WHERE DO WE WANT TO BE?

Climate Projections and Scenarios

Climate Planning Mitigation Work Session

November 20, 2019

Metropolitan Washington Council of Governments

Agenda

- BAU & Target Setting in the CAP Process - History of MWCOG Work
- BAU
 - Overview of the approach taken
 - Results
- Scenarios Actions
 - Renewable Energy Strategies
 - Deep Energy Retrofits
 - EV Deployment
 - Land Use and VMT
 - Other Multi-Sector Working Group
- Discussion

Business-as-Usual & 2030 Scenarios

- Goals:
 - Re-evaluate current trajectory
 - Take Stock of Existing Commitments and Actions
 - Determine what it would take to meet the interim goal of 40% below 2005 by 2030

Business-as-Usual

- What Happens if we do nothing
- Sometimes referred to as a "Baseline Scenario"
- Early Practice: Emissions at the same rate as population & employment increases.
- This effort is based on demographics, building information, and anticipated transportation improvements

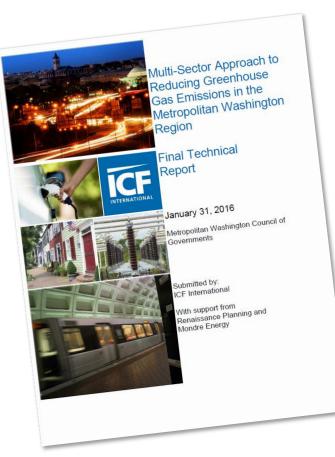
The Climate Planning Process

2008 National Capital Climate Change Report

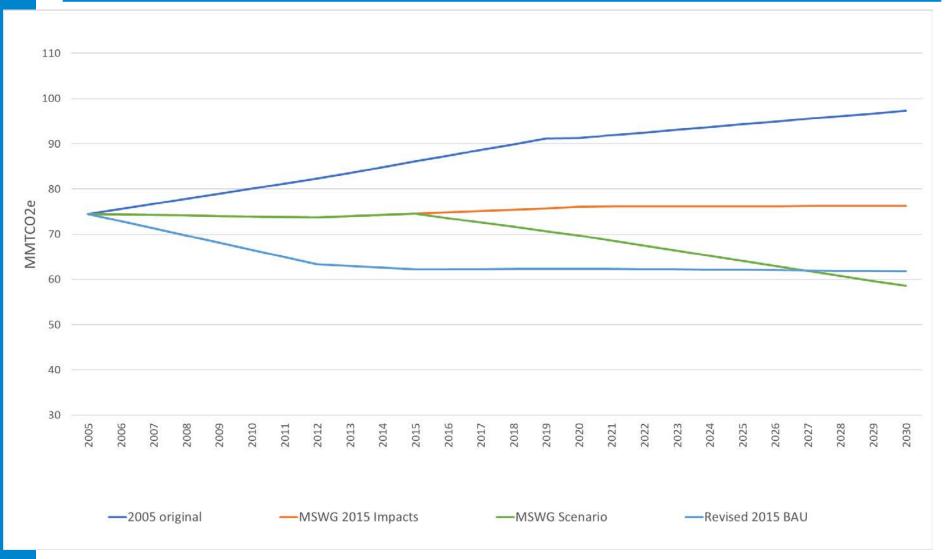
- 2005 Baseline Inventory
- Business As Usual to 2050
- Targets
 - 10% by 2012
 - 20% by 2020
 - 80% by 2050

