Jeremy O'Brien, PE, BCEE Director of Applied Research, SWANA

#### COMPARING WASTE MANAGEMENT OPTIONS

Metropolitan Washington COG Recycling Committee Presentation December 1, 2016



## **SWANA**

- Membership organization of over 8,500 public and private solid waste professionals
- Mission "Advancing From Waste Management to Resource Management"
- Endorses "Highest and Best Use" for materials and products recovered from MSW.





# **SWANA Applied Research Foundation**

- Founded in 2001
- 43 Local Government and Corporate Subscribers
- Conducts applied research on topics submitted by and voted on by Subscribers
- Four Research Groups Collection, Recycling, WTE, and Disposal.





#### FY2017 ARF Waste-To-Energy Group

| CDM Smith                                                    | Paul Hauck, PE       | Senior Environmental<br>Engineer          |
|--------------------------------------------------------------|----------------------|-------------------------------------------|
| HDR Engineering, Inc.                                        | Joe Murdoch          | Senior Vice President                     |
| City and County of<br>Honolulu                               | Manuel Lanuevo, P.E. | Chief, Refuse Division                    |
| I-95 Landfill Owners<br>Group                                | John Snarr           | Metropolitan<br>Washington COG            |
| Lancaster County (PA)<br>Solid Waste<br>Management Authority | Robert Zorbaugh      | Chief Operating Officer                   |
| Olmsted County, MN                                           | John Helmers, PE     | Director of<br>Environmental<br>Resources |
| Solid Waste Authority of<br>Palm Beach County (FL)           | Mark Hammond         | Executive Director                        |
| York County Solid Waste<br>Authority                         | Dave Vollero         | Executive Director                        |



Washington COG Recycling Committee Meeting – Dec. 1, 2016

3



- Comparing Recycling to Waste-To-Energy
- Noteworthy Findings of Recent Research
- Responses to Specific Questions



#### COMPARING RECYCLING TO WASTE-TO-ENERGY



# Is This A Fair Comparison?

- Many integrated SWM systems have both:
  - Source-Separated Recycling
  - WTE facilities
- Better comparison types of integrated systems
  - Landfill-based systems
  - WTE-based systems
  - Composting/anaerobic digestion-based systems
- Materials and energy recovery are achieved by each type of system
- Criteria for system comparison
  - Costs
  - Disposal rates for each type of waste generator
  - Environmental impacts and benefits
  - Community sanitation and aesthetics
  - Customer service and convenience
  - System flexibility and reliability



#### **Functions of Each Type of Facility**

| Materials Recovery Facility                                                                        | WTE Facility                                                       |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Recover materials from single-stream recycling collection programs for recycling into new products | Recover energy from waste not targeted for recycling or composting |
|                                                                                                    | Convert HHW to harmless byproducts                                 |
|                                                                                                    | Recover non-source separated metals from waste                     |
|                                                                                                    | Destroy pathogens in waste                                         |
|                                                                                                    | Stabilize waste to eliminate long-term landfill disposal risks     |
|                                                                                                    | Reduce volume of waste requiring disposal by 90%                   |

7

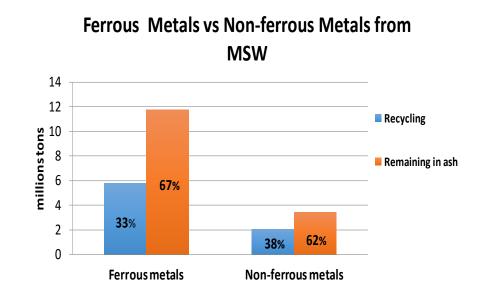


#### **Comparing Recycling to WTE by Waste Stream Component – A Better Comparison**

| Waste Component                  | Energy<br>Recovery | Materials<br>Recovery | Reason                                                                                                             |
|----------------------------------|--------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------|
| HDPE Natural<br>Containers       |                    | Х                     | Material recycling revenues of<br>over \$500 per ton compared to<br>energy revenues of less than \$100<br>per ton. |
| Glass Containers                 |                    | х                     | No heating value. Can cause<br>maintenance problems in WTE<br>facilities.                                          |
| Metal containers                 | Х                  | Х                     | Metals not targeted for source<br>separated can be recovered from<br>WTE ash.                                      |
| Flexible Packaging               | х                  |                       | Good for the environment but can't be recycled.                                                                    |
| Plastic bags, films<br>and wraps | Х                  |                       | Typically not collected in source-<br>separation programs.                                                         |

#### NOTEWORTHY FINDINGS OF RECENT RESEARCH




#### **Recent ARF Reports**

| Year | Title                                                             |
|------|-------------------------------------------------------------------|
| 2016 | Innovations in Waste-To-Energy Ash<br>Management                  |
| 2015 | Food Waste Diversion Programs and Their<br>Impacts on MSW Systems |
| 2012 | The Long-Term Environmental Risks of Subtitle D<br>Landfills      |



## **Innovations in WTE Ash Management (2016)**

- Recovery of metals from WTE bottom ash can recycle as much or more metals than curbside recycling
- Reuse of WTE bottom ash for road construction can result in total waste diversion rates of over 90%





#### Food Waste Diversion Programs and Their Impacts on MSW Systems (2015)

- 198 residential sourceseparation programs in 2013
- 75% of programs in 3 states
  - CA 33%
  - WA 29%
  - MN 12%
- All use composting to process food waste.
- Most accept meat/fish waste.





