

A	В	С	D	E	F	G	Н
1 Label	Description	Expression	veh_num1	veh_num2	veh_num3	veh_num4	non_hh_veh
2 #	Availability Conditions						
3 util_alt1_unavail	Household does not own vehicle	veh_num1.isna() (veh_num1 == ")	coef_unavail	() (0 0	0
4 util_alt2_unavail	Household does not own vehicle	veh_num2.isna() (veh_num2 == ")	0	coef_unavail	(0 0	0
5 util_alt3_unavail	Household does not own vehicle	veh_num3.isna() (veh_num3 == ")	0	() coef_unavail	0	0
6 util_alt4_unavail	Household does not own vehicle	veh_num4.isna() (veh_num4 == ")	0	() (coef_unavail	0
7 #	BEV Range						
8 util_dstgtrng1	Round trip tour distance > BEV range	<pre>@np.where((df.tot_tour_dist > df.Range_1) & (df.fuel_type_1 == 'BEV'), 1, 0)</pre>	coef_dstgtrng	() (0 0	0
9 util_dstgtrng2	Round trip tour distance > BEV range	<pre>@np.where((df.tot_tour_dist > df.Range_2) & (df.fuel_type_2 == 'BEV'), 1, 0)</pre>	0	coef_dstgtrng	(0 0	0
10 util_dstgtrng3	Round trip tour distance > BEV range	<pre>@np.where((df.tot_tour_dist > df.Range_3) & (df.fuel_type_3 == 'BEV'), 1, 0)</pre>	0	(coef_dstgtrng	0	0
11 util_dstgtrng4	Round trip tour distance > BEV range	<pre>@np.where((df.tot_tour_dist > df.Range_4) & (df.fuel_type_4 == 'BEV'), 1, 0)</pre>	0	() (coef_dstgtrng	0
12 #	Vehicles & Driver interactions						
13 util_vehltdr_nh	Vehicles < Drivers Non-Household Vehicle	hh_veh_lt_drivers	0) (0 0	coef_vehltdr_nh
14 util_vehltdr_nh	Vehicles > Drivers Non-Household Vehicle	hh_veh_gt_drivers	0	() (0 0	coef_vehgtdr_nh
15 util_vehltdr_van1	Vehicles > Drivers Van alt 1	hh_veh_gt_drivers * (body_type_1 == 'Van')	coef_vehltdr_van	() (0 0	0
16 util_vehltdr_van2	Vehicles > Drivers Van alt 2	hh_veh_gt_drivers * (body_type_2 == 'Van')	0	coef_vehltdr_van		0 0	0
17 util_vehltdr_van3	Vehicles > Drivers Van alt 3	hh_veh_gt_drivers * (body_type_3 == 'Van')	0	(coef_vehltdr_van	0	0
18 util_vehltdr_van4	Vehicles > Drivers Van alt 4	hh_veh_gt_drivers * (body_type_4 == 'Van')	0	() (coef_vehltdr_van	0
19 #	Occupancy interactions						
20 util_maxocc_van1	Maximum Occupancy Van alt 1	@occup * (df.body_type_1 == 'Van')	coef_maxocc_van	() (0 0	0
21 util_maxocc_van2	Maximum Occupancy Van alt 2	@occup * (df.body_type_2 == 'Van')	0	coef_maxocc_van	(0 0	0
22 util_maxocc_van3	Maximum Occupancy Van alt 3	@occup * (df.body_type_3 == 'Van')	0	(coef_maxocc_van	0	0
23 #	Alternative Specific Constants						
24 util_non_hh	Non-Household Vehicle Constant		L 0	() (0 0	coef_non_hh
25 util_van1	Van ASC alt 1	(body_type_1 == 'Van')	coef_van	() (0 0	0
26 util_van2	Van ASC alt 2	(body_type_2 == 'Van')	0	coef_van	(0 0	0
27 util_van3	Van ASC alt 3	(body_type_3 == 'Van')	0	() coef_van	0	0
28 util_van4	Van ASC alt 4	(body_type_4 == 'Van')	0	() () coef_van	0
29 util_suv1	SUV ASC alt 1	(body_type_1 == 'SUV')	coef_suv) (0 0	0