2010 "What Would It Take" Report

Analysis of Specific Transportation Actions

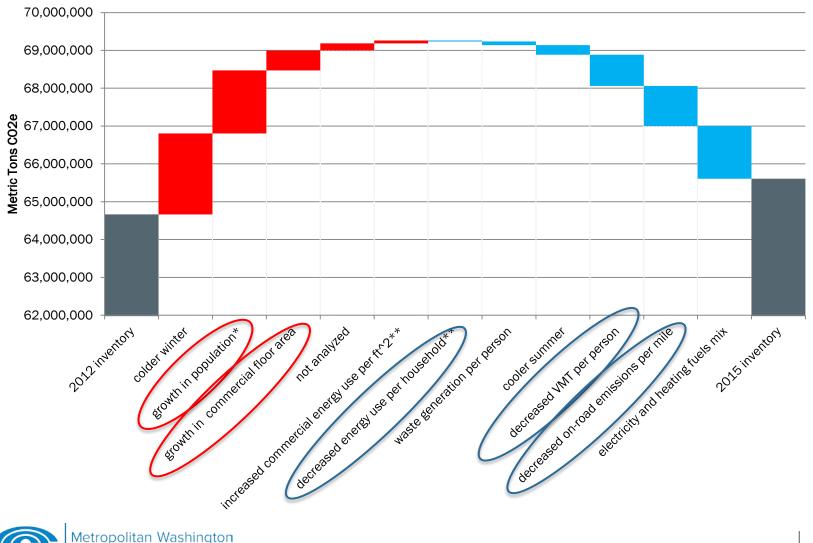

2015-16 Multi-Sector Working Group

- 2005 Baseline Inventory
- Updated Business As Usual to 2050
- Deep Analysis of Reduction Potential from Many Actions


Multi-Sector Work Group

- Identifying viable, implementable local, regional, and state actions in each of the four sectors (Energy, Transportation, Land Use, and the Built Environment).
- Quantifying benefits, costs, and implementation timeframes.
- Jointly developing an action plan for the region.
- Exploring specific greenhouse gas emission reduction goals, measures and/or targets, along with reductions in criteria pollutants as a co-benefit, for the four sectors.

Past Scenarios

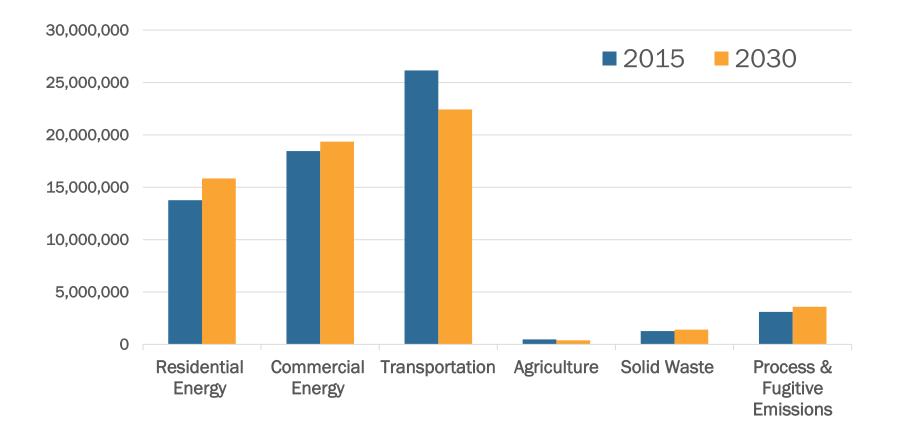


- According to the Round 9.1 Cooperative Forecasts, between now and 2030, the region will add more than:
 - 858,000 people,
 - 610,000 jobs,
 - 362,000 households

Recent Trends

- Residential Energy
 - Round 9.1 Household Growth by COG Member Jurisdiction
 - Applied to typical housing mix in each community (Single Family Attached, ... Detached, Apts 2-4 Units, Apts 5+ Units)
 - Typical Energy Use Intensity by Housing Type
- Commercial/Industrial Energy
 - Round 9.1 Employment Growth by Jurisdiction
 - Historic Job Growth & Commercial Construction -> SQFT New Construction / Job
 - New Building mix by Core, Inner, Outer areas from MWCOG Commercial Construction Report
 - Typical Energy Use Intensity by Building Type (Office, Retail, Flex/Other)

- On-Road Transportation
 - Adopted Transportation Planning Board projections from Vision 2045
 - Transportation Demand Model 2.3.75
 - Uses Visualize 2045 Transportation Networks & 9.1 Cooperative Forecasts as inputs
 - EPA MOVES2014b
 - Incorporates incremental improvements in average fuel economy
 - Small amount of EVs introduced
 - NREL Electrification Futures Study Reference Case


- Off-Road
 - Under the assumption that most of this category is construction related, not yard work, held constant
- Aviation
 - Passenger growth based on MWCOG Regional Air Passenger Origin/Destination Forecast Update.
- Rail
 - Percent Increase derived from Transportation Planning Board projections of future ridership