# **Single-Family Residential Programs**

- Collected weekly with yard waste
- Cannot use plastic bags to contain food waste
- Accept meat/fish/bones
- Unpleasant to participate odors, flies, mold
- High waste diversion impact
  - 5-10 lbs/HH/week
  - Similar to curbside recycling
- Low Cost impact if collected with yard waste





## **Impacts on Composting Facilities**

- Compost mixture 66% food waste and 34% bulking agent (weight basis: shredded branches)
- Co-compositing yard waste/food waste not permitted in some states
- Food waste composting concerns
  - Odors
  - Pests
  - Pathogens
  - Water contamination
- Negative Impacts on compost quality
  - Plastic produce stickers
  - Food packaging materials



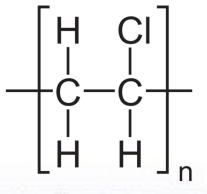


#### Long-Term Environmental Risks of Subtitle D Landfills (2012)

- Long-term environmental risks due to landfilled biodegradable waste
- Perpetual maintenance of final cover system needed
- Custodial care needed beyond 30-year post closure care period
- Risks can be mitigated by stabilizing waste through WTE or composting/AD before landfilling.








#### **RESPONSES TO SPECIFIC QUESTIONS**

#### **Emissions From Burning Recyclable Plastics**

- Plastics Nos. 1, 2, 4 5, 6
  - PET, HDPE, LDPE, PP, PS
  - Composed of hydrogen, carbon and oxygen
  - Combustion generates CO<sub>2</sub> and H<sub>2</sub>O
- Polyvinyl Chloride (No. 3)
  - Contains chlorine
  - Combustion produces HCL and possibly dioxins
  - Both HCL and dioxin emissions are controlled to very low levels by air pollution control equipment
  - No correlation found between PVC in waste and dioxin emissions







#### How Does The Energy Created by Burning Plastics Compare to the Energy Saved by Recycling Them?

| Variable                                     | Process Energy |            |
|----------------------------------------------|----------------|------------|
|                                              | Per Short      | Per        |
|                                              | Ton            | Pound      |
|                                              | (Million Btus) | (Btus)     |
| HDPE Made from Virgin Inputs                 | 23.68          | 11,840     |
| HDPE Made from Recycled Inputs               | 5.33           | 2,665      |
| Energy Savings Due To Recycling              | 18.35          | 9,175      |
|                                              |                |            |
| PET Made From Virgin Inputs                  | 28.25          | 14,125     |
| PET Made From Recycled Inputs                | 12.02          | 6,010      |
| Energy Savings Due To Recycling              | 16.23          | 8,115      |
|                                              |                |            |
| Lower Heating Value - Non-Recycled Plastics  |                | 14,000     |
| Boiler Efficiency Factor                     |                | <u>70%</u> |
| Useful Heat Energy Produced from Burning NRP |                | 9,800      |



## **Processing of Glass in WTE Facilities**

- Glass generally shatters into small pieces and then softens but does not melt on furnace grate
- Can lead to slagging on boiler tubes and be abrasive and cause minor erosion of combustion grates

|                                  | Degrees C    |
|----------------------------------|--------------|
| Melting Point of<br>Glass        | 1,425 -1,600 |
| WTE Furnace Grate<br>Temperature | 700-1,100    |





## **Recovery of Ferrous Metals from Ash**

- 98% of ferrous metals in waste transferred to bottom ash
- About 50% are oxidized during combustion process and/or are smaller than 2 mm in size
- About 50% of ferrous metals in WTE ash are recoverable with traditional equipment
- Typical ferrous metal recovery rate – 85-95%





#### **Burning Dead Leaves**

- Leaves have roughly the same heating value as mixed MSW
- Burning leaves does not create problems in WTE facilities

| Component      | Higher Heating Value<br>(Btus/lb) |
|----------------|-----------------------------------|
| MSW`           | 5,000                             |
| Yard Trimmings | 6,000                             |



#### **Burning of tree branches**

- Average burn time on grate – 30-45 minutes
- Grate Temperature 1,800 F
- Typical burnout > 97%
- Cut branches six inches or less in diameter typically burn completely





#### Burning of Trash Carts and Recovery of Metal Axles

 Short answer – Yes, the metal axles will be recovered by the magnet.