- Estimated from NHTS data
- Alternatives constructed from vehicles owned by household
- Variables include ratio of vehicles to drivers, tour distance, vehicle characteristics

Vehicle Allocation Model: Output

final_tours.csv

- Final tours table includes the vehicle allocation for each occupancy level
 - Bodytype_age_fueltype
- Occupancy numbers are taken directly from the *occupancy_LeveLs* configuration settings
- Zero auto households will always select the non-household vehicle option

	Α	В	С	D
1	tour_id	vehicle_occup_1	vehicle_occup_2	vehicle_occup_3.5
2	3827799	non_hh_veh	non_hh_veh	non_hh_veh
3	3867733	Car_9_Gas	Car_9_Gas	Car_9_Gas
4	3875277	non_hh_veh	non_hh_veh	non_hh_veh
5	4162195	Car_12_Gas	Car_12_Gas	Car_12_Gas
6	5616465	Car_16_Gas	Car_16_Gas	Car_16_Gas
7	16038903	Car_20_Gas	Car_20_Gas	Car_20_Gas
8	36354780	SUV_15_Gas	Pickup_20_Gas	SUV_15_Gas
9	36354781	SUV_15_Gas	Pickup_20_Gas	SUV_15_Gas
10	36354813	SUV_15_Gas	SUV_15_Gas	SUV_15_Gas
11	36354854	SUV_15_Gas	SUV_15_Gas	SUV_15_Gas
12	36354855	Pickup_20_Gas	SUV_15_Gas	SUV_15_Gas
13	48309478	Car_14_Gas	SUV_15_Gas	SUV_15_Gas
14	48309519	Car_14_Gas	SUV_15_Gas	SUV_15_Gas
15	48309560	Car_14_Gas	SUV_15_Gas	SUV_15_Gas
16	48309593	SUV_18_Gas	Car_14_Gas	SUV_15_Gas
17	48309594	Car_14_Gas	SUV_15_Gas	SUV_15_Gas
18	60437360	Car_12_Gas	Car_12_Gas	Car_12_Gas
19	71860247	Car_13_Gas	Car_13_Gas	Car_8_Gas
20	73330466	SUV_8_Gas	Car_4_Gas	Car_4_Gas
21	73597909	SUV_9_Gas	SUV_9_Gas	SUV_9_Gas
22	74512783	Car_12_Gas	Car_12_Gas	Van_19_Gas
23	76591729	Car_16_Gas	Car_16_Gas	SUV_20_Gas
24	76904600	Car_12_Gas	Car_12_Gas	Car_12_Gas
25	79909408	Car_13_Gas	Car_20_Gas	Car_13_Gas
26	79909449	Car_13_Gas	Car_20_Gas	Car_13_Gas
27	92446257	SUV_12_Gas	SUV_12_Gas	SUV_12_Gas
28	98204182	SUV_4_Gas	Pickup_11_Gas	Pickup_11_Gas
29	98204223	SUV_4_Gas	SUV_4_Gas	SUV_4_Gas
30	98204256	Motorcycle_13_Gas	SUV_4_Gas	SUV_4_Gas
31	107386706	Van_15_Gas	Car_20_Gas	Car_13_Gas