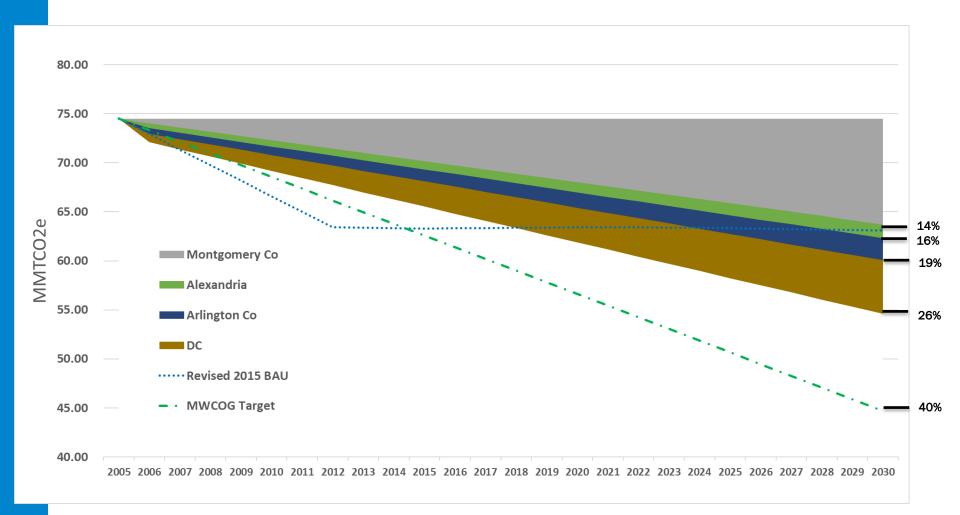
- Agriculture
 - All sources (soils, livestock, manure) decreased at annual rate of recent loss in farmland (2007-2012) from MWCOG "What our Region Grows 2017".
- Fugitive Natural Gas
 - Driven by increases in natural gas consumption
- Waste, Wastewater, HFCs,
 - Proportional increase with population

2015-2030 BAU Results

Region-Wide BAU 2030 Results

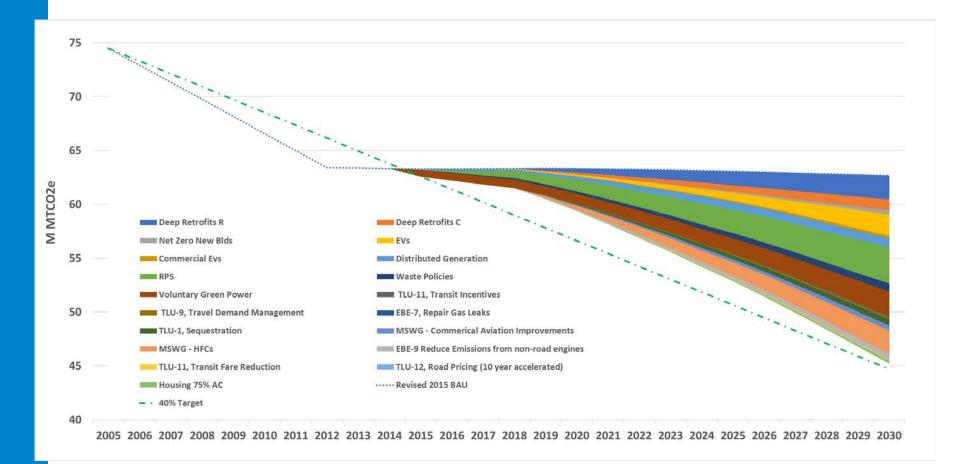
Questions on the BAU?

	MTCO2e	% Change from '15
Residential Electricity	8,326,386	11.70%
Residential Natural Gas	6,184,273	23.47%
Commercial Electricity	14,984,982	5.49%
Commercial Natural Gas	4,012,020	5.89%
On Road Mobile Emissions	17,079,707	-21.72%
Passenger Air Travel	2,537,408	33.56%
Rail Transportation	42,995	25.44%
Septic System Emissions	37,732	0.25%
Sewer System Emissions	13,027	0.02%
N20 Effluent Discharge Emissions	5,892	0.02%
Enteric Fermentation	167,463	-19.06%
Manure Management	48,856	-19.06%
Ag Soils	168,039	-19.06%
Landfill Waste Generation	736,294	6.00%
Combustion of Solid Waste	671,541	15.93%
HFCs	3,292,899	15.93%
Natural Gas Fugitive Emissions	300,103	15.73%
Total	61,782,047	-0.81%


