

Montgomery County DOT ATMS Software Adaptive Signal Control

National Capital Region
Transportation Planning Board
SPOTS and Traffic Signals Subcommittee Joint Meeting
April 5, 2018

Advanced Transportation Management System

System by the Numbers

- 865 Traffic Signals operated/maintained by MCDOT
 - 572 owned by State of Maryland (SHA)
 - 280 owned by Montgomery County
 - 13 owned by a City (Rockville or Gaithersburg)
- Vehicle Detection Systems
 - Video (conventional, Gridsmart and FLIR)
 - Inductance Loops
 - Magnetometer
 - Microwave/Radar
- 419 Signals Equipped with Battery Backup Systems
- 117 Additional Battery Backup Systems planned by SHA
- 220 Traffic Surveillance Cameras
- 30 signals and 17 buses operating Transit Signal Priority

Day to Day Operations

- Monitor
 - Signal system health, dispatching technicians
 - Incident Management
 - Ride On Bus Central Communications (CAD/AVL)
 - CCTV used for verification
- Control
 - Signal Timing Adjustments on the fly as conditions change
 - Dynamic rerouting of Ride On buses as needed
- Information
 - Traffic show on Cable TV
 - Live traffic info on County website
 - Live messaging to general public via Everbridge
 - CCTV shared with broadcast media and with regional Government Agencies via Mview

Advanced Transportation Management System Detailed Signal Status

Advanced Transportation Management System Split Monitor

Advanced Transportation Management System Green Phase History

Advanced Transportation Management System Phase History

Advanced Transportation Management System Time-Space Diagram

Advanced Transportation Management System Logical Signal Groups

Advanced Transportation Management System Transit Signal Priority Current Activity

Advanced Transportation Management System Transit Signal Priority CMS Logs

Advanced Transportation Management System Transit Signal Priority System Usage Report

System Usage Report

From 2/28/2018

to 3/29/2018

Jurisdictions included: Montgomery County DOT

Report Generated: 3/29/2018 8:55 AM

90	Summary of Intersections/Vehicles Low Priority		Attempted Preempts	Granted Preempts	Average Granted Preempts
	31	Intersections	60280	44058	14212
	18	Registered Vehicles	60280	44058	2447.7
	0	Unregistered Vehicles	0	0	0.0
	17	Authorized Vehicles	60280	44058	2591.6
	0	Unauthorized Vehicles	0	0	0.0

Traffic Adaptive Initiative

- Phase A Preliminary Engineering (Funded FY17)
 - Selected Montrose Rd/Pkwy corridor for the Pilot
 - Selected SCOOT and Kadence systems for pilot testing
- Phase B Deployment (Proof of Concept, Funded FY18)
 - July 2017 Funding appropriated
 - July September 2017 Field installation of required detection
 - September 2017 Collected before traffic data (after school started)
 - October 2017 through February 2018 Alternatively running SCOOT and Kadence and collecting traffic data

Traffic Adaptive Systems Evaluated

Comparison	Kadence	SCOOT
Cost	\$\$	\$\$\$
Optimization	Split, Cycle, Offset in steps	Split, Cycle, Offset continuous
Detection	Existing stop bar and arterial advance detectors	Upstream per-lane detectors all approaches
Responsiveness	Slow – every few cycles	Very Fast – Each cycle or phase
Application	Mainly arterials	Grids, arterials, all combinations
Architecture	NTCIP – uses inherent controller capability	Gemini Outstation cabinet hardware
Feature Set	TOD Tuner, Saturation Enhancements	Bus priority, gating, incident detection

Traffic Adaptive Observations

Kadence

- Signal controllers operate in a way similar to how the County currently runs time based coordination (familiar to users)
- Slower to respond to changes in traffic (typically waits 3 cycles to adjust to changes in demand)
- Discovered limitations in deployment of transit signal priority (needs further investigation, TSP is not a feature of the test corridor)
- User interface is useful and rather intuitive
- Requires some intervention in unusual traffic conditions
- Have observed some negative citizen correspondence during Kadence operation

Kadence Map

Kadence Phase Utilization

Kadence Intersection Detail

Traffic Adaptive Observations

SCOOT

- SCOOT takes over operation of the signal from the local signal controller
- Responds quickly to changes in traffic (each phase change is based on current demand at detectors)
- Responds appropriately to transit signal priority (TSP)
 requests (SCOOT has a mature TSP module that is in use in
 other places)
- User interface is more complicated but usable
- Update to user interface anticipated in 2018
- Handles most unusual traffic situations without intervention
- Requires a hardware interface in the cabinet unless you have Siemens controllers

SCOOT Map

SCOOT Traffic Flow

SCOOT Intersection Detail

Maryland's Smart Traffic Signal Initiative

- SHA is investing \$50.3 million to deploy Adaptive Signal Control on 14 corridors in Maryland by the end of 2018
- MD 108 corridor identified as the adaptive corridor in Montgomery County
- DOT is working with SHA and expects to operate the MD 108 adaptive corridor for SHA

Traffic Adaptive Findings

- DOT has observed operational improvements on Montrose Rd/Pkwy with both adaptive systems
- Adaptive systems will require additional staff to manage system and maintain field hardware/detection
- Cost Estimate (not including staffing)
 - \$90K Average per intersection
 - Vehicle detection infrastructure over 60% of system cost
- Detailed traffic analysis is expected in mid April 2018

Questions?

Mike Kinney, Senior Project Manager Sabra, Wang & Associates

Michael.Kinney@montgomerycountymd.gov mkinney@sabra-wang.com