Tour Mode Choice Modifications

- Preprocessor selects the auto operating costs from the vehicles table for each occupancy level
- · Correct auto operating cost is used for each mode
 - SOV, drive transit \rightarrow occupancy 1
 - SR2 \rightarrow occupancy 2
 - SR3p \rightarrow occupancy 3.5
- The selected vehicle is added as a new column after tour mode choice is run
- Atwork subtours use the auto operating costs of the parent tour vehicle
- Non-household vehicles use the previous costPerMile constant

final_tours.csv

	А	S	Т	U	V	W
1	tour_id	vehicle_occup_1	vehicle_occup_2	vehicle_occup_3.5	tour_mode	selected_vehicle
2	3827799	non_hh_veh	non_hh_veh	non_hh_veh	WALK_HVY	
3	3867733	Car_9_Gas	Car_9_Gas	Car_9_Gas	DRIVEALONEFREE	Car_9_Gas
4	3875277	non_hh_veh	non_hh_veh	non_hh_veh	WALK_HVY	
5	4162195	Car_12_Gas	Car_12_Gas	Car_12_Gas	DRIVEALONEFREE	Car_12_Gas
6	5616465	Car_16_Gas	Car_16_Gas	Car_16_Gas	DRIVEALONEFREE	Car_16_Gas
7	16038903	Car_20_Gas	Car_20_Gas	Car_20_Gas	SHARED3FREE	Car_20_Gas
8	36354780	SUV_15_Gas	Pickup_20_Gas	SUV_15_Gas	SHARED2FREE	Pickup_20_Gas
9	36354781	SUV_15_Gas	Pickup_20_Gas	SUV_15_Gas	DRIVEALONEFREE	SUV_15_Gas
10	36354813	SUV_15_Gas	SUV_15_Gas	SUV_15_Gas	DRIVEALONEFREE	SUV_15_Gas
11	36354854	SUV_15_Gas	SUV_15_Gas	SUV_15_Gas	SHARED3FREE	SUV_15_Gas
12	36354855	Pickup_20_Gas	SUV_15_Gas	SUV_15_Gas	SHARED2FREE	SUV_15_Gas
13	48309478	Car_14_Gas	SUV_15_Gas	SUV_15_Gas	DRIVEALONEFREE	Car_14_Gas
14	48309519	Car_14_Gas	SUV_15_Gas	SUV_15_Gas	DRIVEALONEFREE	Car_14_Gas
15	48309560	Car_14_Gas	SUV_15_Gas	SUV_15_Gas	SHARED2FREE	SUV_15_Gas
16	48309593	SUV_18_Gas	Car_14_Gas	SUV_15_Gas	SHARED3FREE	SUV_15_Gas
17	48309594	Car_14_Gas	SUV_15_Gas	SUV_15_Gas	SHARED3FREE	SUV_15_Gas
18	60437360	Car_12_Gas	Car_12_Gas	Car_12_Gas	DRIVEALONEFREE	Car_12_Gas
19	71860247	Car_13_Gas	Car_13_Gas	Car_8_Gas	WALK	
20	73330466	SUV_8_Gas	Car_4_Gas	Car_4_Gas	DRIVEALONEFREE	SUV_8_Gas
21	73597909	SUV_9_Gas	SUV_9_Gas	SUV_9_Gas	DRIVEALONEFREE	SUV_9_Gas