MTCO2e

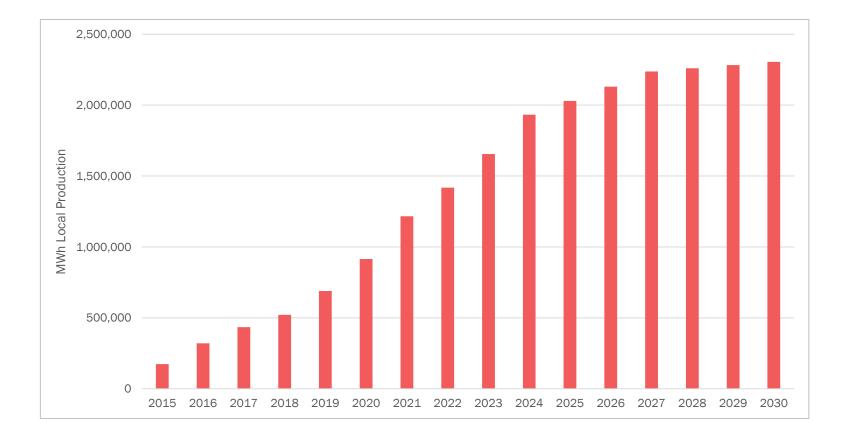
% Change from '15

Metropolitan Washington Council of Governments


Getting to 40% - Existing Targets

Metropolitan Washington Council of Governments

Getting to 40% - 'Technical Potential

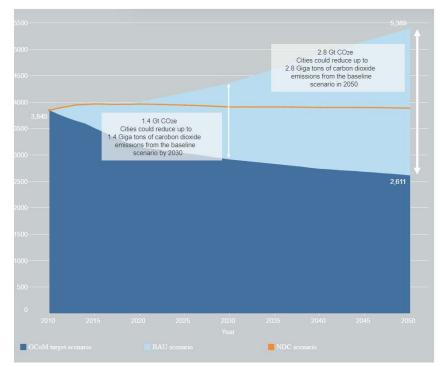


Renewable Energy – 3 Mechanisms

- Distributed Generation
 - On-site Solar
 - Extrapolating from Recent Regional Growth
- RPS Policies
 - DC 100% x 2032
 - MD 50% x 2030
 - VA 30% x 2040
- Green Power Purchases
 - Commitments by businesses, institutions, individuals to purchase renewable energy
 - Extrapolating from Recent Regional Growth

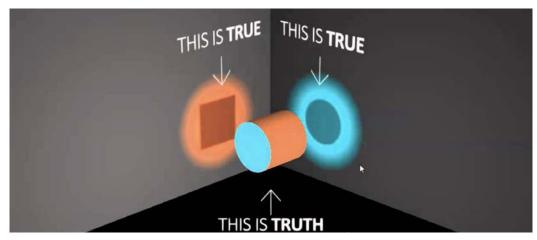
Distributed Generation – On Site Solar

Distributed Generation – On Site Solar


- By 2030 1,681,255 kW of distributed solar capacity
- At current system size that means 216,170 new additional systems
- Equivalent to 24% of all COG-Region single-family homes with solar

Emissions Accounting - Geographic

- Focuses on the sources and activities that physically occur within a defined jurisdiction boundary
- Vertical integration (summing up all local action globally)
 - What emissions are covered by engaged communities
 - How local actions might impact global trajectories
- Use of 'location-based' grid energy factors (eGRID)



https://www.globalcovenantofmayors.org/impact2018/

Emissions Accounting – Market Based

- Jurisdictions, firms, and individuals can drive reductions elsewhere!
- There are legal underpinning supports the use of market-based instruments to make claims of environmental performance (100% RE, Carbon Neutral, etc.).

