Approaches for Quantifying Emission Impacts of Energy Efficiency and Renewable Energy Policies and Programs

> Robyn DeYoung June 1, 2012 U.S. EPA State Climate and Energy Program

United States Environmental Protection Agency

State and Local Climate and Energy Program

Overview of Process & Presentation

- Quantifying the emission impacts of energy efficiency (EE) and renewable energy (RE) policies requires:
 - Identifying a specific EE/RE policy and getting estimates of the projected energy impacts
 - 2. Understanding how EE/RE policies affect electricity generation
 - 3. Accessing data on electricity generation and emissions of electric generating units in a State or Region from available sources:
 - 4. Becoming familiar with the range of available quantification methods and when to use them:
 - eGRID subregion non-baseload emission rates approach
 - Electric Generating Units (EGU) capacity factor emission rates approach
 - Historic hourly emission rate approach
 - Energy modeling
 - Choosing the best method for your analysis

VA Case Study: Virginia's Legislature ³ Enacted a Voluntary Energy Savings Goal in 2007

VA Policy:

 Voluntary Goal: By the year 2022, consumption of electric energy will be reduced through the implementation of cost-effective energy efficiency programs by an amount equal to 10%, of the amount consumed in 2006.

Understanding how EE/RE policies affect electricity generation

Generally, EE/RE policies reduce emissions at non-baseload EGUs, and at the most expensive units, that are dispatched last

Available Data Sources for Power Plant Generation and Emissions

State's emissions inventory

- Emissions for EGUs permitted by State DEPs
- Includes smaller units not captured in EPA data collection
- Scale of emissions varies depending upon permitting requirements
- EPA's eGRID (Emissions Generation Resource Integrated Database)
 - \succ Emissions for NOx, SO₂, Hg, CO₂, CH₄ and N₂0
 - Different aggregation levels boiler to subregions
 - Capacity factors the ratio between generation and max capacity
- EPA's Clean Air Markets Division (CAMD) database
 - Reported emissions for EGUs subject to Cap and Trade Programs
 - Emission unit level
 - Temporal scales 5min hourly annual emissions data

Available emission quantification approaches

Each approach is best used in certain situations depending upon analytical objectives.

eGRID subregion non-baseload emission rates approach

EGU capacity factor emission rates approach

EPA's Capacity Factor Emissions Calculator

> Historical hourly emission rates approach

EPA's Hourly Marginal Emissions Tool

Energy Modeling (E.g., dispatch, capacity expansion model)

ote: This does not cover the full scope of all possible approaches

eGRID subregion non-baseload emission ⁷ rates approach

- The way it works:
 - Use emission rates that represent average emissions of non-baseload units in an eGRID subregion.
- Examples for when to use:
 - Estimate emission reduction potential during ozone season
- Advantages:
 - Requires few resources
 - Straight forward calculation
- Limitations:
 - Does not specify which power plant is reducing emissions
 - Future electric system changes arenot represented

Data is available on a three year lag

eGRID Subregions

X eGRID nonbaseload emission rate (lbs/MWh)

emissions avoided by EE (lbs)

VA Example: Quantifying VA's 10% EE goal ^{*} using eGRID emission rates approach

<u>Step One</u>: Estimate energy savings of EE policy = 10,672 GWhs

<u>Step Two</u>: Apportion EE savings to eGRID subregions based on VA Utility Sales Data (EIA-861)

<u>Step Three</u>: Multiply EE savings by each eGRID subregion's non-baseload emission rates

eGRID subregion	Apportioned EE Savings	EE Savings (GWhs)	eGRID non-baseload emission rates		Emission Reductions	
	(%)		NOx (lbs/MWh)	SO2 (lbs/MWh)	NOx (Tons)	SO2 (Tons)
RFCE	1%	95	1.4	8.3	67	395
RFCW	25%	2,668	2.03	9.3	2,708	12,407
SRVC	72.3%	7,729	1.3	5.04	5,024	19,478
SRVT	1.7%	180	1.6	5.7	143	511