Extend Vehicle Table For Future Years

							NumModel					NewPurch asePrice20	Depreciate d Value (Year	
		BodyType	FuelType	ModelYear	BT-FT-Year	NumMakes	S	MPG	Range	charge240	co2gpm	17USD	Specific)	AV
		Car	PEV	2020	Car-PEV-2020	13	28	30.	5 0.0) 3.4	160.4	0.0	0.0	C
		Car	PEV	2021	Car-PEV-2021	12	32	27.	6 0.0) 3.7	168.0	0.0	0.0	C
		Car	PEV	2022	Car-PEV-2022	9	18	34.	6					C
		Car	PEV	2023	Car-PEV-2023	10	20	36.	7					C
		Car	PEV	2024	Car-PEV-2024	11	21	38.	8					C
		Car	PEV	2025	Car-PEV-2025	11	22	41.	0					C
		Car	PEV	2026	Car-PEV-2026	12	24	43.	2					C
		Car	PEV	2027	Car-PEV-2027	13	25	45.	5					C
		Car	PEV	2028	Car-PEV-2028	14	26	47.	7					C
		Car	PEV	2029	Car-PEV-2029	14	28	50.	0					C
	-	Car	PEV	2030	Car-PEV-2030	15	29	52.	3					C
		Car_AV	PEV	2020	Car_AV-PEV-2020	13	28	30.	5 0.0) 3.4	160.4	0.0	0.0	1
		Car_AV	PEV	2021	Car_AV-PEV-2021	12	32	27.	6 0.0) 3.7	168.0	0.0	0.0	1
		Car_AV	PEV	2022	Car_AV-PEV-2022	9	18	34.	6					1
New		Car_AV	PEV	2023	Car_AV-PEV-2023	10	20	36.	7					1
^ /		Car_AV	PEV	2024	Car_AV-PEV-2024	11	21	38.	8					1
AV	-	Car_AV	PEV	2025	Car_AV-PEV-2025	11	22	41.	0					1
Rody		Car_AV	PEV	2026	Car_AV-PEV-2026	12	24	43.	2					1
Douy		Car_AV	PEV	2027	Car_AV-PEV-2027	13	25	45.	5					1
Types		Car_AV	PEV	2028	Car_AV-PEV-2028	14	26	47.	7					1
51		Car_AV	PEV	2029	Car_AV-PEV-2029	14	28	50.	0					1
	L	Car_AV	PEV	2030	Car_AV-PEV-2030	15	29	52.	3					1

- Body type and Fuel type attributes must be defined for future years (up to max forecast year)
- AV-Body Type combinations must be added, with indicator field

AV Ownership Model

The following model is from DaySim and has been implemented in ActivitySim

Variable	Coefficient					
AV_Constant	Calibrated for different penetration Rates					
AV_HHIncomeUnder50KCoefficient	-1.0					
AV_HHIncomeOver100KCoefficient	1.0					
AV_HHHeadUnder35Coefficient	0.5					
AV_HHHeadOver65Coefficient	-1.0					
AV_CoefficientPerHourCommuteTime	0.25					

Then the variable will be used to influence number of cars owned in the auto ownership model

			Paramete	rs	-
Variable	Cars 0	Cars 1	Cars 2	Cars 3	Cars 4+
util_asc		1.17	-0.709	-2.88	-4.57
util_auto_time_saving_per_worker		0.837	0.957	0.957	0.957
util_children_16_17_per_driver		0.00	-2.42	-4.18	-5.50
util_density		-0.00730	-0.00730	-0.00730	-0.00730
util_AV_owned	<mark>-999</mark>	0	<mark>-0.22314</mark>	-0.69315	-999
				1	
			Ort	turn of	f?

AV influence on mode choice

- If an AV is selected as the vehicle choice for tour mode choice, a set of "modifier" parameters will be turned on in the preprocessor
 - In-vehicle time perception for auto (0.8, due to increased productivity in self-driving vehicles)
 - Parking cost (~0, due to sending self-driving car to remote parking or home)
 - Terminal time (~0, due to curbside drop-off and pickup)

Preparing County-level Calibration Targets for Work Location Choice

- 2011-2015 Census Journey-to-work Flows at County level used as starting point
- ActivitySim constrained by workers at residence end and employment at destination end
 - Workers by residence county matches census data well
 - Employment data includes workers who work from home and workers who in-commute
 - Method used to factor observed data and model size terms to account for these workers
 - County-county targets are being compared to ActivitySim to determine whether county-county constants needed to improve match

Next steps with updated schedule

- Complete model estimation and implement all estimated models (end of September)
- Complete extension of vehicle type model to consider AVs (end of October)
- Model calibration (now through November)
- Model validation (November through January)
- Sensitivity testing (February through May)
- Documentation and training (February through June)

Joel Freedman SENIOR DIRECTOR Joel.Freedman@rsginc.com