

Forecasting Effects of Climate and Land-Use Changes in the Chesapeake Bay Watershed Joint USGS – STAC/PSU Project

In this project, we are:

Forecasting climate and LU changes to forecast changes in flow and water quality

Hay and Markstrom Method

- Monthly simulated precipitation and temperature data from 6 GCMs
- Choose 3 scenarios for each of the 6 GCMs
- 12-yr moving periods from 2001-2099

RESULT:

88 input files x 3 GCM scenarios x 6 GCMs = 1584 datasets

Utilize Existing Models CBP Watershed Model (Phase 5) and USGS Land-change model (CBLCM) Run climate scenarios and Run climate + land-use change scenarios

Analyze Streamflow Output Files - USGS

- Annual mean runoff
- Mean seasonal runoff

 (a) November April
 (b) May -October
- 7-Day low flow (7-consecutive days that generate the lowest average flow)
- Flow duration 10th, 50th, and 90th percentiles of flow

(from climate change alone and from climate change + land-use change)

Example Analysis for Streamflow Output Range in mean monthly streamflow for the 6 GCMs and the 3 scenarios

FLINT RIVER BASIN, GEORGIA RANGE IN MEAN MONTHLY VALUES FOR: 2030, 2060, and 2090

Summarize Forecasted Changes

Bay watershed

Major basins

Ecoregions

Physiographic provinces

Analyze Changes in Nutrient Loading - PSU

Six models runs have been completed

- Highest emissions scenario
- Last 12 year window
- All six GCMs

Changes in nutrient and sediment loading from major tributaries (compared to base model run)

Changes in loading from different land uses

Analyze Changes in Recorded Streamflow -USGS

Identified over 100 basins with record >80 years

Need to eliminate basins with significant land use change or impoundments

Currently performing analysis

Future Needs

Improve downscaled precipitation datasets
 Information on peaks

Include secondary climate impacts

- Cropping practice changes
- Irrigation changes

Forecast Effects on Aquatic Organisms

Smallmouth bass

Percentage of male fish found to be intersex in Potomac tributaries:

VIRGINIA

South Fork of the Shenandoah River	80%
North Fork of the Shenandoah River	100
Shenandoah River	100
MARYLAND	
Upper Conococheague Creek	100
ower Conceptoaque Creek	00

Largemouth bass

Findings from 13 male fish found in the Potomac River near the District's Blue Plains Wastewater Treatment Plant. 6 were normal (46 percent) 7 had female characteristics (54 percent)

(had temale characteristics (54 percent)

ere also intersex (23 percent)

- Potential Impacts...
 - Ecological flow regimes
 - Fish disease/parasites
 - Spawning periods
 - Habitat shifts/loss
 - Forests
 - Wetlands
 - SAV
- Potential Activities
 - Prepare Conceptual models
 - Ecological flow regimes
 - Fish disease/parasites
 - Spawning periods
 - Habitat shifts/loss
 - Predict habitat loss
 - LU change model
 - Climate shifts