EGU capacity factor emission rates approach AN EGU'S CAPACITY

- The way it works:
 - An EGU's capacity factor is an indicator for how much emissions could be displaced
 - EGUs with ~ 0.8 capacity factors rarely get displaced
 - EGUs with ~ 0.2 capacity factors most likely will get displaced
 - Assign emissions reductions to each EGU based on 1) capacity factor 2) annual/seasonal emissions rates and 3) amount of generation displaced

• Examples for when to use:

Understand which EGUs are 'on the margin' and where emissions most likely could be displaced

e actual electrici produced

The available electricity production at maximum capacity

Capacity Factors Relationship to Emissions Displacement

EGU Capacity Factor Emission Rates Approach

Advantages:

- Emissions can be assigned to each EGU
- Relatively easy analysis

Limitations:

🕉 EPA

State and Local Climate and Energy Program

- Assumes power plants are operating at the same rate throughout the year or ozone season
- Capacity factors are approximate and don't account for maintenance, outages, etc.
- Capacity factors can be found in eGRID:

http://www.epa.gov/cleanenergy/energyresources/egrid/index.html

<u>Capacity Factors Relationship to</u> Emissions Displacement

A draft Capacity Factor Emissions (CFEC) Calculator will be released Summer of 2012

VA Example: Quantifying VA's 10% EE goal using Capacity Factor Emissions Calculator (CFEC)

CFEC Step 1: Locate which eGRID subregion the EE policy/program will be implemented

eGRID Subregion Map

VA Utility Sales span across four eGRID subregions: The retail sales distribution is:

- RFCE 1%
- RFCW 25%
- SRVC 72.3 %
- SRVT 1.7%

VA Example: Quantifying VA's 10% EE goal using Capacity Factor Emissions Calculator (CFEC)

CFEC Step 2: Enter the Energy Impact (in MWhs) of the EE Policy or Program in the cell that corresponds to your eGRID subregion.

EE Savings for each eGRID Subregion – Entered into CFEC RFC East = 95 GWh RFC West = 2668 GWhs SRVC = 7729 GWhs SRVT = 179 GWhs

Quantifying VA's 10% EE goal using CFEC eGRID subregion SRVC Emission Reduction Summary

VA Example: Quantifying VA's 10% EE goal using Capacity Factor Emissions Calculator (CFEC)

The CFEC allows you to identify which plants could reduce the most emissions within a county or nonattainment area

	Power plant	Plant Owner	<u>County</u>	Annual NOx	Ozone season NOx	Annual SO2	Annual CO2
	Chesterfield	Dominion VA Power Co	<u>Chesterfield</u>	637 tons	0.3 tons	27 tons	39,000 tons
	Yorktown	Dominion VA Power Co	<u>York</u>	525 tons	163 tons	2,470 tons	290,000 tons
	Covanta Fairfax Energy	Covanta	<u>Fairfax</u>	217 tons	89 tons	136,800 tons	46,000 tons
lima	State and Local ate and Energy Program		Note:	This is a hy	pothetical examp	ole	

Top Three Virginia Power Plants with Most NOx Emission Reduction Potential

Historical Hourly Emission Rates Approach

- The way it works:
 - Use reported hourly generation and emissions information to derive hourly emission rates.
 - Historical hourly emissions rates can correlated to a specific EE/RE policy or program

Examples for when to use:

- Regulatory analysis
- Understand dispatch during peak energy demand

€PA

State and Local

Climate and Energy Program

• Analyze emission impacts of different EE programs

Reported Hourly Emissions information can be found at EPA's Clean Air Market's Division website:

http://camddataandmaps.epa.gov/gdm/i ndex.cfm?fuseaction=iss.progressresults

Historical Hourly Emission Rates Approach

Advantages:

- Provides detailed results hourly, unit level emission reductions
- Can derive emission rates for any group of hours

Limitations:

- Resource intensive
- Future generation is not represented

EPA will be releasing a draft Hourly Marginal Emissions Tool summer of 2012

Energy Modeling Approach

The way it works:

- Dynamic simulation models are used to forecast emissions
- Models account for complex interaction of the electric grid
 - Dispatch Models
 - Capacity Expansion Models
 - Energy Models
- Examples of when to use:
 - Regulatory analysis
 - Understand how many assumptions (including EE/RE) affect future EGU generation