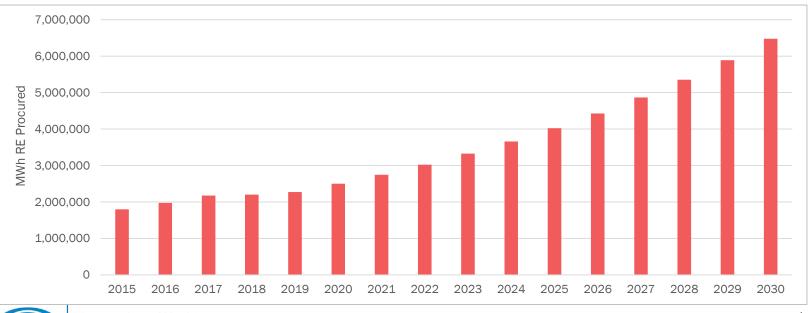
Metropolitan Washington
Council of Governments

Renewable Portfolio Standards

- Geographic Perspective & Physical Impact
 - Future inventories will be assessed on the actual future grid
 - Impact: It depends on other states and actions
 - Projections on future grid mix from EIA & LBNL are essentially constant for grid mix needed to meet RPS demands (Ohio demand drops off)
 - Current RPS policies 'hold the line'
- 2020 Updates to EIA and LBNL studies may show more impact

Renewable Portfolio Standards

- Market-Based Perspective What can be claimed?
- How Much Clean Grid Energy would be consumed in 2030?


	% Renewable Energy	Clean Energy Demand from COG Jurisdictions (Million MWh)	MTCO2e Reduced
DC	87%	2.7	833,000
MD	50%	5.3	1,750,000
VA	18.9%	2.1	792,000

Green Power Purchases

- Continued 10% Annual Growth
- Equivalent to ~16% of Total Commercial Electricity Use

2030 MWh of GPP	2030 MTCO2e Reduced
6,478,000	2,310,000

What Does It Take? – Deep Retrofits

- Existing buildings are the biggest segment of the regional footprint.
- There are many small actions that can be applied to existing buildings:
 - Appliance Rebates, Energy 'Tune-ups', Energy Disclosure.
 - Bottom Up detailed modeling out of scope here.
- Big wins with Deep Retrofits that overhaul everything

ENERGY USE	ENERGY REDUCTION (KBTU/SF/YR)	CAPITAL COST (\$/SF)
PLUG LOAD	6–15	0
LIGHTING	6–8	3–5
VENTILATION	4–5	2–5
COOLING	10–25	10–75
HEATING	3–10	10–75
TOTAL	30–50	25–150+

Source: Kok, Nils, Norm Miller, and Peter Morris, 2011: "The Economics of Renovation." Available at <u>www.nilskok.com</u>.

Guide to Building the Case for Deep Energy Retrofits. RMI. 2012 Available at RetroFitDepot.org

What Does It Take? – Deep Retrofits

• Starting Point: Existing Energy Use

		kBtu/SQFT
Housing Type	Base kBtu/SQFT	Saved
Single Family + Small Multifamily*	53.7	32
Multifamily	81.6	50

• Building Area to work with

Housing Type	Total COG-Region Square Feet
1-unit, detached	2,135,906,400
1-unit, attached	699,356,800
2 units	17,637,760
3 or 4 units	44,293,760
5 to 9 units	88,664,000
10 to 19 units	188,567,100
20 or more units	299,118,120

Deep Retrofits – Residential Scale

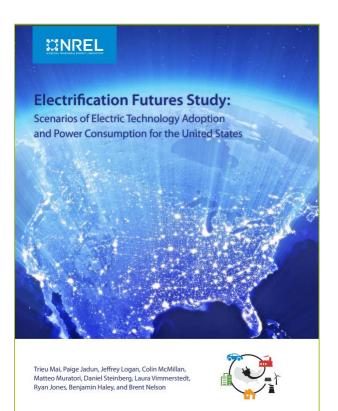
	0.5% per Year		1% Per Year		2% Per Year	
Housing Type	Number of Units	MWh Savings	Number of Units	MWh Savings	Number of Units	MWh Savings
1-unit, detached	4,450	540,840	8,900	1,081,680	17,799	2,163,360
1-unit, attached	2,185	177,086	4,371	354,172	8,742	708,345
2 units	98	4,466	197	8,932	394	17,864
3 or 4 units	261	11,215	521	22,431	1,042	44,863
5 to 9 units	522	35,734	1,043	71,468	2,086	142,937
10 to 19 units	1,109	75,998	2,218	151,996	4,437	303,993
20 or more units	1,760	120,553	3,519	241,107	7,038	482,215

Context: Harvard Joint Center on Housing estimates 449,000 Metro-Area Renovations in 2017. 17% involve building system upgrades (76,000)