*NEMS stands for National Energy Modeling System **IPM stands for Integrated Planning Model includes & dispatch capabilities *** MARKAL stands for Market Allocation Model

User defined constraints Technology data Energy Model Fuel data Fuel data

> Examples of Energy Models: <u>Dispatch Models:</u> Prosym, Promod, Ventyx <u>Capacity Expansion Models:</u> NEMS^{*}, IPM^{**}, Energy 2020 Energy model: MARKAL***

Energy Modeling Approach

EPA uses the Integrated Planning Model (IPM) for all electric sector regulatory analysis

- Advantages
 - Emission changes from future power plant generation and retirements can be captured (10-30 year projections) (Capacity Expansion Model)
 - > Uses many assumptions to determine how EGUs will be dispatched
 - Model selects optimal changes in generation mix based on assumptions and energy system (Capacity Expansion Model)
- Limitations
 - Generally useful for 1-7 year projections (Dispatch Model)
 - Average emission rates may only be available (Capacity Expansion)
 - Very resource intensive
 - All models are proprietary
 - Energy modeling expertise is recommended

Choosing An Emissions Quantification Method

- There are several key questions that can help narrow your options as you select a method:
 - What is the purpose of the analysis?
 - What types of emissions are you interested in?
 - What scale do you care about?
 - How much time and resources do you have?
 - Match your answers to the methods.

Key Considerations When		· Considerations When	Typical Approaches					
	Selecting an Approach		eGRID subregion	EGU Capacity	Hourly	Energy		
			nonbaseload	Factor	Emissions	Modeling		
		Prelimary Analysis	*	*				
RPOSE	OSE	Voluntary Programs	*	*				
	RPC	General benefits Info	*	*				
	Ы	Regulation or statutory			*	*		
_		requirement						
	EMISSIONS	Emissions of interest	CO ₂ , NOx, SO ₂ , CH ₄ , N ₂ O	NOx, SO ₂ , CO ₂	NOx, SO ₂ , CO ₂	NOx, SO ₂ , CO ₂ , varies		
SCALE		Geographical: State vs. Regional import/export	eGRID subregion partially addressed					
	CALE	Source Aggregation	boiler, generator, plant	plant	emission unit (boiler)	emission unit (boiler)		
	S	Temporal - length of time; historical vs. forecasted	annual & ozone season (NOx) historical	annual & ozone season (NOx) historical	hourly historical	annual, ozone season NOx, hourly forecasted		
	S	Time	low	low	medium	high		
JRCE	URCE	Money	low	low	medium	high		
RESO		Staff expertise	low	low	medium	high		

Thank you!

Robyn DeYoung <u>Deyoung.robyn@epa.gov</u> 202-343-9080

21 Appendix: Additional Resources for Emission Quantification Approaches

EGU Capacity Factor Emission Rates Approach

- eGRID website:
 - <u>http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html</u>

Historical hourly emission rates approach

- Examples of this approach:
 - Washington Council of Governments calculator
 - <u>http://www.mwcog.org/environment/air/EERE/default.asp</u>
- Mid-Atlantic Regional Air Management Association Report
 - http://www.marama.org/RegionalEmissionsInventory/2007hourlypoint/FinalDoc mar2011 Analysis of Hrly CAMD Emissions Data.pdf.

Resources for eGRID subregion nonbaseload emission rates approach

Informational resources:

- eGRID website:
 - http://www.epa.gov/cleanenergy/energyresources/egrid/index.html
- eGRID summary tables:
 - <u>http://www.epa.gov/cleanenergy/documents/egr</u> <u>idzips/eGRID2010V1 1 year07 SummaryTables.</u> <u>pdf</u>
- eGRID overview presentation:
 - http://www.epatechforum.org/documents/2010-2011/March%2031/Diem-eGRID-2011-03-11.pdf
- New Mexico example using eGRID:
 - <u>http://www.epatechforum.org/documents/2010-</u> 2011/March%2031/DeYoung eGRID 3.31.11.pdf

BEPA