Deep Retrofits – Commercial Scale

	(0.5% per Yeai	r		1% Per Year			2% Per Year	
Building Type	Buildings	SQFT	MWh Savings	Buildings	SQFT	MWh Savings	Buildings	SQFT	MWh Savings
Office	79	2,536,630	307,383	158	5,073,260	614,767	316	10,146,519	
Retail	13	404,781	48,964	25	809,563	97,929	50	1,619,125	195,859
Other	83	2,671,557	272,249	166	5,343,114	544,499	333	10,686,228	1,088,998

2018 Metro-Area New Commercial Construction: 10.4 Million SQFT


What Does It Take? – Deep Retrofits

- Is this realistic within your community?
- What are the Barriers?
- What are the Opportunities?
- How do we scale it Up?

Electric Vehicle Deployment

- Results based on a Consumer Choice Model at the national scale:
 - Vehicle Prices, charging infrastructure, and Range
 - Consumer Incomes,
 Preferences etc.
 - Maybe conservative for the region?

Passenger Vehicles

Vehicle Type	Scenario	% of Sales	% of Vehicle Type VMT	% of All VMT
Passenger	Reference Case	6.5	11	5
Cars	Medium Adoption	24	31	<u>15</u>
	High Adoption	32	34	16
Light Trucks	Reference Case	-	1	0.6
	Medium Adoption	-	14	<u>6</u>
	High Adoption	-	16	7

Electrifying Fleets

By 2050

	EFS	Share of VMT Electrified in Primary Operating Range					Total Share	
Subsector Scenario		Less than 50 miles	51–100 miles	101–200 miles	201–500 miles	Over 500 miles	of VMT Electrified	
MDVs	Medium	40%	20%	10%	0%	0%	29%	
	High	80%	50%	20%	10%	0%	61%	
HDVs	Medium	30%	15%	5%	0%	0%	10%	
	High	80%	50%	40%	30%	15%	41%	

- Light Commercial Vehicles ~11% of 2030 On-Road BAU
- 1/3 of the way by 2030 ->
 - 236,000 MTCO2e (Medium Adoption)
 - 496,000 MTCO2e (High Adoption)

Multi-Sector Work Group - TLU - 2

- Effect of Land Use Planning on Transportation Demand
- BAU has Vision 2045 Development Pattern "Baked In"
 - ~30% of new housing in Activity Centers
 - Resulted in a -3% VMT/Capita
- Future of Housing Report Target 75% of New Housing in Activity Centers or High Capacity Transit

Multi-Sector Work Group - TLU - 2

Percent in AC/HCT	Households	VMT Reduced	MTCO2e Reduced
40%	24,160	191,423,513	67,603
50%	48,320	382,847,026	135,206
60%	72,480	669,982,295	202,809
70%	96,640	765,694,051	270,413
75%	108,720	861,405,808	304,214

Multi-Sector Work Group Actions

- External No Local Action Needed
 - Commercial Air Traffic Carbon Reductions
 - National Phase out of HFCs
- Local Actions
 - Reduce Natural Gas System Leakage
 - Transportation Demand Management
 - Transit Fare Reductions
 - Sequestration within Trees and Working Lands
 - Roadway Pricing (Phase I DC Cordon Pricing)

What Isn't Counted

- Building Decarbonization/Electrification
- Regular Efficiency & Appliance Rebate Programs
- Micro-Mobility
- Density-Related Building Energy Impacts

Keep Counting What You're Doing!

- This analysis wouldn't have been possible without great MWCOG data
 - Solar Deployments
 - EV Registrations
 - Building Statistics
- The next iteration could be better with all your successes counted towards where the region is headed.

Open Discussion

- 40% Reduction will be challenging to hit without coordinated action from all jurisdictions
- How do the items from the "Where Are We Going?" session add into this discussion?
- Next Steps: Help Refine the Projections

Thanks!

Project Guides

Jeff King – MWCOG jking@mwcog.org

Maia Davis – MWCOG mdavis@mwcog.org **Project Support**

Mike Steinhoff – Kim Lundgren Associates <u>mike@kimlundgrenassociates.com</u>

Xico Manarolla – Kim Lundgren Associates xico@kimlundgrenassociates.com

Chad Laurent - Cadmus <u>chad.laurent@cadmusgroup.com</u>

Mathew Lee – Cadmus <u>mathew.lee@cadmusgroup.com</u>

